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Overview

Weingarten calculus

It is a method for computations of mixed moments

E[xi1j1xi2j2 · · · xinjn ] or E[xi1j1xi2j2 · · · xinjnxk1l1xk2l2 · · · xkm lm ]

where X = (xij) is a random matrix picked up from a classical compact Lie group.

History:
Don Weingarten (1978), Benôıt Collins (2003), B.C. & Piotr Śniady (2006), ...

Today’s topics:

Weingarten calculus on Lie groups U(d),O(d), Sp(d);

Weingarten calculus on symmetric spaces G/K (COE, chiral unitary matrix);

Weingarten graphs (joint work with Benôıt Collins).
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Weingarten calculus for unitary groups

G = U(d) = {g ∈ GL(d ,C) | g g∗ = Id}. (CUE = circular unitary ensemble)

Any compact Lie group G has the normalized Haar measure µ = µG such that∫
G

f (g1 g g2)µ(dg) =

∫
G

f (g)µ(dg),

∫
G

µ(dg) = 1,

where f is any continuous function on G , and g1, g2 are any elements in G .

Let U = (uij)1≤i,j≤d be a random matrix distributed with respect to µU(d).
Consider

E[ui1j1ui2j2 · · · uinjnui ′1 j′1ui ′2 j′2 · · · ui ′mj′m ]

where ip, jp, i
′
p, j

′
p are entries in {1, 2, . . . , d}. Here E stands for the expectation

(with respect to µU(d)). For example, we will compute E[u11u22u33u12u23u31].

Fact

The expectation E[· · · ] vanishes unless n = m.
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Weingarten calculus for unitary groups

Theorem (Collins, 2003)

Given four sequences

i = (i1, . . . , in), j = (j1, . . . , jn), i ′ = (i ′1, . . . , i
′
n), j ′ = (j ′1, . . . , j

′
n)

in {1, 2, . . . , d}×n, we have

E
[
ui1j1ui2j2 · · · uinjnui ′1 j′1ui ′2 j′2 · · · ui ′n j′n

]
=

∑
σ∈Sn

∑
τ∈Sn

δσ(i , i ′) δτ (j , j ′)WgU(σ−1τ, d).

Here Sn is the symmetric group on {1, 2, . . . , n} and

δσ(i , i ′) =

{
1 if (iσ(1), iσ(2), . . . , iσ(n)) = (i ′1, i

′
2, . . . , i

′
n),

0 otherwise.

The function WgU( · , d) on Sn is given in the next slide.
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Unitary Weingarten function

Fourier expansion of WgU

WgU(σ, d) =
1

n!

∑
λ⊢n

ℓ(λ)≤d

f λ∏ℓ(λ)
i=1

∏λi

j=1(d + j − i)
χλ(σ) (σ ∈ Sn).

λ ⊢ n: The sum runs over all partitions λ = (λ1, λ2, . . . , λl) of n with length
l = ℓ(λ).

λ1 ≥ λ2 ≥ · · · ≥ λl > 0, λi ∈ Z>0

We identify λ with its Young diagram. Example: (4, 2, 1) =

χλ: the (unnormalized) irreducible character of Sn associated with λ.

f λ: the degree of χλ i.e. f λ = χλ(idn) ∈ Z>0.

The product in the denominator runs over all boxes of the Young diagram λ.
The quantity j − i is called the content of the box (i , j).
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Example: unitary Weingarten functions

WgU(σ, d) =
1

n!

∑
λ⊢n

ℓ(λ)≤d

f λ∏ℓ(λ)
i=1

∏λi

j=1(d + j − i)
χλ(σ) (σ ∈ Sn).

Example

Consider n = 3 and σ = [3, 1, 2] = ( 1 2 3
3 1 2 ) = (1 3 2). Suppose d ≥ 3.

WgU([3, 1, 2], d)

=
1

3!

( 1

d(d + 1)(d + 2)
· 1︸ ︷︷ ︸+

2

d(d + 1)(d − 1)
· (−1)︸ ︷︷ ︸+

1

d(d − 1)(d − 2)
· 1︸ ︷︷ ︸

)

=
2

d(d2 − 1)(d2 − 4)
.

