Dynamical universality for the Airy random point fields

Kawamoto Yosuke

Kyushu University

Random matrices and their applications 2018/5/21

Today's talk

- The universality for random matrices, which is envisioned by E.
 Wigner, is a central topic in random matrix theory as the CLT for strongly correlated particle systems.
- We consider dynamical universality for random matrices, which is finite particle approximation for infinite dimensional stochastic differential equations (ISDE) as a counterpart of universality for random matrices.

Log-gases with $\beta = 1, 2, 4$ and its macroscopic limit

 $\bullet~{\rm For}~\beta=1,2,4,$ consider $\beta{\rm -log-gas}~{\rm on}~{\mathbb R}$ with N particles:

$$\mu_{\beta,V}^N(d\mathbf{x}_N) \propto \prod_{i< j}^N |x_i - x_j|^\beta \prod_{k=1}^N e^{-\beta N V(x_k)} d\mathbf{x}_N.$$

Here, $V : \mathbb{R} \to \mathbb{R}$ is free potential of some suitable class.

- Let ρ_V be an equilibrium meas. for V, that is, for $x^N = \sum_{1 \le i \le N} \delta_{x_i}$, $\lim_{N \to \infty} \mathbb{E}_{\mu^N_{\beta,V}}[\frac{1}{N} \mathsf{x}^N((-\infty, s])] = \int_{-\infty}^s \rho_V(x) \, dx.$
- When V is quadratic, $\mu_{\beta,V}^N$ is eigenvalue distribution of G(O/U/S)E for $\beta = 1, 2, 4$ respectively, and ρ_V is nothing but the Wigner semicircle law $\rho_{\rm sc}(x) = \frac{2}{\pi}\sqrt{1-x^2} \mathbf{1}_{\{|x|<1\}}$.
- This convergence is a macroscopic regime for log-gas. Next, we consider a thermodynamical limit for and obtain a random configuration with infinitely many particles as a microscopic regime.

Soft-edge scaling limit and the Airy random point fields

- First we consider the case V is quadratic.
- We take the soft-edge scaling as $x\mapsto \frac{s}{2N^{\frac{2}{3}}}+1$ and let $\mu^N_{{\rm Ai},\beta,V}$ be the prob. meas. w.r.t. s:

$$\mu_{\mathrm{Ai},\beta,V}^{N}(d\mathbf{s}^{N}) \propto \prod_{i< j}^{N} |s_{i} - s_{j}|^{\beta} \prod_{k=1}^{N} \exp\left\{-\beta N \left|\frac{s_{k}}{2N^{\frac{2}{3}}} + 1\right|^{2}\right\} d\mathbf{s}^{N}.$$

• Then it is well known that for $\beta = 1, 2, 4$,

$$\lim_{N \to \infty} \mu^N_{{
m Ai},eta,V} = \mu_{{
m Ai},eta}$$
 in law .

Here, $\mu_{Ai,\beta}$ is the Airy_{β} random point field (RPF). For $\beta = 2$, *n*-corr. func. $\rho_{Ai,2}^n$ for $\mu_{Ai,2}$ is given by $\rho_{Ai,2}^n(\mathbf{x}^n) = \det \Big[\frac{\operatorname{Ai}(x_i)\operatorname{Ai}'(x_j) - \operatorname{Ai}'(x_i)\operatorname{Ai}(x_j)}{x_i - x_j} \Big]_{1 \le i,j \le n}.$ For $\beta = 1, 4$, corr. func. for $\mu_{Ai,\beta}$ have similar expressions.

