Local single ring theorem

Zhigang Bao

Hong Kong University of Science and Technology

Random matrices and their applications,

Kyoto university, May 21-25 2018

Joint with László Erdős and Kevin Schnelli

Eigenvalues vs Singular values

Horn's question:

Given a generic non-Hermitian square matrix $X \in M_N(\mathbb{C})$, what is the relationship between its eigenvalues and singular values?

EVs: $\lambda_1(X), \lambda_2(X), \dots, \lambda_N(X),$ descending in magnitude

SVs (EVs of $\sqrt{XX^*}$): $s_1(X), s_2(X), \ldots, s_N(X)$, descending

Answer: [Weyl's inequalities]

For any $X \in M_N(\mathbb{C})$ and any $1 \leq k \leq N$ $\prod_{\ell=1}^k |\lambda_\ell(X)| \leq \prod_{\ell=1}^k s_\ell(X),$ and equality holds when k = N (both sides are $|\det(X)|$).

A randomized question

Random X with given SVs

 $X = USV^*$

 $S = diag(s_1, \ldots, s_N)$ is given, U, V independent Haar unitary.

Question Is there any typical behavior of the set of EVs given the set of the SVs, if one selects U and V uniformly?

Distribution of N numbers: the empirical measure

Empirical spectral distribution: For any $X \in M_N(\mathbb{C})$, Borel set $\mathcal{D} \subset \mathbb{C}$,

$$\mu_X = \frac{1}{N} \sum_i \delta_{\lambda_i(X)}, \quad \text{i.e.} \quad \mu_X(\mathcal{D}) = \frac{|\{i : \lambda_i(X) \in \mathcal{D}\}|}{N}.$$

Specifically, we are interested in the weak limit of the measure μ_X , whose definition involves free additive convolution.

Stieltjes transform

Definition: For any probab. measure μ on \mathbb{R} , its Stieltjes transform $m_{\mu}(z)$ is

$$m_\mu(z) = \int rac{1}{\lambda-z} \mathsf{d} \mu(\lambda), \qquad z \in \mathbb{C}^+.$$

Inverse formula: one to one correspondence between measure and its Stieltjes transform: density of μ given by

$$\rho(E) = \frac{1}{\pi} \lim_{\eta \downarrow 0} \operatorname{Im} m_{\mu}(E + i\eta).$$

Notation: For μ_A and μ_B , we use $\mu_A \boxplus \mu_B$ to denote their free additive convolution, and use $m_{\mu_A}(z)$, $m_{\mu_B}(z)$ and $m_{\mu_A \boxplus \mu_B}(z)$ to denote their Stieltjes transforms.

Free convolution via subordination

Definition via subordination functions [Voiculescu '93, Biane '98, Belinschi-Bercovici '07, Chistyakov-Götze '11]

There exist unique analytic $\omega_A, \omega_B : \mathbb{C}^+ \to \mathbb{C}^+$, s.t. $\operatorname{Im}\omega_k(z) \ge \operatorname{Im}z$ and $\lim_{\eta \uparrow \infty} \frac{\omega_k(i\eta)}{i\eta} = 1$ for k = A, B, such that $m_{\mu_A \boxplus \mu_B}(z) := m_{\mu_A}(\omega_B(z)) = m_{\mu_B}(\omega_A(z)),$ (*) $-[m_{\mu_A}(\omega_B(z))]^{-1} = \omega_A(z) + \omega_B(z) - z.$

- $\omega_A(z), \omega_B(z)$: subordination functions
- (*): self-consistent equation (SCE)

Another definition R-transform [Voiculescu '86]

Additive model

Let $A = A_N$ and $B = B_N$ be two deterministic Hermitian matrices with ESD μ_A and μ_B . Let U be Haar unitary matrix.

Theorem [Voiculescu '91] Let $H = A + UBU^*$ and $\mu_H \coloneqq \frac{1}{N} \sum \delta_{\lambda_i(H)}$. Under certain mild conditions, $\mu_H \Rightarrow \mu_A \boxplus \mu_B$ almost surely, as $N \to \infty$.

