Spectral analysis of sparse random graphs JUSTIN SALEZ (LPSM)

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□ ● ● ●

A graph G = (V, E) can be represented by its **adjacency matrix**:

$$A_{ij} = \left\{ egin{array}{cc} 1 & ext{if } \{i,j\} \in E \ 0 & ext{otherwise.} \end{array}
ight.$$

A graph G = (V, E) can be represented by its **adjacency matrix**:

$$A_{ij} = \left\{ egin{array}{cc} 1 & ext{if } \{i,j\} \in E \ 0 & ext{otherwise.} \end{array}
ight.$$

Eigenvalues $\lambda_1 \geq \ldots \geq \lambda_{|V|}$ capture essential information about G.

A graph G = (V, E) can be represented by its **adjacency matrix**:

$$A_{ij} = \left\{ egin{array}{cc} 1 & ext{if } \{i,j\} \in E \ 0 & ext{otherwise.} \end{array}
ight.$$

Eigenvalues $\lambda_1 \geq \ldots \geq \lambda_{|V|}$ capture essential information about *G*.

▷ It is convenient to encode them into a probability measure:

$$\mu_{\mathcal{G}} := \frac{1}{|\mathcal{V}|} \sum_{k=1}^{|\mathcal{V}|} \delta_{\lambda_k}.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

A graph G = (V, E) can be represented by its **adjacency matrix**:

$$A_{ij} = \left\{ egin{array}{cc} 1 & ext{if } \{i,j\} \in E \ 0 & ext{otherwise.} \end{array}
ight.$$

Eigenvalues $\lambda_1 \geq \ldots \geq \lambda_{|V|}$ capture essential information about G.

▷ It is convenient to encode them into a probability measure:

$$\mu_{\mathcal{G}} := \frac{1}{|\mathcal{V}|} \sum_{k=1}^{|\mathcal{V}|} \delta_{\lambda_k}.$$

<ロト 4 目 ト 4 三 ト 4 三 ト 9 0 0 0</p>

Question: how does μ_G typically look when G is large?

Spectrum of a uniform random graph on 10000 vertices

<ロト < 個 ト < 臣 ト < 臣 ト 三 の < ()</p>

Spectrum of a uniform random graph on 10000 vertices

ロトメロトメミトメミト ヨーのへで

Erdős-Rényi model with average degree 3

Uniform random 3-regular graph

・ 《 母 ト 《 臣 ト 《 臣 ト 《 臣 - 今 Q @

Uniform random tree on 3000 nodes

<ロト < 目 > < 目 > < 目 > < 目 > < 目 > < 0 < 0</p>

Wigner's universality is restricted to the **dense** regime $|E| \gg |V|$, but real-world networks are embarassingly **sparse**: $|E| \asymp |V|$.

Wigner's universality is restricted to the **dense** regime $|E| \gg |V|$, but real-world networks are embarassingly **sparse**: $|E| \asymp |V|$.

► Real-world graphs: beyond the semicircle law (Farkas 2001).

Wigner's universality is restricted to the **dense** regime $|E| \gg |V|$, but real-world networks are embarassingly **sparse**: $|E| \asymp |V|$.

- ► Real-world graphs: beyond the semicircle law (Farkas 2001).
- ► Graph spectra for complex networks (Piet van Mieghem 2010).

Wigner's universality is restricted to the **dense** regime $|E| \gg |V|$, but real-world networks are embarassingly **sparse**: $|E| \asymp |V|$.

- ► Real-world graphs: beyond the semicircle law (Farkas 2001).
- Graph spectra for complex networks (Piet van Mieghem 2010).

In the sparse regime, the spectrum μ_{G} typically concentrates around a **model-dependent limit** μ , about which little is known.

Wigner's universality is restricted to the **dense** regime $|E| \gg |V|$, but real-world networks are embarassingly **sparse**: $|E| \asymp |V|$.

- ► Real-world graphs: beyond the semicircle law (Farkas 2001).
- ► Graph spectra for complex networks (Piet van Mieghem 2010).