Here we use one-row notation for a permutation. We also use cycle expressions.
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Example: Weingarten calculus for U(d)

Example

Let U = (uij) be a Haar-distributed unitary matrix from U(d). Then

E[u12u23u31u11u22u33] =
2

d(d2 − 1)(d2 − 4)
.

Input n = 3, i = i ′ = (1, 2, 3). j = (2, 3, 1), j ′ = (1, 2, 3).

E[u12u23u31u11u22u33] =
∑
σ∈S3

∑
τ∈S3

δσ(i , i ′) δτ (j , j ′)WgU(σ−1τ, d)

Recall

δσ(i , i ′) =

{
1 if (iσ(1), iσ(2), . . . , iσ(n)) = (i ′1, i

′
2, . . . , i

′
n),

0 otherwise.

Only term for σ = id3 and τ = [3, 1, 2] contributes (i.e. δσ(i , i ′)δτ (j , j ′) = 1).

= WgU([3, 1, 2], d) =
2

d(d2 − 1)(d2 − 4)
.
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Unitary Weingarten functions

An important invariance for WgU(σ, d)

The function Sn ∋ σ 7→WgU(σ, d) ∈ Q is central (another name is class
function). Namely,

WgU(τ−1στ, d) = WgU(σ, d) (∀σ,∀τ ∈ Sn)

Equivalently,

It is constant on each conjugacy class of Sn.

It depends on only the cycle-type of σ (→ a partition of n).

We will see that Weingarten functions for other Lie groups O(d) and Sp(d) have
different invariances.
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Preparations: Pair partitions

Definition

Denote byM2n the set of all pair partitions on {1, 2, . . . , 2n}.

Example

M4 consists of three elements

{1, 2}{3, 4}, {1, 3}{2, 4}, {1, 4}{2, 3}

Every element p inM2n is uniquely expressed as

{p1, p2}{p3, p4} · · · {p2n−1, p2n}
p2j−1 < p2j (j = 1, . . . , n), 1 = p1 < p3 < · · · < p2n−1.

We then regard p as a permutation in S2n:

M2n ⊂ S2n, p = [p1, p2, . . . , p2n−1, p2n].
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Preparations: Hyperoctahedral groups

Definition
Denote by Bn ⊂ S2n the hyper-octahedral group, which is generated by
permutations

(2i − 1 2i) (i = 1, 2, . . . , n), (2i − 1 2j − 1)(2i 2j) (1 ≤ i < j ≤ n).

Example (in cycle notation)

B2 = {id4, (1 2), (3 4), (1 2)(3 4),

(1 3)(2 4), (1 4)(2 3), (1 3 2 4), (1 4 2 3)}

The setM2n forms representatives of left cosets of Bn in S2n:

S2n =
⊔

p∈M2n

pBn, i.e. M2n
∼= S2n/Bn

(Recall that p ∈M2n is regarded as a permutation in S2n.)
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Weingarten calculus for O(d)

Real orthogonal group O(d) = {g ∈ GL(d ,R) | ggT = Id}.

Theorem ((Collins-Śniady, 2006), (Collins-M, 2009))

Let R = (rij)1≤i,j≤d be a Haar-distributed orthogonal matrix. Given two sequences
i = (i1, . . . , i2n), j = (j1, . . . , j2n), we have

E[ri1j1ri2j2 · · · ri2nj2n ] =
∑

p∈M2n

∑
q∈M2n

∆p(i )∆q(j )WgO(p−1q, d).

Here
∆p(i ) =

∏
{a,b}∈p

δia,ib .

Moments of odd degree E[ri1j1 · · · ri2n+1j2n+1 ] always vanish.

RecallM2n ⊂ S2n (so p−1q does make sense as permutations).
The orthogonal Weingarten function WgO(·, d) on S2n is described as follows.
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Orthogonal Weingarten functions

In order to study WgO(·, d), we review (finite) Gelfand pairs.