Other proofs [Speicher'93, Biane'98, Collins'03, Pastur-Vasilchuk'00]

Remark Voiculescu's result identifies the law of the sum of two large Hermi-

tian matrices in a randomly chosen relative basis.

Examples

semicircle
B semicircle

semicircle
Bernoulli

7

Bernoulli 🗄 Bernoulli

three point masses $\ensuremath{\mathbbm B}$ three point masses

Bulk regime where the density is bounded below and above.

Single ring theorem

Random X with given SVs $X = USV^*$, U, V indept Haar Empirical Singular value distribution $\mu_S \coloneqq \frac{1}{N} \sum \delta_{s_i(X)} \Rightarrow \mu_{\infty}$ Brown measure (associated with μ_{∞}) : denoted by ν_{∞} , given by

$$\mathrm{d}\nu_{\infty}(w) = \frac{1}{2\pi} \Delta_w \Big(\int_{\mathbb{R}} \log |u| \mu_{\infty,|w|}(\mathrm{d}u) \Big) \mathrm{d}w \wedge \mathrm{d}\bar{w}, \qquad w \in \mathbb{C}.$$

Here Δ_w is the Laplacian w.r.t. $\operatorname{Re}(w)$ and $\operatorname{Im}(w)$, and

$$\mu_{\infty,|w|} \coloneqq \mu_{\infty}^{\mathsf{sym}} \boxplus \delta_{|w|}^{\mathsf{sym}},$$

where $\mu^{\text{sym}}(I) = (\mu(I) + \mu(-I))/2$.

Single ring theorem [Guionnet-Krishnapur-Zeitouni '11] Under several technical assumptions, $\mu_X = \frac{1}{N} \sum_i \delta_{\lambda_i(X)}$ converges weakly (in probab.) to the Brown measure ν_{∞} . In addition, the support of ν_{∞} is a single ring on \mathbb{C} , with the inner radius $r_- \coloneqq \left[\int x^{-2} \mathrm{d}\mu_{\infty}(x) \right]^{-\frac{1}{2}}$ and outer radius $r_+ \coloneqq \left[\int x^2 \mathrm{d}\mu_{\infty}(x) \right]^{\frac{1}{2}}$

Remarks

Remark 1 Single ring theorem was discovered in [Feinberg-Zee '97], for a special class of non-Hermitian matrices, without full rigor.

Remark 2 In [Guionnet-Krishnapur-Zeitouni '11], there are several hard-tocheck assumptions. One of them on the smallest singular value of $X - z, z \in \mathbb{C}$ was removed in [Rudelson-Vershynin '14].

Remark 3 The Brown measure ν_{∞} was previously analyzed in [Haagerup-Larsen '00]

Non-asymptotic counterpart of ν_{∞}

Replacing μ_{∞} by μ_S , we define the non-asymptotic counterpart of u_{∞}

$$\mathsf{d}\nu_{S}(w) \coloneqq \frac{1}{2\pi} \Delta_{w} \Big(\int_{\mathbb{R}} \log |u| \mu_{S,|w|}(\mathsf{d}u) \Big) \mathsf{d}w \wedge \mathsf{d}\bar{w}, \qquad w \in \mathbb{C}$$

where $\mu_{S,|w|} = \mu_S^{\text{sym}} \boxplus \delta_{|w|}^{\text{sym}}$.

Remark Write $\mu_X - \nu_\infty = (\mu_X - \nu_S) + (\nu_S - \nu_\infty)$. For convergence speed of μ_X , it would be more appropriate to work with $\mu_X - \nu_S$ since $\nu_S \Rightarrow \nu_\infty$ can be arbitrarily slow.

Example

$$\mu_S \coloneqq \frac{1}{2}\delta_1 + \frac{1}{2}\delta_2$$

inner radius: $r_{-} \coloneqq \left[\int x^{-2} \mathrm{d} \mu_{S}(x) \right]^{-\frac{1}{2}}$

outer radius: $r_{+} \coloneqq \left[\int x^{2} \mathrm{d}\mu_{S}(x)\right]^{\frac{1}{2}}$

Properties

- 1: ν_S possesses a radially-symmetric density.
- 2: The support of ν_S is a single ring.