In the sparse regime, the spectrum μ_G typically concentrates around a **model-dependent limit** μ , about which little is known.

Main challenge: understand the fundamental decomposition

 $\mu = \mu_{\rm pp} + \mu_{\rm ac} + \mu_{\rm sc}$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

in terms of the geometry of the underlying graph model.

Wigner's universality is restricted to the **dense** regime $|E| \gg |V|$, but real-world networks are embarassingly **sparse**: $|E| \asymp |V|$.

- ► Real-world graphs: beyond the semicircle law (Farkas 2001).
- ► Graph spectra for complex networks (Piet van Mieghem 2010).

In the sparse regime, the spectrum μ_G typically concentrates around a **model-dependent limit** μ , about which little is known.

Main challenge: understand the fundamental decomposition

 $\mu = \mu_{\rm pp} + \mu_{\rm ac} + \mu_{\rm sc}$

in terms of the geometry of the underlying graph model.

Conjectures were proposed by Bordenave, Sen, Virág (JEMS 2017).

・ロト・日本・日本・日本・日本・日本

Write $B_R(G, o)$ for the ball of radius R around the vertex o in G:

Write $B_R(G, o)$ for the ball of radius R around the vertex o in G:

Write $B_R(G, o)$ for the ball of radius R around the vertex o in G:

Say that $(G_n, o_n) \to (G, o)$ if for each **fixed** R and n large enough, $B_R(G_n, o_n) \equiv B_R(G, o).$

Write $B_R(G, o)$ for the ball of radius R around the vertex o in G:

Say that $(G_n, o_n) \to (G, o)$ if for each **fixed** R and n large enough, $B_R(G_n, o_n) \equiv B_R(G, o).$

 $\mathcal{G}_{\star} := \{ \text{locally finite, connected rooted graphs} \}$ is a Polish space.

Goal: capture the local geometry around all vertices.

Goal: capture the local geometry around all vertices.

Given a finite graph G = (V, E), consider the empirical distribution of all its possible rootings:

< ロ > < 回 > < 三 > < 三 > < 三 > < 三 > < ○ < ○</p>

Goal: capture the local geometry around all vertices.

Given a finite graph G = (V, E), consider the empirical distribution of all its possible rootings:

$$\mathcal{L}_{\mathcal{G}} := rac{1}{|V|} \sum_{o \in V} \delta_{(\mathcal{G},o)} \in \mathcal{P}(\mathcal{G}_{\star}).$$

< ロ > < 回 > < 三 > < 三 > < 三 > < 三 > < ○ < ○</p>

Goal: capture the local geometry around all vertices.

Given a finite graph G = (V, E), consider the empirical distribution of all its possible rootings:

$$\mathcal{L}_{G} := \frac{1}{|V|} \sum_{o \in V} \delta_{(G,o)} \in \mathcal{P}(\mathcal{G}_{\star}).$$

Say that a sequence of finite graphs (G_n) has local weak limit \mathcal{L} if

$$\mathcal{L}_{G_n} \Longrightarrow \mathcal{L}$$

in the usual weak sense for probability measures on Polish spaces.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Goal: capture the local geometry around all vertices.

Given a finite graph G = (V, E), consider the empirical distribution of all its possible rootings:

$$\mathcal{L}_{G} := \frac{1}{|V|} \sum_{o \in V} \delta_{(G,o)} \in \mathcal{P}(\mathcal{G}_{\star}).$$

Say that a sequence of finite graphs (G_n) has local weak limit \mathcal{L} if

$$\mathcal{L}_{G_n} \Longrightarrow \mathcal{L}$$

in the usual weak sense for probability measures on Polish spaces.

Intuition: \mathcal{L} describes the local geometry around a typical vertex.

