Localization of the continuous Anderson Hamiltonian in 1-d

Laure Dumaz

University of Paris-Dauphine

Random matrices and applications, Kyoto, May 2018 Works in collaboration with Romain Allez and Cyril Labbé

Continuous Anderson Hamiltonian

Continuous Anderson Hamiltonian :

$$\mathcal{H}_L : u \in L^2([0, L]) \mapsto -u'' + \boldsymbol{\xi} \cdot u.$$

$\boldsymbol{\xi}$: white noise.

Dirichlet boundary conditions: u(0) = u(L) = 0 or Neumann u'(0) = u'(L) = 0.

 \rightarrow Random Schrödinger operator with potential = white noise.

Continuous Anderson Hamiltonian

Continuous Anderson Hamiltonian :

$$\mathcal{H}_L : u \in L^2([0, L]) \mapsto -u'' + \boldsymbol{\xi} \cdot u.$$

$\boldsymbol{\xi}$: white noise.

Dirichlet boundary conditions: u(0) = u(L) = 0 or Neumann u'(0) = u'(L) = 0.

\rightarrow Random Schrödinger operator with potential = white noise.

 \mathcal{H}_L : self adjoint operator on $L^2([0, L])$, pure point spectrum $\lambda_1 < \lambda_2 < \cdots$, associated eigenvectors $(\varphi_k)_k$ form an orthonormal basis of $L^2([0, L])$ and are Hölder 3/2-.

Study the **spectrum** of this operator when $L \rightarrow \infty$:

- Eigenvalue distribution. Microscopic level: repulsion?
- Eigenvectors: localized? Shape?

Laplacian

$$-u''(x) = \lambda u(x)$$
$$u(0) = u(L) = 0.$$

Laplacian

$$-u''(x) = \lambda u(x)$$
$$u(0) = u(L) = 0.$$

Eigenvalues $\lambda_1 < \lambda_2 < \cdots$ satisfy:

$$\lambda_k = (\pi k/L)^2.$$

And the associated eigenvectors are:

$$x \in [0, L] \mapsto \sin(\frac{\pi k}{L}x).$$

Laplacian

$$-u''(x) = \lambda u(x)$$
$$u(0) = u(L) = 0.$$

Eigenvalues $\lambda_1 < \lambda_2 < \cdots$ satisfy:

$$\lambda_k = (\pi k/L)^2.$$

And the associated eigenvectors are:

$$x \in [0, L] \mapsto \sin(\frac{\pi k}{L}x).$$

Eigenvectors are completely delocalized!

Density of states

Density of states:

$$x \mapsto \lim_{L \to \infty} \frac{1}{L} \frac{d}{dx} \# \{ \text{eigenvalues } \leq x \}.$$

Density of states

Density of states:

$$x \mapsto \lim_{L \to \infty} \frac{1}{L} \frac{d}{dx} \# \{ \text{eigenvalues } \leq x \}.$$

Eigenvalues of the Laplacian:

$$\lambda_k = (\pi k/L)^2.$$

 \rightarrow Density of states:

$$x \in \mathbb{R}_+ \mapsto rac{1}{2\pi\sqrt{x}}.$$

Density of states for \mathcal{H}_L

Frisch and Lloyd ('60), Halperin ('65) and then Fukushima, Nakao ('77): Explicit formula for the density of states of H_L :

Density of states for \mathcal{H}_L

Frisch and Lloyd ('60), Halperin ('65) and then Fukushima, Nakao ('77): Explicit formula for the density of states of H_L :

 \rightarrow We are interested in the localization **at the edge**.