ISDEs associated with the Airy $_\beta$ RPFs

- \bullet We'd like to find a ISDE related to the Airy_β RPF.
- $\bullet\,$ Recall that when V is quadratic, then

$$\mu_{\mathrm{Ai},\beta,V}^{N}(d\mathbf{s}^{N}) \propto \prod_{i< j}^{N} |s_{i} - s_{j}|^{\beta} \prod_{k=1}^{N} \exp\left\{-\beta N \left|\frac{s_{k}}{2N^{\frac{2}{3}}} + 1\right|^{2}\right\} d\mathbf{s}^{N},$$

and consider the Dirichlet form on $L^2(\mathbb{R}^N,\mu^N_{\mathrm{Ai},\beta,x^2})$ given by

$$\mathcal{E}^{N}(f,g) = \frac{1}{2} \int_{\mathbb{R}^{N}} \sum_{i=1}^{N} \nabla_{i} f \cdot \nabla_{i} g \, d\mu_{\mathrm{Ai},\beta,V}^{N}$$

 By integration by parts for this Dirichlet integral, we obtain a generator and deduce the associated SDE: for 1 ≤ i ≤ N,

$$dX_t^{N,i} = dB_t^i + \frac{\beta}{2} \Big\{ \sum_{1 \le j \ne i \le N} \frac{1}{X_t^{N,i} - X_t^{N,j}} - \frac{X_t^{N,i}}{2N^{\frac{1}{3}}} - N^{\frac{1}{3}} \Big\} dt.$$

• A limit formula $N \to \infty$ is supposed to be an ISDE related to the Airy_{β} RPF. What is the limit ISDE?

ISDEs associated with the Airy $_\beta$ RPFs

• For $\beta = 1, 2, 4$, [Osada-Tanemura '16 +] proved that the limit ISDE for

$$dX_t^{N,i} = dB_t^i + \frac{\beta}{2} \Big\{ \sum_{1 \le j \ne i \le N} \frac{1}{X_t^{N,i} - X_t^{N,j}} - \frac{X_t^{N,i}}{2N^{\frac{1}{3}}} - N^{\frac{1}{3}} \Big\} dt$$

is given by the following $Airy_\beta$ interacting ISDE

$$\begin{split} dX_t^i &= dB_t^i + \frac{\beta}{2} \lim_{s \to \infty} \Big\{ \sum_{\substack{|X_t^j| < s, j \neq i \\ \pi}} \frac{1}{X_t^i - X_t^j} - \int_{|x| < s} \frac{\hat{\rho}(x)}{-x} dx \Big\} dt, \, i \in \mathbb{N}, \end{split}$$
 where $\hat{\rho}(x) &= \frac{\mathbf{1}_{(-\infty,0)}(x)}{\pi} \sqrt{-x}. \end{split}$

 In other word, the (labeled) distorted Brownian motion w.r.t. the Airy_β RPF solves the Airy_β interacting ISDE.

Soft-edge universality for log-gases

• Let
$$\mu_{\beta,V}^N$$
 for $V(x) = \sum_{i=0}^{2l} \kappa_i x^i \ (\kappa_{2l} > 0)$ and the soft-edge scaling $x \mapsto N^{-\frac{1}{2l}} \Big\{ c_N \Big(1 + \frac{s}{\alpha_N N^{\frac{2}{3}}} \Big) + d_N \Big\},$

then the prob. meas. $\mu^N_{{\rm Ai},\beta,V}$ is given by

$$\mu_{\mathrm{Ai},\beta,V}^{N}(d\mathbf{s}^{N}) \propto \prod_{i< j}^{N} |s_{i} - s_{j}|^{\beta}$$

$$\times \prod_{k=1}^{N} \exp\left\{-\beta NV\left(N^{-\frac{1}{2l}}\left\{c_N\left(1+\frac{s}{\alpha_N N^{\frac{2}{3}}}\right)+d_N\right\}\right)\right\} d\mathbf{s}^N.$$

Here, c_N, α_N, d_N are constants depend only on N and V. • For $\beta = 1, 2, 4$,

$$\lim_{N\to\infty}\mu^N_{\mathrm{Ai},\beta,V}=\mu_{\mathrm{Ai},\beta} \text{ in law.}$$

- $\mu_{Ai,\beta}$ is independent of V (the Airy_{β} RPF is universal).
- The soft-edge universality was proven for more general V, but for a certain reason we consider even degree polynomial (explain later).