<ロト < 回 ト < 三 ト < 三 ト 三 の < で</p>

• G_n : Random *d*-regular graph

- G_n : Random *d*-regular graph
 - \mathcal{L} : Infinite *d*-regular rooted tree

- G_n : Random *d*-regular graph
 - \mathcal{L} : Infinite *d*-regular rooted tree

• G_n : Erdős-Rényi model with edge probability $p_n = \frac{c}{n}$

< ロ > < 回 > < 三 > < 三 > < 三 > < 三 > < ○ < ○</p>

- G_n : Random *d*-regular graph
 - \mathcal{L} : Infinite *d*-regular rooted tree
- G_n : Erdős-Rényi model with edge probability $p_n = \frac{c}{n}$
 - \mathcal{L} : Galton-Watson tree with degree Poisson with mean c

- G_n : Random *d*-regular graph
 - \mathcal{L} : Infinite *d*-regular rooted tree
- G_n : Erdős-Rényi model with edge probability $p_n = \frac{c}{n}$
 - \mathcal{L} : Galton-Watson tree with degree Poisson with mean c

• G_n : Configuration model with empirical degree distribution π

- G_n : Random *d*-regular graph
 - \mathcal{L} : Infinite *d*-regular rooted tree
- G_n : Erdős-Rényi model with edge probability $p_n = \frac{c}{n}$
 - $\mathcal L$: Galton-Watson tree with degree Poisson with mean c
- G_n : Configuration model with empirical degree distribution π

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

 ${\cal L}$: Unimodular Galton-Watson tree with degree law π

- G_n : Random *d*-regular graph
 - \mathcal{L} : Infinite *d*-regular rooted tree
- G_n : Erdős-Rényi model with edge probability $p_n = \frac{c}{n}$
 - \mathcal{L} : Galton-Watson tree with degree Poisson with mean c
- G_n : Configuration model with empirical degree distribution π

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- ${\mathcal L}$: Unimodular Galton-Watson tree with degree law π
- G_n : Uniform random tree
- ► G_n : Random <u>d</u>-regular graph
 - \mathcal{L} : Infinite *d*-regular rooted tree
- G_n : Erdős-Rényi model with edge probability $p_n = \frac{c}{n}$
 - $\mathcal L$: Galton-Watson tree with degree Poisson with mean c
- G_n : Configuration model with empirical degree distribution π

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- ${\mathcal L}~$: Unimodular Galton-Watson tree with degree law π
- G_n : Uniform random tree
 - \mathcal{L} : Infinite Skeleton Tree (Grimmett, 1980)

- ► G_n : Random <u>d</u>-regular graph
 - \mathcal{L} : Infinite *d*-regular rooted tree
- G_n : Erdős-Rényi model with edge probability $p_n = \frac{c}{n}$
 - $\mathcal L$: Galton-Watson tree with degree Poisson with mean c
- G_n : Configuration model with empirical degree distribution π

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- ${\mathcal L}~$: Unimodular Galton-Watson tree with degree law π
- G_n : Uniform random tree
 - \mathcal{L} : Infinite Skeleton Tree (Grimmett, 1980)
- ► G_n : Preferential attachment graph

- G_n : Random *d*-regular graph
 - \mathcal{L} : Infinite *d*-regular rooted tree
- G_n : Erdős-Rényi model with edge probability $p_n = \frac{c}{n}$
 - $\mathcal L$: Galton-Watson tree with degree Poisson with mean c
- G_n : Configuration model with empirical degree distribution π
 - ${\mathcal L}~$: Unimodular Galton-Watson tree with degree law π
- ► G_n : Uniform random tree
 - \mathcal{L} : Infinite Skeleton Tree (Grimmett, 1980)
- ► G_n : Preferential attachment graph
 - \mathcal{L} : Polya-point tree (Berger-Borgs-Chayes-Sabery, 2009)

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- G_n : Random *d*-regular graph
 - \mathcal{L} : Infinite *d*-regular rooted tree
- G_n : Erdős-Rényi model with edge probability $p_n = \frac{c}{n}$
 - $\mathcal L$: Galton-Watson tree with degree Poisson with mean c
- G_n : Configuration model with empirical degree distribution π
 - ${\mathcal L}~$: Unimodular Galton-Watson tree with degree law π
- G_n : Uniform random tree
 - L : Infinite Skeleton Tree (Grimmett, 1980)
- ► G_n : Preferential attachment graph
 - \mathcal{L} : Polya-point tree (Berger-Borgs-Chayes-Sabery, 2009)

Fact: uniform rooting confers to every local weak limit \mathcal{L} a powerful form of stationarity known as **unimodularity**.

