On the largest root of random Kac polynomials.

Raphael Butez

May 24th 2017

Kac polynomials

a_{0}, \ldots, a_{n} i.i.d. random variables such that $\mathbb{P}\left(a_{0}=0\right)=0$

$$
P_{n}(z)=a_{0}+a_{1} z+\cdots+a_{n} z^{n}=a_{n} \prod_{k=1}^{n}\left(z-z_{k}^{(n)}\right)
$$

Empirical measure of the zeros

$$
\mu_{n}:=\frac{1}{n} \sum_{k=1}^{n} \delta_{z_{k}^{(n)}} \in \mathcal{M}_{1}(\mathbb{C})
$$

Limit of the empirical measures

Theorem (Šparo-Šur, Arnold, Ibragimov-Zaporozhets)

$$
\mu_{n}=\frac{1}{n} \sum_{k=1}^{n} \delta_{z_{k}^{(n)}} \xrightarrow[n \rightarrow \infty]{\mathbb{P}} v_{S^{1}} \Leftrightarrow \mathbb{E}\left(\log \left(1+\left|a_{0}\right|\right)\right)<\infty
$$

where the weak convergence in probability means

$$
\forall f \in \mathcal{C}_{b}^{0}(\mathbb{C}), \quad \frac{1}{n} \sum_{k=1}^{n} f\left(z_{k}^{(n)}\right) \xrightarrow[n \rightarrow \infty]{\mathbb{P}} \int_{0}^{2 \pi} f\left(e^{i \theta}\right) \frac{1}{2 \pi} d \theta .
$$

Limit of the empirical measures

Theorem (Šparo-Šur, Arnold, Ibragimov-Zaporozhets)

$$
\mu_{n}=\frac{1}{n} \sum_{k=1}^{n} \delta_{z_{k}^{(n)}} \xrightarrow[n \rightarrow \infty]{\mathbb{P}} v_{S^{1}} \Leftrightarrow \mathbb{E}\left(\log \left(1+\left|a_{0}\right|\right)\right)<\infty
$$

where the weak convergence in probability means

$$
\forall f \in \mathcal{C}_{b}^{0}(\mathbb{C}), \quad \frac{1}{n} \sum_{k=1}^{n} f\left(z_{k}^{(n)}\right) \xrightarrow[n \rightarrow \infty]{\mathbb{P}} \int_{0}^{2 \pi} f\left(e^{i \theta}\right) \frac{1}{2 \pi} d \theta
$$

- 1962: Šparo Šur
- 1965: Arnold \Leftarrow
- 2013: Ibragimov-Zaporozhets \Leftrightarrow

Simulations

Figure: Coefficients $\mathcal{N}_{\mathbb{C}}(0,1)$ and $\mathcal{E}(1)$

One question

Considering that

- Universal convergence: $\mu_{n} \rightarrow v_{S^{1}}$
- When the coefficients are $\mathcal{N}_{\mathbb{C}}(0,1)$ random variables,

$$
\left(z_{1}, \ldots, z_{n}\right) \sim \frac{1}{Z_{n}} \prod_{i<j}\left|z_{i}-z_{j}\right|^{2} \exp \left(-(n+1) \log \int \prod_{k=1}^{n}\left|z-z_{k}\right|^{2} d v_{S^{1}}(z)\right)
$$

- (Universal) Large deviations for the empirical measures

One question

Considering that

- Universal convergence: $\mu_{n} \rightarrow v_{S^{1}}$
- When the coefficients are $\mathcal{N}_{\mathbb{C}}(0,1)$ random variables,

$$
\left(z_{1}, \ldots, z_{n}\right) \sim \frac{1}{Z_{n}} \prod_{i<j}\left|z_{i}-z_{j}\right|^{2} \exp \left(-(n+1) \log \int \prod_{k=1}^{n}\left|z-z_{k}\right|^{2} d v_{S^{1}}(z)\right)
$$

- (Universal) Large deviations for the empirical measures

What can we say on the root of largest modulus?

