Logarithmic energy of the Coulomb gas on the sphere at low temperature

Adrien Hardy

Université de Lille, France

Joint work with Carlos Beltrán (Universidad Cantabria, Spain)

Random matrices and their applications Kyoto University - 25 May 2018 Let $\|\cdot\|$ be the Euclidean norm on \mathbb{R}^3 and

$$\mathbb{S} := \{ x \in \mathbb{R}^3 : \|x\| \le 1 \}.$$

The logarithmic energy of a configuration $x_1, \ldots, x_N \in \mathbb{S}$ is

$$\mathscr{H}_N(x_1,\ldots,x_N) := \sum_{i\neq j} \log \frac{1}{\|x_i - x_j\|}.$$

Let $\|\cdot\|$ be the Euclidean norm on \mathbb{R}^3 and

$$\mathbb{S} := \left\{ x \in \mathbb{R}^3 : \|x\| \le 1 \right\}.$$

The logarithmic energy of a configuration $x_1, \ldots, x_N \in \mathbb{S}$ is

$$\mathscr{H}_N(x_1,\ldots,x_N) := \sum_{i \neq j} \log \frac{1}{\|x_i - x_j\|}$$

7th Smale's problem: For any N, provide a configuration $x_1, \ldots, x_N \in \mathbb{S}$ such that, for a universal constant c > 0,

$$\mathscr{H}_N(x_1,\ldots,x_N) - \min_{\mathbb{S}^N} \mathscr{H}_N \le c \log N.$$
 (Smale)

"For a precise version one could ask for a real number algorithm in the sense of Blum, Cucker, Shub, and Smale which on input N produces as output distinct x_1, \ldots, x_N on the 2-sphere satisfying (Smale) with halting time polynomial in N."

$$\min_{\mathbb{S}^N} \mathscr{H}_N = \mathbf{C}_{\log} N^2 - \frac{1}{2} N \log N + \mathbf{C}_* N + o(N)$$

$$\min_{\mathbb{S}^N} \mathscr{H}_N = \mathbf{C}_{\log} N^2 - \frac{1}{2} N \log N + \mathbf{C}_* N + o(N)$$

 $\diamond~$ Explicit leading order constant:

$$\mathbf{C}_{\log} := \min_{\mu \in \mathcal{P}(\mathbb{S})} \iint \log \frac{1}{\|x - y\|} \,\mu(\mathrm{d}x)\mu(\mathrm{d}y) = \frac{1}{2} - \log 2.$$

$$\min_{\mathbb{S}^N} \mathscr{H}_N = \mathbf{C}_{\log} N^2 - \frac{1}{2} N \log N + \mathbf{C}_* N + o(N)$$

◊ Explicit leading order constant:

$$\mathbf{C}_{\log} := \min_{\mu \in \mathcal{P}(\mathbb{S})} \iint \log \frac{1}{\|x - y\|} \,\mu(\mathrm{d}x)\mu(\mathrm{d}y) = \frac{1}{2} - \log 2.$$

 $\diamond~\mathbf{C}_*$ exists [Betermin, Sandier 2018] and satisfies

$$\mathbf{C}_* \le 2\log 2 + \frac{1}{2}\log \frac{2}{3} + 3\log \frac{\sqrt{\pi}}{\Gamma(1/3)} = -0.056...$$
$$\mathbf{C}_* \ge -0.223...$$

where the best lower bound comes from [Dubickas 1996]

$$\min_{\mathbb{S}^N} \mathscr{H}_N = \mathbf{C}_{\log} N^2 - \frac{1}{2} N \log N + \mathbf{C}_* N + o(N)$$

◊ Explicit leading order constant:

$$\mathbf{C}_{\log} := \min_{\mu \in \mathcal{P}(\mathbb{S})} \iint \log \frac{1}{\|x - y\|} \,\mu(\mathrm{d}x)\mu(\mathrm{d}y) = \frac{1}{2} - \log 2.$$

 $\diamond \mathbf{C}_*$ exists [Betermin, Sandier 2018] and satisfies

$$\mathbf{C}_* \le 2\log 2 + \frac{1}{2}\log \frac{2}{3} + 3\log \frac{\sqrt{\pi}}{\Gamma(1/3)} = -0.056...$$
$$\mathbf{C}_* \ge -0.223...$$

where the best lower bound comes from [Dubickas 1996] \diamond The precision $\log N$ is not yet reached...