Dynamical universality

- We'd like to formulate dynamical version of universality for RM.
- Recalling

$$\mu_{\mathrm{Ai},\beta,V}^{N}(d\mathbf{s}^{N}) \propto \prod_{i< j}^{N} |s_{i} - s_{j}|^{\beta}$$
$$\times \prod_{k=1}^{N} \exp\left\{-\frac{\beta}{2}NV\left(N^{-\frac{1}{2l}}\left\{c_{N}\left(1 + \frac{s}{\alpha_{N}N^{\frac{2}{3}}}\right) + d_{N}\right\}\right)\right\} d\mathbf{s}^{N}$$

from the same procedure as $V(x) = x^2$, we deduce the associated SDE : for $1 \le i \le N$,

$$dX_t^{N,i} = dB_t^i + \frac{\beta}{2} \left\{ \sum_{1 \le j \ne i \le N} \frac{1}{X_t^{N,i} - X_t^{N,j}} dt - \frac{N^{\frac{1}{3} - \frac{1}{2l}} c_N}{2\alpha_N} V' \left(N^{-\frac{1}{2l}} \left\{ c_N \left(1 + \frac{X_t^{N,i}}{\alpha_N N^{\frac{2}{3}}} \right) + d_N \right\} \right) \right\} dt,.$$

Dynamical universality

• It is supposed that the limit ISDE for

$$\begin{split} dX_t^{N,i} &= dB_t^i + \frac{\beta}{2} \Biggl\{ \sum_{1 \leq j \neq i \leq N} \frac{1}{X_t^{N,i} - X_t^{N,j}} dt \\ &- \frac{N^{\frac{1}{3} - \frac{1}{2l}} c_N}{2\alpha_N} V' \Bigl(N^{-\frac{1}{2l}} \Bigl\{ c_N \Bigl(1 + \frac{X_t^{N,i}}{\alpha_N N^{\frac{2}{3}}} \Bigr) + d_N \Bigr\} \Bigr) \Biggr\} dt, \\ \text{as } N \to \infty \text{ is the Airy}_\beta \text{ interacting ISDE given by} \\ dX_t^i &= dB_t^i + \frac{\beta}{2} \lim_{s \to \infty} \Bigl\{ \sum_{|X_t^j| < s, j \neq i} \frac{1}{X_t^i - X_t^j} - \int_{|x| < s} \frac{\hat{\rho}(x)}{-x} dx \Bigr\} dt. \end{split}$$

Here, the limit is independent of V (dynamical universality).

- The Airy $_{\beta}$ interacting ISDE is a universal dynamical object.
- We expect geometrical universality derives dynamical universality.
- How to prove this limit transition?

How to prove the dynamical universality

$$\begin{split} dX_t^{N,i} &= dB_t^i + \frac{\beta}{2} \Biggl\{ \sum_{1 \leq j \neq i \leq N} \frac{1}{X_t^{N,i} - X_t^{N,j}} dt \\ &- \frac{N^{\frac{1}{3} - \frac{1}{2l}} c_N}{2\alpha_N} V' \Big(N^{-\frac{1}{2l}} \Big\{ c_N \Big(1 + \frac{X_t^{N,i}}{\alpha_N N^{\frac{2}{3}}} \Big) + d_N \Big\} \Big) \Biggr\} dt, \\ dX_t^i &= dB_t^i + \frac{\beta}{2} \lim_{s \to \infty} \Big\{ \sum_{|X_t^j| < s, j \neq i} \frac{1}{X_t^i - X_t^j} - \int_{|x| < s} \frac{\hat{\rho}(x)}{-x} dx \Big\} dt. \end{split}$$

- One way to prove the limit transition is to calculate the drift term, like Osada-Tanemura's argument for quadratic V, but such argument is difficult (even for the simplest case $V(x) = x^2$, it involves hard analysis).
- To avoid such model dependent hard calculation, we constructed a general framework such that geometrical universality derives dynamical universality automatically.

