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Spectral graph theory

A graph G = (V ,E ) can be represented by its adjacency matrix:

Aij =

{
1 if {i , j} ∈ E
0 otherwise.

Eigenvalues λ1 ≥ . . . ≥ λ|V | capture essential information about G .

B It is convenient to encode them into a probability measure:

µG :=
1

|V |

|V |∑
k=1

δλk .

Question: how does µG typically look when G is large?
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Spectrum of a uniform random graph on 10000 vertices
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Erdős-Rényi model with average degree 3



Uniform random 3-regular graph



Uniform random tree on 3000 nodes



Sparse graphs: the need for a theory

Wigner’s universality is restricted to the dense regime |E | � |V |,
but real-world networks are embarassingly sparse: |E | � |V |.

I Real-world graphs: beyond the semicircle law (Farkas 2001).

I Graph spectra for complex networks (Piet van Mieghem 2010).

In the sparse regime, the spectrum µG typically concentrates
around a model-dependent limit µ, about which little is known.

Main challenge: understand the fundamental decomposition

µ = µpp + µac + µsc

in terms of the geometry of the underlying graph model.

Conjectures were proposed by Bordenave, Sen, Virág (JEMS 2017).
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Local convergence of rooted graphs

Write BR(G , o) for the ball of radius R around the vertex o in G :

Say that (Gn, on)→ (G , o) if for each fixed R and n large enough,

BR(Gn, on) ≡ BR(G , o).

G? := {locally finite, connected rooted graphs} is a Polish space.



Local convergence of rooted graphs

Write BR(G , o) for the ball of radius R around the vertex o in G :

Say that (Gn, on)→ (G , o) if for each fixed R and n large enough,

BR(Gn, on) ≡ BR(G , o).

G? := {locally finite, connected rooted graphs} is a Polish space.



Local convergence of rooted graphs

Write BR(G , o) for the ball of radius R around the vertex o in G :

Say that (Gn, on)→ (G , o) if for each fixed R and n large enough,

BR(Gn, on) ≡ BR(G , o).

G? := {locally finite, connected rooted graphs} is a Polish space.



Local convergence of rooted graphs

Write BR(G , o) for the ball of radius R around the vertex o in G :

Say that (Gn, on)→ (G , o) if for each fixed R and n large enough,

BR(Gn, on) ≡ BR(G , o).

G? := {locally finite, connected rooted graphs} is a Polish space.



Local convergence of rooted graphs

Write BR(G , o) for the ball of radius R around the vertex o in G :

Say that (Gn, on)→ (G , o) if for each fixed R and n large enough,

BR(Gn, on) ≡ BR(G , o).

G? := {locally finite, connected rooted graphs} is a Polish space.



Benjamini-Schramm convergence

Goal: capture the local geometry around all vertices.

Given a finite graph G = (V ,E ), consider the empirical
distribution of all its possible rootings:

LG :=
1

|V |
∑
o∈V

δ(G ,o) ∈ P(G?).

Say that a sequence of finite graphs (Gn) has local weak limit L if

LGn =⇒ L

in the usual weak sense for probability measures on Polish spaces.

Intuition: L describes the local geometry around a typical vertex.
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Examples of local weak limits

I Gn : Random d−regular graph
L : Infinite d−regular rooted tree

I Gn : Erdős-Rényi model with edge probability pn = c
n

L : Galton-Watson tree with degree Poisson with mean c

I Gn : Configuration model with empirical degree distribution π
L : Unimodular Galton-Watson tree with degree law π

I Gn : Uniform random tree
L : Infinite Skeleton Tree (Grimmett, 1980)

I Gn : Preferential attachment graph
L : Polya-point tree (Berger-Borgs-Chayes-Sabery, 2009)

Fact: uniform rooting confers to every local weak limit L a
powerful form of stationarity known as unimodularity.
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I Gn : Erdős-Rényi model with edge probability pn = c
n

L : Galton-Watson tree with degree Poisson with mean c

I Gn : Configuration model with empirical degree distribution π
L : Unimodular Galton-Watson tree with degree law π

I Gn : Uniform random tree
L : Infinite Skeleton Tree (Grimmett, 1980)

I Gn : Preferential attachment graph
L : Polya-point tree (Berger-Borgs-Chayes-Sabery, 2009)

Fact: uniform rooting confers to every local weak limit L a
powerful form of stationarity known as unimodularity.