<ロト < 目 > < 目 > < 目 > < 目 > < 目 > < 0 < 0</p>

Theorem (Bordenave-Lelarge-Abért-Thom-Virág):

Theorem (Bordenave-Lelarge-Abért-Thom-Virág):

1. If (G_n) admits a limit \mathcal{L} , then (μ_{G_n}) admits a weak limit $\mu_{\mathcal{L}}$.

< ロ > < 回 > < 三 > < 三 > < 三 > < 三 > < ○ < ○</p>

Theorem (Bordenave-Lelarge-Abért-Thom-Virág):

- 1. If (G_n) admits a limit \mathcal{L} , then (μ_{G_n}) admits a weak limit $\mu_{\mathcal{L}}$.
- 2. The convergence holds in the Kolmogorov-Smirnov sense:

$$\sup_{\lambda \in \mathbb{R}} |\mu_{G_n} \left((-\infty, \lambda] \right) - \mu_{\mathcal{L}} \left((-\infty, \lambda] \right) | \xrightarrow[n \to \infty]{} 0$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Theorem (Bordenave-Lelarge-Abért-Thom-Virág):

- 1. If (G_n) admits a limit \mathcal{L} , then (μ_{G_n}) admits a weak limit $\mu_{\mathcal{L}}$.
- 2. The convergence holds in the Kolmogorov-Smirnov sense:

$$\sup_{\lambda \in \mathbb{R}} |\mu_{G_n} \left((-\infty, \lambda] \right) - \mu_{\mathcal{L}} \left((-\infty, \lambda] \right) | \xrightarrow[n \to \infty]{} 0$$

3. We have $\mu_{\mathcal{L}} = \mathbb{E}[\mu_{(G,o)}]$ where $(G, o) \sim \mathcal{L}$ and

$$orall z\in\mathbb{C}\setminus\mathbb{R},\qquad \int_{\mathbb{R}}rac{1}{\lambda-z}\,\mu_{(G,o)}(d\lambda) \ = \ (A_G-z)_{oo}^{-1}.$$

・ロト・日本・山下・山下・山下・山下・山下・山下・山

Theorem (Bordenave-Lelarge-Abért-Thom-Virág):

- 1. If (G_n) admits a limit \mathcal{L} , then (μ_{G_n}) admits a weak limit $\mu_{\mathcal{L}}$.
- 2. The convergence holds in the Kolmogorov-Smirnov sense:

$$\sup_{\lambda \in \mathbb{R}} |\mu_{G_n} \left((-\infty, \lambda] \right) - \mu_{\mathcal{L}} \left((-\infty, \lambda] \right) | \xrightarrow[n \to \infty]{} 0$$

3. We have $\mu_{\mathcal{L}} = \mathbb{E}[\mu_{(G,o)}]$ where $(G, o) \sim \mathcal{L}$ and

$$\forall z \in \mathbb{C} \setminus \mathbb{R}, \qquad \int_{\mathbb{R}} \frac{1}{\lambda - z} \, \mu_{(G,o)}(d\lambda) \;\; = \;\; (A_G - z)_{oo}^{-1}.$$

Note: in general, the existence of $(A_G - z)^{-1}$ is a delicate issue...

$$(A_T - z)_{oo}^{-1} = \frac{-1}{z + \sum_{i=1}^d (A_{T_i} - z)_{ii}^{-1}}$$

<ロ> < 団> < 豆> < 豆> < 豆> < 豆> < 豆> < 豆</p>

- 日本 - 4 日本 - 日本 - 日本

500

Explicit resolution for infinite regular trees

- Explicit resolution for infinite regular trees
- Recursive distributional equation for Galton-Watson trees