Definition
Let G be a finite group and H its subgroup. Consider the Hecke algebra

H(G, H) = {f : G→ C | f (ζ1σζ2) = f (σ) (∀σ ∈ G, ∀ζ1,∀ζ2 ∈ H)}

with convolution product (f1 ∗ f2)(σ) =
∑

τ∈G f1(στ
−1)f2(τ). The pair (G, H) is

called a Gelfand pair if H(G, H) is commutative: g ∗ f = f ∗ g .

Fact (well known)

(S2n,Bn) is a Gelfand pair.

The unitary Weingarten function WgU(·, d) belongs to the center
ZC[Sn] =

⊕
λ⊢n Cχλ.

The orthogonal Weingarten function WgO(·, d) belongs to the Hecke algebra

Hn :=H(S2n,Bn)

={f : S2n → C | f (ζ1σζ2) = f (σ) (σ ∈ S2n, ζ1, ζ2 ∈ Bn)}.
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Orthogonal Weingarten functions

Zonal spherical functions ωλ (λ ⊢ n) form a linear basis of Hn.

ωλ(σ) =
1

2nn!

∑
ζ∈Bn

χ2λ(σζ) (σ ∈ S2n),

where 2λ = (2λ1, 2λ2, . . . ). Hn =
⊕

λ⊢n Cωλ.

They are constant on each double cosets BnσBn.

Theorem (Collins-M, 2009)

WgO(σ, d) =
2nn!

(2n)!

∑
λ⊢n

ℓ(λ)≤d

f 2λ∏ℓ(λ)
i=1

∏λi

j=1(d + 2j − i − 1)
ωλ(σ) (σ ∈ S2n).

WgU(σ, d) =
1

n!

∑
λ⊢n

ℓ(λ)≤d

f λ∏ℓ(λ)
i=1

∏λi

j=1(d + j − i)
χλ(σ) (σ ∈ Sn).
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Example. Weingarten calculus for O(d)

Example

Let R = (rij)1≤i,j≤d be a Haar-distributed orthogonal matrix in O(d).
Let us compute

E[r11r12r21r22r32r32].

Input n = 3, i = (1, 1, 2, 2, 3, 3). j = (1, 2, 1, 2, 2, 2).
Contributions: p1 = {1, 2}{3, 4}{5, 6} and

q1 = {1, 3}{2, 4}{5, 6}, q2 = {1, 3}{2, 5}{4, 6}, q3 = {1, 3}{2, 6}{4, 5}

E[r11r12r21r22r32r32] =
∑

p∈M6

∑
q∈M6

∆p(i )∆q(j )WgO(p−1q, d)

=WgO(p1
−1q1, d) +WgO(p1

−1q2, d) +WgO(p1
−1q3, d)

= −1
d(d+4)(d−1)(d−2) +

2
d(d+2)(d+4)(d−1)(d−2) × 2

=− 1

d(d + 2)(d + 4)(d − 1)
.
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Diagrams

Observation

i = (1, 1, 2, 2, 3, 3), j = (1, 2, 1, 2, 2, 2).

If ∆p(i ) =
∏

{a,b}∈p δia,ib = 1 and ∆q(j ) =
∏

{a,b}∈q δja,jb = 1 then we can choose

p1 = {1, 2}{3, 4}{5, 6}
q1 = {1, 3}{2, 4}{5, 6}, q2 = {1, 3}{2, 5}{4, 6}, q3 = {1, 3}{2, 6}{4, 5}
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Symplectic groups

Consider a skew-symmetric bi-linear form on C2d given by

⟨v ,w⟩J = vTJw , J = Jd =

(
Od Id
−Id Od

)

Definition ((unitary) symplectic group)

Sp(d) = {g ∈ U(2d) | ⟨gv , gw⟩J = ⟨v ,w⟩J (v ,w ∈ C2d)}.