Can we expect max $\left|z_{k}^{(n)}\right| \rightarrow 1$?
Gumble fluctuations?
Large deviations for max $\left|z_{k}^{(n)}\right|$?

Can we expect convergence towards 1 ?

Figure: Convergence seems unlikely

Theorem (B.)

Assume that $\mathbb{E}\left(\log \left(1+\left|a_{0}\right|\right)\right)<\infty, a_{0}$ is non deterministic and $\mathbb{P}\left(a_{0}=0\right)=0$. Let $\mathrm{n} \in \mathbb{N}$, we define

$$
x_{n}=\max _{0 \leq k \leq n}\left|z_{k}^{(n)}\right|
$$

1. If there exists $\mathrm{k} \geq 0, \mathrm{a}>0$ and $\delta>0$ such that

$$
\forall 0 \leq t \leq \delta, \quad \mathbb{P}\left(\left|a_{0}\right| \leq t\right) \geq a t^{k} \quad \text { then } \quad \mathbb{E}\left(\left(x_{n}\right)^{k}\right)=+\infty .
$$

Theorem (B.)

Assume that $\mathbb{E}\left(\log \left(1+\left|a_{0}\right|\right)\right)<\infty, a_{0}$ is non deterministic and $\mathbb{P}\left(a_{0}=0\right)=0$. Let $\mathrm{n} \in \mathbb{N}$, we define

$$
x_{n}=\max _{0 \leq k \leq n}\left|z_{k}^{(n)}\right|
$$

1. If there exists $\mathrm{k} \geq 0, \mathrm{a}>0$ and $\delta>0$ such that

$$
\forall 0 \leq t \leq \delta, \quad \mathbb{P}\left(\left|a_{0}\right| \leq t\right) \geq a t^{k} \quad \text { then } \quad \mathbb{E}\left(\left(x_{n}\right)^{k}\right)=+\infty .
$$

2. The sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ converges in distribution towards a limiting random variable x_{∞}, supported on $[1, \infty)$, satisfying the property 1 .

Figure: Histogram for χ_{300} with $\mathcal{N}_{\mathbb{R}}(0,1)$ coefficients.

Comparision with Cauchy random variables.

Figure: On the left, Cauchy variables, on the right χ_{300} for $\mathcal{N}_{\mathbb{R}}(0,1)$ coefficients.

Link with the smallest root

The behavior of x_{n} is understood through the lowest modulus among the roots.

$$
w_{n}=\min _{0 \leq k \leq n}\left|z_{k}^{(n)}\right|
$$

Lemma

1. For any $n \in \mathbb{N}, w_{n}$ has the same distribution as $1 / x_{n}$.
2. There exist constants $\delta>0, A>0, r>0$ such that

$$
\forall 0 \leq t \leq \delta, \quad \mathbb{P}\left(w_{n} \leq t\right) \geq A \mathbb{P}\left(\left|a_{0}\right| \leq \frac{t}{r}\right)
$$

3. $\left(w_{n}\right)_{n \in \mathbb{N}}$ converges almost surely towards w_{∞} which is the smallest zero of the random analytic function

$$
P_{\infty}(z)=\sum_{k=0}^{\infty} a_{k} z^{k}
$$

Coefficients $\mathcal{N}_{\mathbb{C}}(0,1)$

The result of Peres and Virág on GAF allows us to compute the distribution of w_{∞}

$$
\mathrm{F}_{w_{\infty}}(\mathrm{t})=\mathbb{P}\left(w_{\infty} \leq \mathrm{t}\right)=1-\prod_{\mathrm{k}=1}^{\infty}\left(1-\mathrm{t}^{2 \mathrm{k}}\right) .
$$

Figure: Histogram of w_{300} and density of w_{∞}.