・ロト ・ 同ト ・ ヨト ・ ヨト

Э

Sac

- Explicit resolution for infinite regular trees
- Recursive distributional equation for Galton-Watson trees
- In principle, this equation contains everything about $\mu_{\mathcal{L}}$

・ロト ・ 同ト ・ ヨト ・ ヨト

=

Sac

- Explicit resolution for infinite regular trees
- Recursive distributional equation for Galton-Watson trees
- In principle, this equation contains everything about $\mu_{\mathcal{L}}$
- ► See the wonderful survey by Bordenave for details.

シック・ 州 ・ 小川・ ・ 山・ ・ 白・

Given $\lambda \in \mathbb{R}$ and a locally finite graph G = (V, E), consider

 $\mathcal{S} := \bigcup_{f \in \mathcal{E}_{\lambda}} \operatorname{support}(f).$

Given $\lambda \in \mathbb{R}$ and a locally finite graph G = (V, E), consider

$$\mathcal{S} \hspace{.1 in} := \hspace{.1 in} \bigcup_{f \in \mathcal{E}_{\lambda}} \operatorname{support}(f).$$

Lemma (Finite trees). If *G* is a finite tree, then λ is a simple eigenvalue of each connected component of *S*.

Given $\lambda \in \mathbb{R}$ and a locally finite graph G = (V, E), consider

$$\mathcal{S} \hspace{.1cm} := \hspace{.1cm} \bigcup_{f \in \mathcal{E}_{\lambda}} \operatorname{support}(f).$$

Lemma (Finite trees). If *G* is a finite tree, then λ is a **simple** eigenvalue of each connected component of *S*. Consequently,

 $\dim(\mathcal{E}_{\lambda}) = |\mathcal{S}| - |\mathcal{E}(\mathcal{S})| - |\partial \mathcal{S}|.$

Given $\lambda \in \mathbb{R}$ and a locally finite graph G = (V, E), consider

$$\mathcal{S} \hspace{.1 in} := \hspace{.1 in} \bigcup_{f \in \mathcal{E}_{\lambda}} \operatorname{support}(f).$$

Lemma (Finite trees). If *G* is a finite tree, then λ is a **simple** eigenvalue of each connected component of *S*. Consequently,

$$\dim(\mathcal{E}_{\lambda}) = |\mathcal{S}| - |E(\mathcal{S})| - |\partial \mathcal{S}|.$$

Theorem (Main result). On a unimodular random tree, the connected components of S are almost-surely finite.

Given $\lambda \in \mathbb{R}$ and a locally finite graph G = (V, E), consider

$$\mathcal{S} \hspace{.1 in} := \hspace{.1 in} \bigcup_{f \in \mathcal{E}_{\lambda}} \operatorname{support}(f).$$

Lemma (Finite trees). If *G* is a finite tree, then λ is a **simple** eigenvalue of each connected component of *S*. Consequently,

$$\dim(\mathcal{E}_{\lambda}) = |\mathcal{S}| - |E(\mathcal{S})| - |\partial \mathcal{S}|.$$

Theorem (Main result). On a unimodular random tree, the connected components of S are almost-surely finite. Moreover,

$$\mu_{\mathcal{L}}(\{\lambda\}) = \mathbb{P}(o \in \mathcal{S}) - \frac{1}{2}\mathbb{E}\left[\deg_{\mathcal{S}}(o)\mathbf{1}_{(o \in \mathcal{S})}\right] - \mathbb{P}(o \in \partial \mathcal{S}).$$

- ロ ト - 4 回 ト - 4 □

 $\Sigma_{pp}(\mathcal{L}) := \{\lambda \in \mathbb{R} \colon \mu_{\mathcal{L}}(\{\lambda\}) > 0\}.$