Motivations and links with literature

Brief historical review

McKean ('94) : Convergence of the **smallest eigenvalue** λ_1 (recentred and rescaled) for Dirichlet, Neumann and periodic b.c.:

$$-4\sqrt{a_L}(\lambda_1+a_L) \Rightarrow_{L\to\infty} e^{-e^{-x}}dx,$$

where

$$a_L = \left(\frac{3}{8}\ln L\right)^{2/3} + 3^{-1/3}2^{-1}(\ln L)^{-1/3}\left(\frac{1}{3}\ln\ln L + \ln\frac{3^{1/3}}{2\pi} + o(1)\right).$$

Brief historical review

McKean ('94) : Convergence of the **smallest eigenvalue** λ_1 (recentred and rescaled) for Dirichlet, Neumann and periodic b.c.:

$$-4\sqrt{a_L}(\lambda_1+a_L) \Rightarrow_{L\to\infty} e^{-e^{-x}}dx,$$

where

$$a_L = \left(\frac{3}{8}\ln L\right)^{2/3} + 3^{-1/3}2^{-1}(\ln L)^{-1/3}\left(\frac{1}{3}\ln\ln L + \ln\frac{3^{1/3}}{2\pi} + o(1)\right).$$

Cambronero, McKean ('99) : Integral expression for the distribution of λ_1 when *L* is fixed, with periodic b.c..

Cambronero, Rider, Ramírez ('06) : Precise asymptotical behavior of the left tail of λ_1 when *L* is fixed with periodic b.c.

The parabolic Anderson model (PAM)

PAM:

$$\partial_t u(t,x) = \partial_x^2 u(t,x) + \xi(x)u(t,x), \quad t > 0, \ x \in [0,L]$$
$$= -\mathcal{H}_L \ u(t,x)$$

The parabolic Anderson model (PAM)

PAM:

$$\begin{aligned} \partial_t u(t,x) &= \partial_x^2 u(t,x) + \xi(x) u(t,x), \quad t > 0, \ x \in [0,L] \\ &= -\mathcal{H}_L \ u(t,x) \end{aligned}$$

Solution: with eigenvalues and eigenvectors of \mathcal{H}_L :

$$\begin{split} u(t,x) &= \sum_{k=1}^{\infty} e^{-\lambda_k t} \varphi_k(x) < \varphi_k, u(0,\cdot) >_{L_2} \\ &\simeq e^{-\lambda_1 t} \varphi_1(x) < \varphi_1, u(0,\cdot) >_{L_2} \quad \text{si } t \gg 1 \\ &\quad \text{et} < \varphi_1, u(0,\cdot) >_{L_2} \neq 0 \end{split}$$

The parabolic Anderson model (PAM)

PAM:

$$\partial_t u(t,x) = \partial_x^2 u(t,x) + \xi(x)u(t,x), \quad t > 0, \ x \in [0,L]$$

= $-\mathcal{H}_L u(t,x)$

Solution: with eigenvalues and eigenvectors of \mathcal{H}_L :

$$u(t,x) = \sum_{k=1}^{\infty} e^{-\lambda_k t} \varphi_k(x) < \varphi_k, u(0,\cdot) >_{L_2}$$

$$\simeq e^{-\lambda_1 t} \varphi_1(x) < \varphi_1, u(0,\cdot) >_{L_2} \quad \text{si } t \gg 1$$

$$et < \varphi_1, u(0,\cdot) >_{L_2} \neq 0$$

 \rightarrow Large time limit of the solution can be understood thanks to the study of the smallest eigenvectors of $\mathcal{H}_L.$

$$\begin{pmatrix} \sigma g_1 & 1 & & \\ 1 & \sigma g_2 & \ddots & \\ & \ddots & \ddots & 1 \\ & & 1 & \sigma g_N \end{pmatrix}$$

where $g_k \sim \mathcal{N}(0, 1)$ i.i.d.

$$\begin{pmatrix} \sigma g_1 & 1 & & \\ 1 & \sigma g_2 & \ddots & \\ & \ddots & \ddots & 1 \\ & & 1 & \sigma g_N \end{pmatrix}$$

where $g_k \sim \mathcal{N}(0, 1)$ i.i.d.