Recall
O(d) = {g ∈ GL(d ,R) | ⟨gv , gw⟩ = ⟨v ,w⟩ (v ,w ∈ Rd)}

with the standard inner product ⟨v ,w⟩ = vTw .
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Weingarten calculus for Sp(d)

Theorem ((Collins-Stolz, 2008), (M, 2013))

Let S = (sij)1≤i,j≤2d be a Haar-distributed symplectic matrix. Given two
sequences i = (i1, . . . , i2n), j = (j1, . . . , j2n),

E[si1j1si2j2 · · · si2nj2n ] =
∑

p∈M2n

∑
q∈M2n

∆′
p(i )∆

′
q(j )WgSp(p−1q, d).

Here
∆′

p(i ) =
∏

{a,b}∈p

⟨eia , eib⟩J ∈ {0,+1,−1},

and {e1, . . . , e2d} is a standard basis of C2d .
Moments of odd degree E[si1j1 · · · si2n+1j2n+1 ] always vanish.

The symplectic Weingarten function WgSp( · , d) on S2n and Bn-twisted:

WgSp(ζ1σζ2, d) = sgn(ζ1) sgn(ζ2)WgSp(σ, d) (σ ∈ S2n, ζ1, ζ2 ∈ Bn).

It is described by using the theory of a twisted Gelfand pair.
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Comparison of three Weingarten functions

Unitary Orthogonal Symplectic
Sn M2n, (S2n,Bn) M2n, (S2n,Bn, sgn |Bn)

center Z(C[Sn]) Hecke algebra Hn twisted Hecke algebra Hϵn
n

irr. char. χλ zonal spherical ωλ twisted spherical πλ

central Bn-invariant Bn-twisted
M2n: pair partitions, Bn: hyperoctahedral subgroup.

WgU(σ, d) =
1

n!

∑
λ⊢n

f λ∏ℓ(λ)
i=1

∏λi
j=1(d+j−i)

χλ(σ) (σ ∈ Sn).

WgO(σ, d) =
2nn!

(2n)!

∑
λ⊢n

f 2λ∏ℓ(λ)
i=1

∏λi
j=1(d+2j−i−1)

ωλ(σ) (σ ∈ S2n).

WgSp(σ, d) =
2nn!

(2n)!

∑
λ⊢n

f λ∪λ∏ℓ(λ)
i=1

∏λi
j=1(2d−2i+j+1)

πλ(σ) (σ ∈ S2n).
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COE matrix

Let U be a d × d Haar-distributed unitary matrix picked up from U(d). Then we
call

V = UUT

a COE matrix. (Note: U itself is also called a CUE matrix (circular unitary emseble).)

An ensemble of such V is well known as the circular orthogonal ensemble (COE).
The random matrix V is symmetric and unitary, and has invariance

U0VU0
T dist

= V for any d × d unitary matrix U0.

The distribution of V is invariant under the conjugacy action of O(d).

Aim
1 We establish Weingarten calculus for a COE matrix.

2 We explain how the COE matrix arises from a framework of the compact
symmetric space (CSS) U(d)/O(d).

3 We consider random matrices associated with other CSS.
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Weingarten calculus for COE

Theorem (M, 2012)

Let V = (vij)1≤i,j≤d be a COE matrix. For two sequences i = (i1, i2, . . . , i2n) and
j = (j1, j2, . . . , j2n), we have

E[vi1i2vi3i4 · · · vi2n−1i2nvj1j2vj3j4 · · · vj2n−1j2n ] =
∑

σ∈S2n

δσ(i , j )WgCOE(σ, d).

The Weingarten function WgCOE(σ, d) coincides with the orthogonal Weingarten
function with a parameter shift:

WgCOE(σ, d) = WgO(σ, d + 1) (σ ∈ S2n).

Moments of the form E[vi1i2vi3i4 · · · vi2n−1i2nvj1j2vj3j4 · · · vj2m−1j2m ] with n ̸= m always
vanish.

Note:

Different from Lie group cases, the formula includes a single summation.
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Compact symmetric spaces

G : a compact linear Lie group (We deal with only either U(d), O(d), or Sp(d)).
Ω : G → G : an involutive automorphism (called a Cartan involution),
K = {k ∈ G | Ω(k) = k}.