 $\Sigma_{pp}(\mathcal{L}) := \{\lambda \in \mathbb{R} \colon \mu_{\mathcal{L}}(\{\lambda\}) > 0\}.$

Corollary. If \mathcal{L} is supported on trees, then

 $\Sigma_{pp}(\mathcal{L}) \subseteq \{ \text{eigenvalues of finite trees} \} =: \mathbb{A}.$

< ロ > < 回 > < 三 > < 三 > < 三 > < 回 > < ○ < ○</p>

$$\Sigma_{pp}(\mathcal{L}) := \{\lambda \in \mathbb{R} \colon \mu_{\mathcal{L}}(\{\lambda\}) > 0\}.$$

Corollary. If \mathcal{L} is supported on trees, then

 $\Sigma_{pp}(\mathcal{L}) \subseteq \{ \text{eigenvalues of finite trees} \} =: \mathbb{A}.$

 $\Sigma_{pp}(\mathcal{L}) := \{\lambda \in \mathbb{R} \colon \mu_{\mathcal{L}}(\{\lambda\}) > 0\}.$

Corollary. If \mathcal{L} is supported on trees, then

 $\Sigma_{pp}(\mathcal{L}) \subseteq \{ \text{eigenvalues of finite trees} \} =: \mathbb{A}.$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Corollary. $\Sigma_{pp}(\mathcal{L}) = \mathbb{A}$ for many "natural" limits \mathcal{L} , including:

► The Poisson-Galton-Watson tree.

$$\Sigma_{pp}(\mathcal{L}) := \{\lambda \in \mathbb{R} \colon \mu_{\mathcal{L}}(\{\lambda\}) > 0\}.$$

Corollary. If \mathcal{L} is supported on trees, then

 $\Sigma_{pp}(\mathcal{L}) \subseteq \{ \text{eigenvalues of finite trees} \} =: \mathbb{A}.$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- The Poisson-Galton-Watson tree.
- Unimodular Galton-Watson trees with $supp(\pi) = \mathbb{Z}_+$.

$$\Sigma_{pp}(\mathcal{L}) := \{\lambda \in \mathbb{R} \colon \mu_{\mathcal{L}}(\{\lambda\}) > 0\}.$$

Corollary. If \mathcal{L} is supported on trees, then

 $\Sigma_{pp}(\mathcal{L}) \subseteq \{ \text{eigenvalues of finite trees} \} =: \mathbb{A}.$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- The Poisson-Galton-Watson tree.
- Unimodular Galton-Watson trees with $\operatorname{supp}(\pi) = \mathbb{Z}_+$.
- ► Their "conditioned on non-extinction" versions.

$$\Sigma_{pp}(\mathcal{L}) := \{\lambda \in \mathbb{R} \colon \mu_{\mathcal{L}}(\{\lambda\}) > 0\}.$$

Corollary. If \mathcal{L} is supported on trees, then

 $\Sigma_{pp}(\mathcal{L}) \subseteq \{ \text{eigenvalues of finite trees} \} =: \mathbb{A}.$

- The Poisson-Galton-Watson tree.
- Unimodular Galton-Watson trees with $\operatorname{supp}(\pi) = \mathbb{Z}_+$.
- ► Their "conditioned on non-extinction" versions.
- The Infinite Skeleton tree.

$$\Sigma_{pp}(\mathcal{L}) := \{\lambda \in \mathbb{R} \colon \mu_{\mathcal{L}}(\{\lambda\}) > 0\}.$$

Corollary. If \mathcal{L} is supported on trees, then

 $\Sigma_{pp}(\mathcal{L}) \subseteq \{ \text{eigenvalues of finite trees} \} =: \mathbb{A}.$

Corollary. $\Sigma_{pp}(\mathcal{L}) = \mathbb{A}$ for many "natural" limits \mathcal{L} , including:

- The Poisson-Galton-Watson tree.
- Unimodular Galton-Watson trees with $\operatorname{supp}(\pi) = \mathbb{Z}_+$.
- ► Their "conditioned on non-extinction" versions.
- The Infinite Skeleton tree.