 \rightarrow "Discretization" of $-\mathcal{H}_L$ (Mind the scalings!).

$$\begin{pmatrix} \sigma g_1 & 1 & & \\ 1 & \sigma g_2 & \ddots & \\ & \ddots & \ddots & 1 \\ & & 1 & \sigma g_N \end{pmatrix}$$

where $g_k \sim \mathcal{N}(0, 1)$ i.i.d.

 \rightarrow "Discretization" of $-\mathcal{H}_L$ (Mind the scalings!).

• $\sigma \gg 1/\sqrt{N}$: localized, $\sigma \ll 1/\sqrt{N}$: deterministic.

$$\begin{pmatrix} \sigma g_1 & 1 & & \\ 1 & \sigma g_2 & \ddots & \\ & \ddots & \ddots & 1 \\ & & 1 & \sigma g_N \end{pmatrix}$$

where $g_k \sim \mathcal{N}(0, 1)$ i.i.d.

- \rightarrow "Discretization" of $-\mathcal{H}_L$ (Mind the scalings!).
 - $\sigma \gg 1/\sqrt{N}$: localized, $\sigma \ll 1/\sqrt{N}$: deterministic. • $\sigma \sim 1/\sqrt{N}$: transition between the two regimes.

$$\begin{pmatrix} \sigma g_1 & 1 & & \\ 1 & \sigma g_2 & \ddots & \\ & \ddots & \ddots & 1 \\ & & 1 & \sigma g_N \end{pmatrix}$$

When $\sigma \sim 1/\sqrt{N}$:

Kritchevski, Valkó, Virág ('11): local limit when $N \to \infty$ of the bulk eigenvalues: **repulsion**.

$$\begin{pmatrix} \sigma g_1 & 1 & & \\ 1 & \sigma g_2 & \ddots & \\ & \ddots & \ddots & 1 \\ & & 1 & \sigma g_N \end{pmatrix}$$

When $\sigma \sim 1/\sqrt{N}$:

Kritchevski, Valkó, Virág ('11): local limit when $N \to \infty$ of the bulk eigenvalues: **repulsion**.

Rifkind, Virág ('16): Shape of the eigenvector around its maximum (exponential of a Brownian motion plus a drift). \rightarrow delocalized.

$$\begin{pmatrix} \sigma g_1 & 1 & & \\ 1 & \sigma g_2 & \ddots & \\ & \ddots & \ddots & 1 \\ & & 1 & \sigma g_N \end{pmatrix}$$

When $\sigma \sim 1/\sqrt{N}$:

Kritchevski, Valkó, Virág ('11): local limit when $N \to \infty$ of the bulk eigenvalues: **repulsion**.

Rifkind, Virág ('16): Shape of the eigenvector around its maximum (exponential of a Brownian motion plus a drift). \rightarrow delocalized.

Heuristically: study of the largest eigenvalues of \mathcal{H}_L .

Random matrices: β -ensembles

Other discrete Schrödinger model (tridiagonal):

$$H_{N}^{\beta} := \frac{1}{\sqrt{\beta}} \begin{pmatrix} \sqrt{2} g_{1} & \chi_{(N-1)\beta} & & \\ \chi_{(N-1)\beta} & \sqrt{2} g_{2} & \chi_{(N-2)\beta} & & \\ & \ddots & \ddots & \ddots & \\ & & \chi_{2\beta} & \sqrt{2} g_{N-1} & \chi_{\beta} \\ & & & \chi_{\beta} & \sqrt{2} g_{N} \end{pmatrix}$$

 g_k : indep $\mathcal{N}(0, 1)$, $\chi_{k\beta}$: indep χ distribution.