Special cases

Circular Unitary Ensemble

X: Haar Unitary Matrix

$$\mu_S$$
 = δ_1

$$\mu_S(\mathrm{d}x) \approx \frac{1}{\pi} \sqrt{4 - x^2} \mathbf{1}_{(0,2)}(x) \mathrm{d}x$$

Our question: Local law

Global law For any fixed continuity set $\mathcal{D} \subset \mathbb{C}$ of ν_S ,

$$\frac{\mu_X(\mathcal{D}) - \nu_S(\mathcal{D})}{|\mathcal{D}|} \stackrel{\mathsf{P}}{\Rightarrow} 0.$$
 (*)

Our question (local law) Does the convergence still hold if $|\mathcal{D}| = o(1)$, and how small can $|\mathcal{D}|$ be? (Answer $\frac{1}{N}$)

Remark Global law cannot exclude the existence of big hole or eigenvalue clustering on a scale of o(1), but local law can.

Remark Actually, the LHS of (*) is bounded by $\frac{1}{N|\mathcal{D}|}$ for all $|\mathcal{D}| \gg \frac{1}{N}$, which implies a convergence rate $\frac{1}{N}$.

Local single ring theorem (bulk)

Local single ring theorem (bulk) [B.- Erdős-Schnelli '16] Suppose $||S|| \sim 1$ and $\mu_S \Rightarrow \mu_{\infty}$ is not one point mass. Let $|w_0| \in [r_- + \tau, r_+ - \tau]$ for some small $\tau > 0$. Let $f : \mathbb{C} \to \mathbb{R}$ be compactly supported, smooth, s.t $||f||_{\infty} \leq C$, $||f'||_{\infty} \leq N^C$. Then for $\alpha \in (0, 1/2]$, we have $N^{2\alpha} \Big| \int_{\mathbb{C}} f(N^{\alpha}(w - w_0)) \Big[\mu_X(\mathrm{d}w) - \nu_S(\mathrm{d}w) \Big] \Big| < N^{-1+2\alpha} ||\Delta f||_{L^1(\mathbb{C})}.$

Remark If $f(x) \approx 1(x \in \widetilde{\mathcal{D}})$, then $f(N^{\alpha}(w - w_0)) \approx 1(w \in w_0 + N^{-\alpha}\widetilde{\mathcal{D}}) = 1(w \in \mathcal{D})$.

Previous work [Benaych-Georges '15] $(|\mathcal{D}| \ge (\log N)^{-1/2})$.

Notation $A \prec B$: $|A| \leq N^{\varepsilon}|B|$ with high probability for any given $\varepsilon > 0$.

Related work: Local circular law

Ginibre ensemble can be extended by considering i.i.d. entries (no unitary invariance). Global/local circular laws have been widely studied.

Global [Ginibre '65] (complex Gaussian), [Girko '84] (independent entries, without full rigor), [Bai '97] (i.i.d., bounded density), [Tao-Vu, '10] (i.i.d., second moment).....

Local [Bourgade-Yau-Yin '14], [Yin '14], [Tao-Vu '15](bulk/edge local laws, optimal scale)

Method (of Bourgade-Yau-Yin):

Girko's Hermitization + Local law for Hermitian matrix

Girko's Hermitization

Logarithmic potential

$$\mathcal{P}_{\mu}(w) \coloneqq -\int_{\mathbb{C}} \log |\lambda - w| \mu(\mathsf{d}\lambda)$$