Examples of local weak limits

I Gn : Random d−regular graph
L : Infinite d−regular rooted tree
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I Gn : Erdős-Rényi model with edge probability pn = c
n

L : Galton-Watson tree with degree Poisson with mean c

I Gn : Configuration model with empirical degree distribution π
L : Unimodular Galton-Watson tree with degree law π

I Gn : Uniform random tree

L : Infinite Skeleton Tree (Grimmett, 1980)

I Gn : Preferential attachment graph
L : Polya-point tree (Berger-Borgs-Chayes-Sabery, 2009)

Fact: uniform rooting confers to every local weak limit L a
powerful form of stationarity known as unimodularity.



Examples of local weak limits

I Gn : Random d−regular graph
L : Infinite d−regular rooted tree
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The spectral convergence theorem for sparse graphs

Theorem (Bordenave-Lelarge-Abért-Thom-Virág):

1. If (Gn) admits a limit L, then (µGn) admits a weak limit µL.

2. The convergence holds in the Kolmogorov-Smirnov sense:

sup
λ∈R
|µGn ((−∞, λ])− µL ((−∞, λ])| −−−→

n→∞
0

3. We have µL = E[µ(G ,o)] where (G , o) ∼ L and

∀z ∈ C \ R,
∫
R

1

λ− z
µ(G ,o)(dλ) = (AG − z)−1

oo .

Note: in general, the existence of (AG − z)−1 is a delicate issue...
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The case of trees

T1 T2 Td

T =

1 2 d

o

(AT − z)−1
oo =

−1

z +
∑d

i=1(ATi
− z)−1

ii

I Explicit resolution for infinite regular trees

I Recursive distributional equation for Galton-Watson trees

I In principle, this equation contains everything about µL
I See the wonderful survey by Bordenave for details.
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The eigenspace Eλ := ker(AG − λ)

Given λ ∈ R and a locally finite graph G = (V ,E ), consider

S :=
⋃
f ∈Eλ

support(f ).

Lemma (Finite trees). If G is a finite tree, then λ is a simple
eigenvalue of each connected component of S. Consequently,

dim(Eλ) = |S| − |E (S)| − |∂S|.

Theorem (Main result). On a unimodular random tree, the
connected components of S are almost-surely finite. Moreover,

µL({λ}) = P (o ∈ S)− 1

2
E
[
degS(o)1(o∈S)

]
− P (o ∈ ∂S) .
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Consequences for the pure-point support

Σpp(L) := {λ ∈ R : µL({λ}) > 0}.

Corollary. If L is supported on trees, then

Σpp(L) ⊆ {eigenvalues of finite trees} =: A.

Corollary. Σpp(L) = A for many “natural” limits L, including:

I The Poisson-Galton-Watson tree.

I Unimodular Galton-Watson trees with supp(π) = Z+.

I Their “conditioned on non-extinction” versions.

I The Infinite Skeleton tree.

Remark. A is dense in R, so these graphs have “rough” spectrum.
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Pure-point spectrum and degrees

Write τ(λ) for the size of the smallest tree having λ as eigenvalue.

Corollary. If L is supported on trees with degrees in {δ, . . . ,∆},

Σpp(L) ⊆
{
λ : τ(λ) <

∆− 2

δ − 2

}
.

In particular,

I If ∆−2
δ−2 ≤ 2, then Σpp(L) ⊆ {0}.

I if ∆−2
δ−2 ≤ 3 then Σpp(L) ⊆ {−1, 0,+1}.

I If ∆−2
δ−2 ≤ 4 then Σpp(L) ⊆ {−

√
2,−1, 0,+1,

√
2}.
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Pure-point spectrum and isoperimetric profile

Anchored isoperimetric constant:

ι?(G , o) := lim
n→∞

inf

{
|∂S |
|S |

: o ∈ S ,S connected, n ≤ |S | <∞
}
.

Corollary. If L is supported on trees with anchored isoperimetric
constant ≥ ε and degrees in {2, . . . ,∆}, then

Σpp(L) ⊆
{
λ : τ(λ) <

∆2

ε

}
.

Remark. The anchored isoperimetric constant of a GWT
conditioned on non-extinction is positive (Chen & Peres, 2004).
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A striking dichotomy in the Galton-Watson case

Corollary. When L is the unimodular GWT with degree
distribution π ∈ P(Z+), we have the following dichotomy:

I If π1 = 0 (no leaves) then Σpp(L) is a finite set.

I If π1 > 0 then Σpp(L) is dense in [−2
√

∆− 1,+2
√

∆− 1].

This was conjectured by Bordenave, Sen & Virág (JEMS 2017).
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Three specific open problems

µL = µpp + µac + µsc

I For which degree π does UGWT(π) satisfy µpp(R) = 0 ?

I Does the Infinite Skeleton Tree satisfy µpp(R) = 1 ?

I When π = Poisson(c), does µac(R) > 0 as soon as c > 1 ?
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Thank you !