Random matrices: β -ensembles

Other discrete Schrödinger model (tridiagonal):

$$H_{N}^{\beta} := \frac{1}{\sqrt{\beta}} \begin{pmatrix} \sqrt{2} g_{1} & \chi_{(N-1)\beta} & & \\ \chi_{(N-1)\beta} & \sqrt{2} g_{2} & \chi_{(N-2)\beta} & & \\ & \ddots & \ddots & \ddots & \\ & & \chi_{2\beta} & \sqrt{2} g_{N-1} & \chi_{\beta} \\ & & & \chi_{\beta} & \sqrt{2} g_{N} \end{pmatrix}$$

 g_k : indep $\mathcal{N}(0,1)$, $\chi_{k\beta}$: indep χ distribution.

12 / 40

Edge: Airy Hamiltonian

Airy Hamiltonian:

$$\mathcal{A}_{eta}: u \in L^2(\mathbb{R}_+) \mapsto -\partial_x^2 u + (x + rac{2}{\sqrt{eta}} \xi) u.$$

where ξ white noise.

Ramírez, Rider, Virág ('06): Edge limit.

Edge: Airy Hamiltonian

Airy Hamiltonian:

$$\mathcal{A}_{eta}: u \in L^2(\mathbb{R}_+) \mapsto -\partial_x^2 u + (x + rac{2}{\sqrt{eta}} \xi) u.$$

where ξ white noise.

Ramírez, Rider, Virág ('06): Edge limit.

Allez, D. ('13): Convergence of the smallest eigenvalue TW_{β} when $\beta \rightarrow 0$ towards a Gumbel distribution.

Bulk: Sine_{β}

Valkó and Virág ('16): Sine $_{\beta}$ operator. Self adjoint random Dirac operator.

Spectrum = Sine_{β} process characterized by Brownian carousel and a family of coupled SDEs.

Bulk: Sine_{β}

Valkó and Virág ('16): Sine_{β} operator. Self adjoint random Dirac operator.

Spectrum = Sine_{β} process characterized by Brownian carousel and a family of coupled SDEs.

Allez, D. ('14): Convergence of Sine_{β} when $\beta \to 0$ to a Poisson point process. Sine_{β} : transition between Wigner ($\beta = 2$) and Poisson.

Our results on the Hamiltonian of Anderson

Localization of the smallest eigenvectors

Notons

$$\begin{aligned} \mathcal{Q}_L &:= \sum_{k \ge 1} \delta_4 \sqrt{a_L} (\lambda_k + a_L), \\ m_L(dt) &:= (L \varphi_k (L t)^2 dt)_{k \ge 1}. \end{aligned}$$

Théorème (D., Labbé ('17))

 $(\mathcal{Q}_L, m_{L,k}(dt))$ converges in distribution towards $(\mathcal{Q}_\infty, m_\infty)$ where:

- \mathcal{Q}_{∞} : Poisson point process of intensity $e^{x} dx$,
- $m_{\infty} = (\delta_{U_k})_{k \ge 1} : (U_k)_{k \ge 1}$ i.i.d, uniform on [0, 1], independent of Q_{∞} .

Simulation of the first eigenvectors

The first 5 eigenvectors φ_k^2 in order: black, blue, purple, red, green.

Shape of the eigenvectors Théorème (D., Labbé ('17))

Let u_k be the point where φ_k reaches its maximum.

$$h_k(t) := \sqrt{a_L} \varphi_k^2(u_k + \sqrt{a_L} t)$$

converges towards $h(t) := 1/\cosh(t)^2$ uniformly over compact subsets of \mathbb{R} .

Eigenvalue equation

$$-u'' + \boldsymbol{\xi} \cdot \boldsymbol{u} = \lambda \boldsymbol{u}$$

with u(0) = 0 (without any condition on u(L)).