Remark. A is dense in \mathbb{R} , so these graphs have "rough" spectrum.

<ロト < 目 > < 目 > < 目 > < 目 > < 目 > < 0 < 0</p>

Write $\tau(\lambda)$ for the size of the smallest tree having λ as eigenvalue.

Write $\tau(\lambda)$ for the size of the smallest tree having λ as eigenvalue.

Corollary. If \mathcal{L} is supported on trees with degrees in $\{\delta, \ldots, \Delta\}$,

$$\Sigma_{
hop}(\mathcal{L}) \subseteq \left\{\lambda \colon \tau(\lambda) < \frac{\Delta - 2}{\delta - 2}
ight\}.$$

Write $\tau(\lambda)$ for the size of the smallest tree having λ as eigenvalue.

Corollary. If \mathcal{L} is supported on trees with degrees in $\{\delta, \ldots, \Delta\}$,

$$\Sigma_{pp}(\mathcal{L}) \subseteq \left\{\lambda \colon \tau(\lambda) < \frac{\Delta-2}{\delta-2}\right\}.$$

In particular,

Write $\tau(\lambda)$ for the size of the smallest tree having λ as eigenvalue.

Corollary. If \mathcal{L} is supported on trees with degrees in $\{\delta, \ldots, \Delta\}$,

$$\Sigma_{pp}(\mathcal{L}) \subseteq \left\{\lambda \colon \tau(\lambda) < \frac{\Delta-2}{\delta-2}\right\}.$$

< ロ > < 回 > < 三 > < 三 > < 三 > < 三 > < ○ < ○</p>

In particular,

► If
$$\frac{\Delta-2}{\delta-2} \leq 2$$
, then $\sum_{pp}(\mathcal{L}) \subseteq \{0\}$.

Write $\tau(\lambda)$ for the size of the smallest tree having λ as eigenvalue.

Corollary. If \mathcal{L} is supported on trees with degrees in $\{\delta, \ldots, \Delta\}$,

$$\Sigma_{pp}(\mathcal{L}) \subseteq \left\{\lambda \colon \tau(\lambda) < \frac{\Delta-2}{\delta-2}\right\}.$$

In particular,

If Δ-2/δ-2 ≤ 2, then Σ_{pp}(L) ⊆ {0}.
If Δ-2/δ-2 ≤ 3 then Σ_{pp}(L) ⊆ {−1, 0, +1}.
Pure-point spectrum and degrees

Write $\tau(\lambda)$ for the size of the smallest tree having λ as eigenvalue.

Corollary. If \mathcal{L} is supported on trees with degrees in $\{\delta, \ldots, \Delta\}$,

$$\Sigma_{pp}(\mathcal{L}) \subseteq \left\{\lambda \colon \tau(\lambda) < \frac{\Delta-2}{\delta-2}\right\}.$$

<ロト 4 目 ト 4 三 ト 4 三 ト 9 0 0 0</p>

In particular,

If Δ-2/δ-2 ≤ 2, then Σ_{pp}(L) ⊆ {0}.
 if Δ-2/δ-2 ≤ 3 then Σ_{pp}(L) ⊆ {-1,0,+1}.
 If Δ-2/δ-2 ≤ 4 then Σ_{pp}(L) ⊆ {-√2,-1,0,+1,√2}.

Anchored isoperimetric constant:

$$\iota_{\star}(G,o) := \lim_{n \to \infty} \inf \left\{ \frac{|\partial S|}{|S|} \colon o \in S, S \text{ connected}, n \leq |S| < \infty \right\}.$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Anchored isoperimetric constant:

$$\iota_{\star}(G,o) := \lim_{n \to \infty} \inf \left\{ \frac{|\partial S|}{|S|} \colon o \in S, S \text{ connected}, n \leq |S| < \infty \right\}.$$