G/K ∼= S := {g Ω(g)−1 | g ∈ G} ⊂ G .

We take a Haar-distributed random matrix Z from G , and then consider an
S-valued random matrix

V := Z Ω(Z )−1

associated with the compact symmetric space G/K .

Example (COE)

G = U(d), K = O(d), Ω(g) = g .

U(d)/O(d) ∼= S = {ggT | g ∈ U(d)} = {d × d symmetric unitary matrices}.

The random matrix V = UΩ(U)−1 = UUT is a COE matrix.
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Classification for CSS

Classical CSS are classified by E. Cartan (1927) as follows.

Class C CSS random matrix

A I U(d)/O(d) circular orthogonal ensemble (COE)
A II U(2d)/Sp(d) circular symplectic ensemble (CSE)

A III U(d)/(U(a)×U(b)) chiral unitary ensemble (chUE)
BD I O(d)/(O(a)×O(b)) chiral orthogonal ensemble (chOE)
C II Sp(d)/(Sp(a)× Sp(b)) chiral symplectic ensemble (chSE)

(d = a+ b)

D III O(2d)/U(d) Bogoliubov-de Gennes (BdG) ensemble
C I Sp(d)/U(d)

For each CSS, we have a matrix ensemble.

Theorem (M, 2013)

We have established Weingarten calculus for all of them, with an explicit Fourier
expansion for each Weingarten function.
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A III case – chiral unitary ensembles (chUE)

G = U(d), K = U(a)×U(b), d = a+ b.

Ω(g) = I ′abgI
′
ab, I ′ab = diag(1, . . . , 1︸ ︷︷ ︸

a

,−1, . . . ,−1︸ ︷︷ ︸
b

) =

(
Ia O
O −Ib

)
.

For a Haar-distributed unitary matrix U from G = U(d), we consider a Hermitian
and unitary random matrix

X = XA III = UI ′abU
∗

rather than V = UΩ(U)−1 = UI ′abU
∗I ′ab. The matrix X is called a chiral unitary

matrix, or a random matrix of class AIII.

Recall the Schur symmetric polynomial

sλ(x1, . . . , xd) =
det(xλi+d−i

j )1≤i,j≤d

det(xd−i
j )1≤i,j≤d

for partitions λ. This is a character for an irreducible representation of U(d).
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Weingarten calculus for chiral unitary matrix

Theorem (M, 2013)

Let X = (xij)1≤i,j≤d be a chiral unitary matrix from U(a+ b)/(U(a)×U(b)). For
two sequences i = (i1, i2, . . . , in) and j = (j1, j2, . . . , jn), we have

E[xi1j1xi2j2 · · · xinjn ] =
∑
σ∈Sn

δσ(i , j )WgA III(σ, a, b).

The Weingarten function WgA III(σ, a, b) (σ ∈ Sn) has the Fourier expansion

WgA III(σ, a, b) =
1

n!

∑
λ⊢n

f λ
sλ(

a︷ ︸︸ ︷
1, . . . , 1,

b︷ ︸︸ ︷
−1, . . . ,−1)

sλ(1, . . . , 1︸ ︷︷ ︸
d=a+b

)
χλ(σ) (σ ∈ Sn).

Different from Weingarten function appeared so far, this Weingarten function
WgA III has two parameters a, b.
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Weingarten graph for U(d)

Joint work with Benôıt Collins (2017)

Our goal is to reformulate various Weingarten functions via a Weingarten graph.

Definition (Weingarten graph for unitary groups)

We define an infinite directed graph GU = (V ,E red ⊔ Eblue) as follows.

Vertex set V . V =
⊔∞

n=0 Sn with S0 = {∅}. We call the vertex ∅ the root.

Red edges. (keep level)

Sn ∋ σ ←→ τ ∈ Sn : ∃ tranposition (i n) such that τ = (i n)σ.