Eigenvalue equation

$$-u'' + \boldsymbol{\xi} \cdot \boldsymbol{u} = \lambda \boldsymbol{u}$$

with u(0) = 0 (without any condition on u(L)). For all $\lambda \in \mathbb{R}$, there is an **unique solution** u_{λ} (up to a scaling).
Eigenvalue equation

$$-u'' + \boldsymbol{\xi} \cdot \boldsymbol{u} = \lambda \boldsymbol{u}$$

with u(0) = 0 (without any condition on u(L)). For all $\lambda \in \mathbb{R}$, there is an **unique solution** u_{λ} (up to a scaling). The couple (λ, u_{λ}) is an eigenvalue/eigenvector when

 $u_{\lambda}(L)=0.$

Riccati transform: transforms a linear equation of the second order into a non linear one of the first order:

Riccati transform: transforms a linear equation of the second order into a non linear one of the first order:

$$X := \frac{u_{\lambda}'}{u_{\lambda}}$$

satisfies the SDE:

$$dX(t) = (-\lambda - X^{2}(t))dt + dB(t)$$

X(0) = +\infty,

where $B(t) = \int \xi(s) \mathbb{1}_{[0,t]}(s) dt$ is a Brownian motion.

Riccati transform: transforms a linear equation of the second order into a non linear one of the first order:

$$X := \frac{u_{\lambda}'}{u_{\lambda}}$$

satisfies the SDE:

$$dX(t) = (-\lambda - X^{2}(t))dt + dB(t)$$

X(0) = +\infty,

where $B(t) = \int \xi(s) \mathbb{1}_{[0,t]}(s) dt$ is a Brownian motion.

X blows up to $-\infty$ a.s. in a finite time. Then it immediately restarts at $+\infty$.

Riccati transform: transforms a linear equation of the second order into a non linear one of the first order:

$$X := \frac{u_{\lambda}'}{u_{\lambda}}$$

satisfies the SDE:

$$dX(t) = (-\lambda - X^{2}(t))dt + dB(t)$$

X(0) = +\infty,

where $B(t) = \int \xi(s) \mathbb{1}_{[0,t]}(s) dt$ is a Brownian motion.

X blows up to $-\infty$ a.s. in a finite time. Then it immediately restarts at $+\infty$.

Explosion times of X = cancellation points of u_{λ} .

Riccati transform: transforms a linear equation of the second order into a non linear one of the first order:

$$X := \frac{u_{\lambda}'}{u_{\lambda}}$$

satisfies the SDE:

$$dX(t) = (-\lambda - X^{2}(t))dt + dB(t)$$

X(0) = +\infty,

where $B(t) = \int \xi(s) \mathbb{1}_{[0,t]}(s) dt$ is a Brownian motion.

X blows up to $-\infty$ a.s. in a finite time. Then it immediately restarts at $+\infty$.

Explosion times of X = cancellation points of u_{λ} .

 λ is an **eigenvalue** when $X(L) = -\infty$.

Sturm-Liouville

$$dX(t) = (-\lambda - X^{2}(t))dt + dB(t)$$

X(0) = +\infty.

We have:

{eigenvalues $\leq \lambda$ } = # {blows up to $-\infty$ of X_{λ} on [0, L]}.

Sturm-Liouville

Simulation of the diffusion X_{λ} for $\lambda = -1.4$. $\rightarrow 1$ explosions so we have 1 eigenvalue ≤ -1.4 .

22 / 40

Sturm-Liouville

Simulation of the diffusion X_{λ} for $\lambda = -1.2$ (blue) and $\lambda = -1.4$ (red). \rightarrow 5 explosions so 5 eigenvalues ≤ -1.2 .

23 / 40

Eigenstate when $L \to \infty$ $P_L(\lambda) = \# \{ \text{explosions of } X_\lambda \} = \# \{ \text{eigenvalues of } \mathcal{H}_L \le \lambda \}.$ $P_L(\lambda) \sim_{L \to \infty} \frac{L}{\mathbb{E}_{+\infty}[\text{First explosion time of } X]}.$

Study of the diffusion

Let $a = -\lambda$.