Corollary. If \mathcal{L} is supported on trees with anchored isoperimetric constant $\geq \varepsilon$ and degrees in $\{2, \ldots, \Delta\}$, then

$$\Sigma_{
ho
ho}(\mathcal{L})\subseteq \left\{\lambda\colon au(\lambda)<rac{\Delta^2}{arepsilon}
ight\}.$$

<ロト 4 目 ト 4 三 ト 4 三 ト 9 0 0 0</p>

Anchored isoperimetric constant:

$$\iota_{\star}(G,o) := \lim_{n \to \infty} \inf \left\{ \frac{|\partial S|}{|S|} \colon o \in S, S \text{ connected}, n \leq |S| < \infty \right\}.$$

Corollary. If \mathcal{L} is supported on trees with anchored isoperimetric constant $\geq \varepsilon$ and degrees in $\{2, \ldots, \Delta\}$, then

$$\Sigma_{
hop}(\mathcal{L})\subseteq \left\{\lambda\colon au(\lambda)<rac{\Delta^2}{arepsilon}
ight\}.$$

Remark. The anchored isoperimetric constant of a GWT conditioned on non-extinction is positive (Chen & Peres, 2004).

<□ > < @ > < E > < E > E の < @</p>

Corollary. When \mathcal{L} is the unimodular GWT with degree distribution $\pi \in \mathcal{P}(\mathbb{Z}_+)$, we have the following dichotomy:

< ロ > < 回 > < 三 > < 三 > < 三 > < 三 > < ○ < ○</p>

Corollary. When \mathcal{L} is the unimodular GWT with degree distribution $\pi \in \mathcal{P}(\mathbb{Z}_+)$, we have the following dichotomy:

• If $\pi_1 = 0$ (no leaves) then $\sum_{pp}(\mathcal{L})$ is a finite set.

Corollary. When \mathcal{L} is the unimodular GWT with degree distribution $\pi \in \mathcal{P}(\mathbb{Z}_+)$, we have the following dichotomy:

- If $\pi_1 = 0$ (no leaves) then $\sum_{pp}(\mathcal{L})$ is a finite set.
- If $\pi_1 > 0$ then $\sum_{pp}(\mathcal{L})$ is dense in $[-2\sqrt{\Delta-1}, +2\sqrt{\Delta-1}]$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Corollary. When \mathcal{L} is the unimodular GWT with degree distribution $\pi \in \mathcal{P}(\mathbb{Z}_+)$, we have the following dichotomy:

- If $\pi_1 = 0$ (no leaves) then $\sum_{pp}(\mathcal{L})$ is a finite set.
- If $\pi_1 > 0$ then $\sum_{pp}(\mathcal{L})$ is dense in $[-2\sqrt{\Delta-1}, +2\sqrt{\Delta-1}]$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

This was conjectured by Bordenave, Sen & Virág (JEMS 2017).

<ロト < 回 ト < 三 ト < 三 ト 三 の < で</p>

 $\mu_{\mathcal{L}} = \mu_{pp} + \mu_{ac} + \mu_{sc}$

 $\mu_{\mathcal{L}} = \mu_{pp} + \mu_{ac} + \mu_{sc}$

For which degree π does UGWT(π) satisfy $\mu_{pp}(\mathbb{R}) = 0$?

 $\mu_{\mathcal{L}} = \mu_{pp} + \mu_{ac} + \mu_{sc}$

For which degree π does UGWT(π) satisfy $\mu_{pp}(\mathbb{R}) = 0$?

• Does the Infinite Skeleton Tree satisfy $\mu_{pp}(\mathbb{R}) = 1$?

 $\mu_{\mathcal{L}} = \mu_{\textit{pp}} + \mu_{\textit{ac}} + \mu_{\textit{sc}}$

- For which degree π does UGWT(π) satisfy $\mu_{pp}(\mathbb{R}) = 0$?
- Does the Infinite Skeleton Tree satisfy $\mu_{pp}(\mathbb{R}) = 1$?
- When $\pi = Poisson(c)$, does $\mu_{ac}(\mathbb{R}) > 0$ as soon as c > 1 ?