Blue edges. (lower level)

Sn ∋ σ −→ σ′ ∈ Sn−1

if

the letter n is fixed by σ;
σ′ ∈ Sn−1 is obtained from σ by removing the trivial cycle (n).
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Weingarten graph for U(d)

A part of Weingarten graph.

[3, 2, 1] ←→ [2, 3, 1]: they are switched by the transposition (2 3).

[2, 1, 3] −→ [2, 1]: the letter 3 is fixed in [2, 1, 3], and erasing 3 in it we
obtain [2, 1].
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Asymptotics for U(d)

Theorem (Collins-M, 2017)

Let σ ∈ Sn and let p(σ, k) be the number of paths from σ to ∅ going through
exactly k red edges on the Weingarten graph GU. Assume d ≥ n. Then

WgU(σ, d) = (−1)|σ|
∑
j≥0

p(σ, |σ|+ 2j)d−(n+|σ|+2j).

Here |σ| = n − ℓ(µ), where ℓ(µ) is the length of the cycle-type µ of σ.

Example

Consider σ = [2, 1, 3] ∈ S3. Then |σ| = 1.

WgU([2, 1, 3], d) = −
(
p([2, 1, 3], 1)d−4 + p([2, 1, 3], 3)d−6 + · · ·

)
.

Let us compute the coefficients p([2, 1, 3], 1) and p([2, 1, 3], 3).
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p([2, 1, 3], 1) = 1

p([2, 1, 3], 1) is the number of path(s) from [2, 1, 3] to ∅ going through red
edge(s) exactly 1 time on the Weingarten graph.
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p([2, 1, 3], 3) = 5

p([2, 1, 3], 3) is the number of paths from [2, 1, 3] to ∅ going through red edges
exactly 3 times on the Weingarten graph.

WgU([2, 1, 3], d) = −(1d−4 + 5d−6 + · · · ).
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Uniform bound for WgU

It is well known that

p(σ, |σ|) =
ℓ(µ)∏
i=1

Cat(µj − 1)

with Catalan numbers Cat(n) = 1
n+1

(
2n
n

)
.

Theorem (Collins-M, 2017)

For any σ ∈ Sn and nonnegative integer j , we have

(n − 1)jp(σ, |σ|) ≤ p(σ, |σ|+ 2j) ≤ (6n7/2)jp(σ, |σ|).

Corollary

For any σ ∈ Sn and d >
√
6n7/4,

1

1− n−1
d2

≤ (−1)|σ|dn+|σ|WgU(σ, d)

p(σ, |σ|)
≤ 1

1− 6n7/2

d2

.
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Connection to monotone factorizations

The expansion

WgU(σ, d) = (−1)|σ|
∑
j≥0

p(σ, |σ|+ 2j)d−(n+|σ|+2j).

is equivalent to the result in [M-Novak (2013)].

Definition (Monotone factorizations)

Let σ be a permutation in Sn. A sequence f = (τ1, . . . , τk) of k transpositions is
called a monotone factorization of length k for σ if:

τi = (si , ti ) with 1 ≤ si < ti ≤ n;

σ = τ1τ2 · · · τk ;
n ≥ t1 ≥ t2 ≥ · · · ≥ tk ≥ 1 (monotonicity).

Example

f = ((3, 5), (2, 5), (2, 4), (1, 2))

is a monotone factorization of length 4 of σ = [4, 1, 5, 3, 2].
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Connection to monotone factorizations

Proposition

The number of monotone factorizations of length k for σ is equal to p(σ, k).
Specifically, we have one-to-one correspondence between the following two
objects:

monotone factorizations of length k for σ;

paths from σ to ∅ going through k red edges on the Weingarten graph GU.