Coupled SDEs $(X_a)_{a \in \mathbb{R}}$:

$$dX_a(t) = (a - X_a(t)^2)dt + dB(t).$$

$$X_a(0) = +\infty.$$

Study of the diffusion

Let $a = -\lambda$.

Coupled SDEs $(X_a)_{a \in \mathbb{R}}$:

$$dX_a(t) = (a - X_a(t)^2)dt + dB(t).$$

$$X_a(0) = +\infty.$$

When a > 0, the diffusion evolves in the potential:

$$V(x):=-ax+\frac{x^3}{3}$$

Barrier: $\Delta V = \frac{4}{3} a^{3/2}$.

Study of the diffusion

Let $a = -\lambda$.

Coupled SDEs $(X_a)_{a \in \mathbb{R}}$:

$$dX_a(t) = (a - X_a(t)^2)dt + dB(t).$$

$$X_a(0) = +\infty.$$

When a > 0, the diffusion evolves in the potential:

$$V(x):=-ax+\frac{x^3}{3}.$$

Barrier: $\Delta V = \frac{4}{3} a^{3/2}$.

Explosion time denoted $(\zeta_1, \zeta_2, \cdots)$.

Trap the diffusion in a stationary well Let

$$m(a) := \mathbb{E}_{+\infty}[\zeta_1]$$

We have

$$m(a) = \sqrt{2\pi} \int_0^\infty \frac{dv}{\sqrt{v}} \exp\left(2av - \frac{1}{6}v^3\right)$$
$$\sim_{a \to \infty} \frac{\pi}{a^{1/2}} \exp\left(\frac{8}{3}a^{3/2}\right).$$

Proposition (First explosion of X_a **)**

$$\frac{\zeta_1}{m(a)} \Rightarrow_{a \to \infty} \mathcal{E}(1) \quad \text{exponential of parameter 1.}$$

Trap the diffusion in a stationary well Let

$$m(a) := \mathbb{E}_{+\infty}[\zeta_1]$$

We have

$$m(a) = \sqrt{2\pi} \int_0^\infty \frac{dv}{\sqrt{v}} \exp\left(2av - \frac{1}{6}v^3\right)$$
$$\sim_{a\to\infty} \frac{\pi}{a^{1/2}} \exp\left(\frac{8}{3}a^{3/2}\right).$$

Proposition (First explosion of X_a **)**

$$\frac{\zeta_1}{m(a)} \Rightarrow_{a \to \infty} \mathcal{E}(1) \quad \text{exponential of parameter 1.}$$

Proof: Convergence of the Laplace transform (EDP).

Trap the diffusion in a stationary well

Proposition (First explosion of X_a **)**

$$rac{\zeta_1}{m(a)} \Rightarrow_{a o \infty} \mathcal{E}(1)$$
 exponential of parameter 1.

Corollary: $\sum_{k \in \mathbb{N}} \delta_{\zeta_k}$ converges to a Poisson point process of intensity 1.

Other corollary:

{rescaled and recentred eigenvalues $\leq \lambda$ } converges to a Poisson distribution exp(λ).

Typical behavior of the diffusion X_a when $a \gg 1$

- 1. X_a goes down from $+\infty$ to \sqrt{a} deterministically in a short time $O(\ln(a)/\sqrt{a})$.
- 2. X_a spends time of order $m(a) \approx \exp(\frac{8}{3}a^{3/2})$ around \sqrt{a} . \rightarrow Many short excursions out of the bottom of the well.
- 3. X_a crosses $\left[-\sqrt{a}, \sqrt{a}\right]$ then blows up to $-\infty$ in a time of order $O(\ln(a)/\sqrt{a})$.
- 4. X_a restarts from $+\infty$ right after its explosion.

Convergence to a Poisson point process

We want to show that

$$(\mathcal{Q}_L([\lambda_1, \lambda_2]), \cdots, \mathcal{Q}_L([\lambda_{n-1}, \lambda_n]))$$

converges towards *n* independent random variables variables with Poisson distributions of parameter $e^{\lambda_2} - e^{\lambda_1}, \dots, e^{\lambda_n} - e^{\lambda_{n-1}}$.