Deterministic contructions

Numerical simulations: No deterministic algorithm seems to reach the precision N [Hardin, Michaels, Saff 2016]

Independent configurations

If x_1, \ldots, x_N are independent and uniformly distributed on \mathbb{S} , $\mathbb{E}_{\text{i.i.d}} \Big[\mathscr{H}_N(x_1, \ldots, x_N) \Big] = \mathbf{C}_{\log} N(N-1) = \mathbf{C}_{\log} N^2 + \text{wrong}.$

Zeros of random polynomials

If x_1, \ldots, x_N are the zeros of the spherical GAF,

$$f_N(z) := \sum_{k=0}^N \boldsymbol{\xi}_k \sqrt{\binom{N}{k}} z^k, \qquad (\boldsymbol{\xi}_k)_{k=0}^N \text{ i.i.d } \mathcal{N}_{\mathbb{C}}(0,1),$$

up to a stereographic projection, then

$$\mathbb{E}_{\text{GAF}}\left[\mathscr{H}_{N}(x_{1},\ldots,x_{N})\right] = \mathbf{C}_{\log}N^{2} - \frac{1}{2}N\log N + \text{wrong.}$$

[Armentano, Beltrán, Shub 2011]

Zeros of random polynomials

Taken from [Bardenet, H. 2018?]

Let \mathbf{A}, \mathbf{B} be independent $N \times N$ Ginibre matrices. If x_1, \ldots, x_N are the eigenvalues of \mathbf{AB}^{-1} up to a stereographic projection, then

$$\mathbb{E}_{\mathbb{SE}}\Big[\mathscr{H}_N(x_1,\ldots,x_N)\Big] = \mathbf{C}_{\log}N^2 - \frac{1}{2}N\log N + \mathbf{wrong},$$

where "wrong":="more wrong than GAF's wrong"

[Alishahi and Zamani 2015]

The Coulomb gas

For any $\beta > 0$, consider the probability distribution on \mathbb{S}^N ,

$$d\mathbb{P}_{\beta}(x_1, \dots, x_N) := \frac{1}{Z_{\beta}} e^{-\beta \mathscr{H}_N(x_1, \dots, x_N)} \prod_{j=1}^N d\sigma(x_j)$$
$$= \frac{1}{Z_{\beta}} \prod_{i \neq j} \|x_i - x_j\|^{\beta} \prod_{j=1}^N d\sigma(x_j).$$

 $\diamond~$ The partition function reads

$$Z_{\beta} := \int e^{-\beta \mathscr{H}_N} \, \mathrm{d}\sigma^{\otimes N}.$$

 $\diamond \sigma$ is the uniform measure on S normalized so that $\sigma(S) = 1$.

The Coulomb gas

For any $\beta > 0$, consider the probability distribution on \mathbb{S}^N ,

$$d\mathbb{P}_{\beta}(x_1, \dots, x_N) := \frac{1}{Z_{\beta}} e^{-\beta \mathscr{H}_N(x_1, \dots, x_N)} \prod_{j=1}^N d\sigma(x_j)$$
$$= \frac{1}{Z_{\beta}} \prod_{i \neq j} \|x_i - x_j\|^{\beta} \prod_{j=1}^N d\sigma(x_j).$$

 $\diamond~$ The partition function reads

$$Z_{\beta} := \int e^{-\beta \mathscr{H}_N} \, \mathrm{d}\sigma^{\otimes N}.$$

 $\diamond \sigma$ is the uniform measure on S normalized so that $\sigma(S) = 1$.

Remark: $\beta = 1$ yields the spherical ensemble [Krishnapur 2006]

Theorem (Beltrán, H. 2018)

The Coulomb gas at $\beta := N$ satisfies (Smale) with high probability

Theorem (Beltrán, H. 2018)

The Coulomb gas at $\beta := N$ satisfies (Smale) with high probability:

$$\mathbb{P}_N\left(\mathscr{H}_N(x_1,\ldots,x_N)-\min_{\mathbb{S}^N}\mathscr{H}_N\leq 10\log N\right)\geq 1-\mathrm{e}^{-N\log N}.$$

Moreover, the expected energy satisfies

$$\mathbb{E}_{N}\left[\mathscr{H}_{N}(x_{1},\ldots,x_{N})\right] - \min_{\mathbb{S}^{N}}\mathscr{H}_{N} \leq 9\log N.$$

Open problem

The precise version of the 7th Smale's problem yields the natural problem:

Problem: Can we sample configurations from the Coulomb gas \mathbb{P}_N with a polynomial time algorithm?