Example

[4, 1, 5, 3, 2]
(3,5)−−−→[4, 1, 3, 5, 2]

(2,5)−−−→[4, 1, 3, 2, 5]−→[4, 1, 3, 2]

(2,4)−−−→[2, 1, 3, 4]−→[2, 1, 3]−→[2, 1]
(1,2)−−−→[1, 2]−→[1]−→∅.

f = ((3, 5), (2, 5), (2, 4), (1, 2))

Sho Matsumoto (Kagoshima Univ) Weingarten calculus and Weingarten graphs May 23, 2018 37 / 44



1 Weingarten Calculus for Unitary Groups

2 Weingarten Calculus for Orthogonal Groups

3 Weingarten Calculus for Symplectic Groups

4 Weingarten Calculus for Symmetric Spaces
A I – circular orthogonal ensemble (COE)
AIII – chiral unitary ensemble (chUE)

5 Weingarten Graphs (joint work with Benôıt Collins)
Unitary group U(d)
AIII – chiral unitary ensemble (chUE)

Sho Matsumoto (Kagoshima Univ) Weingarten calculus and Weingarten graphs May 23, 2018 38 / 44



Chiral unitary matrix – class A III

Let us consider the compact symmetric space U(d)/(U(a)×U(b)), with
d = a+ b, of class AIII again. The corresponding random matrix is, the chiral
unitary matrix, which is a unitary and Hermitian matrix given by

X = (xij)1≤i,j≤d := U ·
(
Ia O
O −Ib

)
· U∗,

where U is a d × d Haar-distributed unitary matrix.

(Recall the Fourier expansion for WgA III.)

We now change the parameters

d = a+ b, e = a− b ∈ Z.

The corresponding Weingarten function

WgA III(σ, d , e) =
1

n!

∑
λ⊢n

f λ
sλ(

(d+e)/2︷ ︸︸ ︷
1, . . . , 1,

(d−e)/2︷ ︸︸ ︷
−1, . . . ,−1)

sλ(1, . . . , 1︸ ︷︷ ︸
d

)
χλ(σ) (σ ∈ Sn).

is a class function on a symmetric space Sn. Suppose d ≥ n.
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Weingarten graph for A III

Definition (Weingarten graph for A III)

We define an infinite directed graph GA III = (V ,E red ⊔ Eblue ⊔ E green) as follows.

Vertex set V . V =
⊔∞

n=0 Sn.

Red edges and Blue edges are the same with the unitary case.

green edges. (lower the level by two)

Sn ∋ σ −→ σ♭ ∈ Sn−2

if

the letter n belongs to a 2-cycle (j n) of σ;
σ♭ ∈ Sn−2 is obtained by removing the 2-cycle (j n) from σ and by shifting

letters 1, 2, . . . , ĵ , . . . , n − 1 to 1, 2, . . . , n − 2 while keeping order.
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Weingarten graph for A III
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Asymptotics for WgAIII

Theorem (Collins-M, 2017)

Let σ ∈ Sn. Assume d ≥ n. Then

WgA III(σ, d , e) =
∑

p:σ→∅

(−1)red(p)eblue(p)d−(red(p)+blue(p)+green(p))

summed over all paths from σ to ∅ on GA III. Here red/blue/green(p) stands for
the number of the edges in p with the color.

Example

Let X = (xij)1≤i,j≤d = UIabU
∗ be a chiral unitary matrix. Put e = a− b.

Take σ = [2, 1] ∈ S2.

WgA III([2, 1], d , e) =E[x12x21] = E[|x12|2]

=
∑

p:[2,1]→∅

(−1)red(p)eblue(p)d−(red(p)+blue(p)+green(p))
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Paths from σ = [2, 1]

Example

WgA III([2, 1], d , e) =
∑

p:σ→∅

(−1)red(p)eblue(p)d−(red(p)+blue(p)+green(p))

=
∑
j≥0

(−1)2je0d−(2j+0+1) +
∑
j≥0

(−1)2j+1e2d−(2j+1+2+0)

=
d2 − e2

d(d2 − 1)
.
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Thank you!
Let’s enjoy Weingarten calculus together.

1 Weingarten Calculus for Unitary Groups

2 Weingarten Calculus for Orthogonal Groups
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A I – circular orthogonal ensemble (COE)
AIII – chiral unitary ensemble (chUE)

5 Weingarten Graphs (joint work with Benôıt Collins)
Unitary group U(d)
AIII – chiral unitary ensemble (chUE)
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