Convergence to a Poisson point process

We want to show that

$$(\mathcal{Q}_L([\lambda_1, \lambda_2]), \cdots, \mathcal{Q}_L([\lambda_{n-1}, \lambda_n]))$$

converges towards *n* independent random variables variables with Poisson distributions of parameter $e^{\lambda_2} - e^{\lambda_1}, \dots, e^{\lambda_n} - e^{\lambda_{n-1}}$.

i.e.

$$(\#X_{a_L-\frac{\lambda_2}{4\sqrt{a_L}}}-\#X_{a_L-\frac{\lambda_1}{4\sqrt{a_L}}},\cdots,\#X_{a_L-\frac{\lambda_n}{4\sqrt{a_L}}}-\#X_{a_L-\frac{\lambda_{n-1}}{4\sqrt{a_L}}})$$

converges towards *n* independent random variables variables with Poisson distributions of parameter $e^{\lambda_2} - e^{\lambda_1}, \dots, e^{\lambda_n} - e^{\lambda_{n-1}}$.

Main ideas

► Most of the time X_a ≈ √a. Next explosion time after s > 0 does not depend on the exact position X_a(s) when X_a(s) is in the well (memory loss).

Main ideas

- Most of the time X_a ≈ √a. Next explosion time after s > 0 does not depend on the exact position X_a(s) when X_a(s) is in the well (memory loss).
- ▶ Coupling: If a' > a and $X_{a'}(s) \ge X_a(s)$ then $X_{a'}(t) \ge X_a(t)$ for all $t \ge s$ before the next explosion.

We have seen that the **explosions** of the diffusions $(X_a)_{a \in \mathbb{R}}$ characterize the law of the eigenvalues.

We have seen that the **explosions** of the diffusions $(X_a)_{a \in \mathbb{R}}$ characterize the law of the eigenvalues.

If $a_1 := -\lambda_1$, X_{a_1} is the Riccati transform of the first eigenvector and $X_{a_1}(L) = -\infty$.

We have seen that the **explosions** of the diffusions $(X_a)_{a \in \mathbb{R}}$ characterize the law of the eigenvalues.

If $a_1 := -\lambda_1$, X_{a_1} is the Riccati transform of the first eigenvector and $X_{a_1}(L) = -\infty$.

We find back the first eigenvector φ_1 performing the inverse of the Riccati transform:

$$\varphi_1(t) = \varphi_1(s) \exp(\int_s^t X_{a_1}(u) du)$$

First eigenvector φ_1 :

$$\varphi_1(t) = \varphi_1(s) \exp(\int_s^t X_{a_1}(u) du)$$

First eigenvector φ_1 :

$$\varphi_1(t) = \varphi_1(s) \exp(\int_s^t X_{a_1}(u) du)$$

Be careful: a_1 depends on the whole noise $(B(t))_{t \in [0,L]}$!

First eigenvector φ_1 :

$$\varphi_1(t) = \varphi_1(s) \exp(\int_s^t X_{a_1}(u) du)$$

Be careful: a_1 depends on the whole noise $(B(t))_{t \in [0,L]}$!

 $\rightarrow X_{a_1}$ is NOT a diffusion and won't have a typical behavior.

First eigenvector φ_1 :

$$\varphi_1(t) = \varphi_1(s) \exp(\int_s^t X_{a_1}(u) du)$$

Be careful: a_1 depends on the whole noise $(B(t))_{t \in [0,L]}$! $\rightarrow X_{a_1}$ is NOT a diffusion and won't have a typical behavior. **Strategy:** We bound X_{a_1} with typical diffusions.