NB: Having in mind MCMC type methods, it's not even required to sample *exactly* from \mathbb{P}_N but only approximately within the required precision range.

The strategy

Laplace's method heuristics: we expect that

$$\log Z_{\beta} = \log \int e^{-\beta \mathscr{H}_N} d\sigma^{\otimes N} \simeq -\beta \min_{\mathbb{S}^N} \mathscr{H}_N \quad \text{as } \beta \to \infty.$$

Trivial upper bound: for any $\beta > 0$,

$$\log Z_{\beta} \le -\beta \min_{\mathbb{S}^N} \mathscr{H}_N.$$

Problem: What about a lower bound?

1st key of the proof

If one can find $C_{\beta} > 0$ such that

$$\log Z_{\beta} \ge -\beta \min_{\mathbb{S}^N} \mathscr{H}_N - C_{\beta},$$

 $\diamond \ For \ any \ \frac{\delta}{\delta} > 0,$

$$\mathbb{P}_{\beta}\Big(\mathscr{H}_{N}(x_{1},\ldots,x_{N})-\min_{\mathbb{S}^{N}}\mathscr{H}_{N}>\delta\Big)\leq \mathrm{e}^{-\beta\delta+C_{\beta}}.$$

 \diamond Moreover,

$$\mathbb{E}_{\beta}\Big[\mathscr{H}_{N}(x_{1},\ldots,x_{N})\Big]-\min_{\mathbb{S}^{N}}\mathscr{H}_{N}\leq\frac{C_{\beta}}{\beta}.$$

2nd key of the proof

Let $(x_1^*, \ldots, x_N^*) \in \mathbb{S}^N$ be any minimizer of \mathscr{H}_N . Let $(x_1, \ldots, x_N) \in \mathbb{S}^N$ satisfying

$$\max_{j=1}^{N} d_{\mathbb{S}}(x_j, x_j^*) \le \arcsin\left(\frac{s}{\sqrt{5}N^{3/2}}\right)$$

for some $0 \leq s \leq \sqrt{5N}/2$. Then,

$$\mathscr{H}_N(x_1,\ldots,x_N) \leq \min_{\mathbb{S}^N} \mathscr{H}_N + s^2.$$

NB: This improves a previous result from [Beltrán 2013]

2nd key of the proof

Let $(x_1^*, \ldots, x_N^*) \in \mathbb{S}^N$ be any minimizer of \mathscr{H}_N . Let $(x_1, \ldots, x_N) \in \mathbb{S}^N$ satisfying

$$\max_{j=1}^{N} d_{\mathbb{S}}(x_j, x_j^*) \le \arcsin\left(\frac{s}{\sqrt{5}N^{3/2}}\right)$$

for some $0 \leq s \leq \sqrt{5N}/2$. Then,

$$\mathscr{H}_N(x_1,\ldots,x_N) \leq \min_{\mathbb{S}^N} \mathscr{H}_N + s^2.$$

NB: This improves a previous result from [Beltrán 2013] *Proof:*

- $\diamond~$ Componentwise subharmonicity of $\mathscr{H}_N \Rightarrow$ Maximum principle
- ◊ Explicit computations in spherical geometry
- ♦ Elementary inequalities (Cauchy–Schwarz and 1st year analysis)

The lower bound

Now, pick $(x_1^*, \ldots, x_N^*) \in \mathbb{S}^N$ any minimizer of \mathscr{H}_N and set

$$\Omega_s := \left\{ (x_1, \dots, x_N) \in \mathbb{S}^N : \max_{j=1}^N d_{\mathbb{S}}(x_j, x_j^*) \le \arcsin\left(\frac{s}{\sqrt{5}N^{3/2}}\right) \right\}$$

Then, using the 2nd key

$$\log Z_{\beta} \ge \log \int_{\Omega_{s}} e^{-\beta \mathscr{H}_{N}} d\sigma^{\otimes N}$$
$$\ge -\beta \min_{\mathbb{S}^{N}} \mathscr{H}_{N} - \beta s^{2} + \log \sigma^{\otimes N}(\Omega_{s})$$

and optimizing in s yields C_{β} .

Thank you ありがとう