Strong convergence for RPFs

• We saw that for
$$\beta=1,2,4,$$

$$\lim_{N\to\infty}\mu^N_{{\rm Ai},\beta,V}=\mu_{{\rm Ai},\beta} \text{ in law}.$$

• One requirement for the dynamical universality is strong convergence for RPFs in the following sense: for any $n \in \mathbb{N}$,

 $\lim_{N\to\infty}\rho_{{\rm Ai},\beta,V}^{N,n}=\rho_{{\rm Ai},\beta}^n\quad\text{compact uniformly},$

Here $\rho_{Ai,\beta,V}^{N,n}$ and $\rho_{Ai,\beta}^{n}$ are *n*-corr. func's for $\mu_{Ai,\beta,V}^{N}$ and $\mu_{Ai,\beta}$ resp. • We quote the following strong convergence result:

Lemma 1 ('07 Deift-Gioev)

For
$$\beta = 1, 2, 4$$
 and $V(x) = \sum_{i=0}^{2l} \kappa_i x^i$ $(\kappa_{2l} > 0)$, then for any $n \in \mathbb{N}$,
$$\lim_{N \to \infty} \rho_{\mathrm{Ai},\beta,V}^{N,n} = \rho_{\mathrm{Ai},\beta}^n \quad \text{compact uniformly.}$$

 This lemma (and non-colliding property for Airy_β interacting ISDE) deduces the next result.

Dynamical soft-edge universality

Theorem 1 (K. -Osada 17+ for $\beta = 2$, K. 18+ for $\beta = 1, 4$)

For $\beta = 1, 2, 4$ and $V(x) = \sum_{i=0}^{2l} \kappa_i x^i$, let $(X^{N,1}, \ldots, X^{N,N})$ be a solution with equilibrium initial distribution for

$$dX_t^{N,i} = dB_t^i + \frac{\beta}{2} \left\{ \sum_{1 \le j \ne i \le N} \frac{1}{X_t^{N,i} - X_t^{N,j}} dt - \frac{N^{\frac{1}{3} - \frac{1}{2l}} c_N}{2\alpha_N} V' \left(N^{-\frac{1}{2l}} \left\{ c_N \left(1 + \frac{X_t^{N,i}}{\alpha_N N^{\frac{2}{3}}} \right) + d_N \right\} \right) \right\} dt.$$

Then there exists a stoch. proc. $(X^1, X^2, \ldots) \in C([0, \infty], \mathbb{R}^{\mathbb{N}})$ satisfying

$$dX_t^i = dB_t^i + \frac{\beta}{2} \bigg\{ \lim_{s \to \infty} \bigg\{ \sum_{|X_t^j| < s, j \neq i} \frac{1}{X_t^i - X_t^j} - \int_{|x| < s} \frac{\rho(x)}{-x} dx \bigg\} dt \bigg\},$$

with equilibrium initial distribution such that for any $m \in \mathbb{N}$ $\lim_{N \to \infty} (X^{N,1}, \dots, X^{N,m}) = (X^1, \dots, X^m) \text{ in law in } C([0,\infty], \mathbb{R}^m).$ Here $\hat{\rho}(x) = \mathbf{1}_{(-\infty,0)}(x)\pi^{-1}\sqrt{-x}.$

Concluding remarks & Summary

- We see that the "strong" universality for random matrices derives dynamical version.
- The universality for random matrices have been generalized intensively ([Bourgade-Erdös-Yau 2014], etc.), but many results show only weak convergence of correlation functions. If we improve their weak convergence results to strong convergence results, accordingly our approach can prove the dynamical universality.