Riccati transform of the first eigenvector

33 / 40

We have for $a \leq a_1 \leq a'$ $X_a(t) \leq X_{a_1}(t)$ for all $t \leq \zeta_1(X_a)$ $X_{a_1}(t) \leq X_{a'}(t)$ for all $t \leq \zeta_1(X_{a_1}) = L$.

We have $X_a \approx X_{a'} \approx \sqrt{a}$ most of the time.

 \rightarrow we control φ_1 until the **first explosion of** X_a :

$$\varphi_1(t) \approx \varphi_1(t_0) \exp(\sqrt{a}(t-t_0)), \quad \text{if } t \leq \zeta_1(X_a)$$

where $a \approx a_1 \approx a_L$.

We have $X_a \approx X_{a'} \approx \sqrt{a}$ most of the time.

 \rightarrow we control φ_1 until the **first explosion of** X_a :

$$\varphi_1(t) pprox \varphi_1(t_0) \exp(\sqrt{a}(t-t_0)), \quad \text{if } t \leq \zeta_1(X_a)$$

where $a \approx a_1 \approx a_L$.

How can we control the eigenvector AFTER this explosion time?

Time reversal

Look at the problem:

$$-\hat{u}'' + \xi \cdot \hat{u} = \lambda \hat{u}$$
$$\hat{u}(L) = 0$$

 λ eigenvalue iff $\hat{u}(0) = 0$.

Time reversal

Look at the problem:

$$-\hat{u}'' + \boldsymbol{\xi} \cdot \hat{u} = \lambda \hat{u}$$
$$\hat{u}(L) = 0$$

 λ eigenvalue iff $\hat{u}(0) = 0$.

Riccati transform:

$$d\hat{X}_{\mathsf{a}}(t) = (-\mathsf{a} + \hat{X}_{\mathsf{a}}(t)^2)dt + d\hat{B}(t)$$

where $\hat{B}(\cdot) = B(L - \cdot)$.

 $\begin{array}{l} \text{For all } a \leq a_1 \\ X_a(t) \leq X_{a_1}(t) \quad \text{for all } t \leq \zeta_1(X_a) \\ X_{a_1}(t) \leq \hat{X}_a(L-t) \quad \text{for all } t \geq L - \zeta_1(\hat{X}_a). \end{array}$

37 / 40
\rightarrow We control φ_1 between the first explosion of \hat{X}_a and time L: $\varphi_1(t) \approx \varphi_1(t_1) \exp(-\sqrt{a}(t-t_1)), \text{ si } t \ge t_1 \ge L - \zeta_1(\hat{X}_a)$ \rightarrow We control $arphi_1$ between the first explosion of \hat{X}_a and time L :

$$arphi_1(t) pprox arphi_1(t_1) \exp(-\sqrt{a}(t-t_1)), \quad ext{si} \ t \geq t_1 \geq L - \zeta_1(\hat{X}_a)$$

It suffices to prove that the first explosion of $\hat{X}_a(L-\cdot)$ is close to the first explosion time of X_a to deduce the convergence towards a Dirac mass.

Shape of the first eigenvector

Shape of X_a when it crosses the interval $\left[-\sqrt{a}, \sqrt{a}\right]$?

Shape of the first eigenvector

Shape of X_a when it crosses the interval $\left[-\sqrt{a}, \sqrt{a}\right]$?

Girsanov : Diffusion X_a conditioned to explode right away follows the diffusion:

$$dY(t) = (-a + Y(t)^2)dt + dB(t).$$

Shape of the first eigenvector

Shape of X_a when it crosses the interval $\left[-\sqrt{a}, \sqrt{a}\right]$?

Girsanov : Diffusion X_a conditioned to explode right away follows the diffusion:

$$dY(t) = (-a + Y(t)^2)dt + dB(t).$$

With large probability, this diffusion is close to $f(t) := -\sqrt{a} \tanh(\sqrt{a}(t-A))$ where $f(0) = \sqrt{a} - \delta$.

THANK YOU!