Proof of the theorem: If X is a positive random variable, then

$$
\forall k \in \mathbb{N}^{*} \quad \frac{1}{k} \mathbb{E}\left(X^{k}\right)=\int_{0}^{\infty} t^{k-1} \mathbb{P}(X \geq t) d t
$$

Apply this to x_{n} along with

$$
\forall t \geq \frac{1}{\delta}, \quad \mathbb{P}\left(x_{n} \geq t\right)=\mathbb{P}\left(w_{n} \leq \frac{1}{t}\right) \geq A \mathbb{P}\left(\left|a_{0}\right| \leq \frac{r}{t}\right) \geq B \frac{1}{t^{k}}
$$

Where we used points 1 and 2 of the lemma.

Point 1 comes from

$$
z^{n} P_{n}(1 / z)=a_{n}+a_{n-1} z+\cdots+a_{0} z^{n}=P_{n}(z) \quad \text { in distribution }
$$

Ideas of proof: lemma

Point 1 comes from

$$
z^{n} P_{n}(1 / z)=a_{n}+a_{n-1} z+\cdots+a_{0} z^{n}=P_{n}(z) \quad \text { in distribution }
$$

Point 2 means:
If $\left|a_{0}\right|$ is sufficiently small, P_{n} has a small zero.

Theorem (Weak version of Rouché)

Let f and g be two holomorphic functions on a disk D , then if

$$
\forall z \in \partial D \quad|f(z)-g(z)|<|g(z)|
$$

then f and g have the same number of zeros inside D .
When $\left|a_{0}\right|$ is small, P_{n} and P_{1} have the same number of zeros in a small disk.

Lemma continued

We use Rouché's theorem with P_{n} and P_{1}, hence

$$
\begin{aligned}
\mathbb{P}\left(w_{n} \leq t\right) & \geq \mathbb{P}\left(w_{n} \leq t \text { and } w_{1} \leq t\right) \\
& \geq \mathbb{P}\left(P_{n} \text { and } P_{1} \text { have a root in } D(0, t)\right) \\
& \geq \mathbb{P}\left(\sup \left|P_{n}-P_{1}\right|<\inf \left|P_{1}\right| \text { and } w_{1} \leq t\right) \\
& \geq \mathbb{P}\left(\sup \left|\sum_{k=2}^{n} a_{k} z^{k}\right|<\inf \left|a_{0}+a_{1} z\right| \text { and } \frac{\left|a_{0}\right|}{\left|a_{1}\right|} \leq t\right)
\end{aligned}
$$

We use Rouché 's theorem with P_{n} and P_{1}, hence

$$
\begin{aligned}
\mathbb{P}\left(w_{n} \leq t\right) & \geq \mathbb{P}\left(w_{n} \leq t \text { and } w_{1} \leq t\right) \\
& \geq \mathbb{P}\left(P_{n} \text { and } P_{1} \text { have a root in } D(0, t)\right) \\
& \geq \mathbb{P}\left(\text { sup }\left|P_{n}-P_{1}\right|<\inf \left|P_{1}\right| \text { and } w_{1} \leq t\right) \\
& \geq \mathbb{P}\left(\sup \left|\sum_{k=2}^{n} a_{k} z^{k}\right|<\inf \left|a_{0}+a_{1} z\right| \text { and } \frac{\left|a_{0}\right|}{\left|a_{1}\right|} \leq t\right)
\end{aligned}
$$

Point 3 is just Hurwitz's theorem, which is a consequence of Rouché's theorem.

Effect of dimension

For many examples, when $a_{0} \in \mathbb{R}, \mathbb{E}\left(x_{n}\right)=+\infty$ while when $a_{0} \in \mathbb{C}$, we only have $\mathbb{E}\left(x_{n}^{2}\right)=+\infty$.

Figure: Histogram of w_{300} for coefficients $\mathcal{E}(1)$ et $\frac{1}{Z} e^{-|z|} d \ell_{\complement}$

Perspectives

What can we do next?

1. Similar result for other polynomial models. The same limit distribution is expected in the Gaussian case when we have rotational symmetry.
2. Similar result for some Coulomb gases in dimension 2 (soon!)

Thank you for your attention！ ご清聴ありがとうございました