Example 1

$$\mathcal{P}_{\mu_X}(w) = -\frac{1}{N} \sum_i \log |\lambda_i(X) - w| = -\frac{1}{N} \log \det |X - w|$$
$$= -\frac{1}{2N} \log \det |(X - w)(X - w)^*| =: \left[-\frac{1}{2N} \log \det |H_w|\right]$$

where

$$H_w = \left(\begin{array}{cc} X - w \\ X^* - w^* \end{array}\right)$$

Example 2

$$\mathcal{P}_{\nu_{S}}(w) = -\frac{1}{2\pi} \int_{\mathbb{C}} \log |\lambda - w| \Delta_{\lambda} \Big(\int_{\mathbb{R}} \log |u| \mu_{S,|\lambda|}(\mathrm{d}u) \Big) \mathrm{d}\lambda \wedge \mathrm{d}\overline{\lambda}$$
$$= \boxed{-\int_{\mathbb{R}} \log |u| \mu_{S,|w|}(\mathrm{d}u)}$$

17

Reduction to log determinant

A fact For any smooth and compactly supported $F : \mathbb{C} \to \mathbb{R}$

$$2\pi \int_{\mathbb{C}} F(\lambda) \mu(\mathrm{d}\lambda) = -\int_{\mathbb{C}} \Delta_w F(w) \cdot \mathcal{P}_{\mu}(w) \mathrm{d}w \wedge \mathrm{d}\overline{w}$$

since $2\pi F(\lambda) = \int_{\mathbb{C}} \Delta_w F(w) \log |w - \lambda| dw \wedge d\overline{w}$.

Consequence For (local) single ring theorem, it suffices to estimate

$$|\mathcal{P}_{\mu_X}(w) - \mathcal{P}_{\nu_S}(w)| = \Big| \frac{1}{2N} \log \det |H_w| - \int_{\mathbb{R}} \log |u| \mu_{S,|w|}(\mathrm{d}u) \Big|.$$

Task For optimal local single ring theorem, one needs

$$\left|\frac{1}{2N}\log\det|H_w| - \int_{\mathbb{R}}\log|u|\mu_{S,|w|}(\mathrm{d}u)\right| < \frac{1}{N}$$

Remark For global law, an o(1) bound will be sufficient.

Reduction to Stieltjes transform

ESD of
$$H_w$$
: $\mu_{H_w} = \frac{1}{2N} \sum_{i=1}^{2N} \delta_{\lambda_i(H_w)}$

We can rewrite

$$\left|\frac{1}{2N}\log\det|H_w| - \int_{\mathbb{R}}\log|u|\mu_{S,|w|}(\mathrm{d}u)\right| = \left|\int_{\mathbb{R}}\log|u|\mathrm{d}\left(\mu_{H_w} - \mu_{S,|w|}\right)\right|$$

A basic equation (used in [Tao-Vu '15])

$$\int_{\mathbb{R}} \log |u| \mu(\mathrm{d}u) = \int_{\mathbb{R}} \log |u - \mathrm{i}K| \mu(\mathrm{d}u) - \int_{0}^{K} \mathrm{Im} \ m_{\mu}(\mathrm{i}\eta) \mathrm{d}\eta$$

Choosing $K = N^L$,

$$\int_{\mathbb{R}} \log |u - \mathrm{i}K| \mathsf{d} ig(\mu_{H_w} - \mu_{S,|w|} ig) \ll rac{1}{N}.$$

Further task

$$\left| \int_{0}^{N^{L}} \operatorname{Im}(m_{\mu_{H_{w}}}(i\eta) - m_{\mu_{S,|w|}}(i\eta)) d\eta \right| \prec \frac{1}{N}.$$

Local law for Stieltjes transform

Theorem [B.-Erdős-Schnelli '16] : Suppose that $|w| \in [r_{-} + \tau, r_{+} - \tau]$ for some small $\tau > 0$, we have the following uniformly in $\eta > 0$

$$\left|\operatorname{Im}(m_{\mu_{H_w}}(\operatorname{i}\eta)-m_{\mu_{S,|w|}}(\operatorname{i}\eta))
ight|$$
 < $rac{1}{N\eta}$

The above is not sufficient to control the integral over $[0, N^L]$. For the tiny η regime, $\eta \in [0, N^{-L}]$, we need

Theorem [Rudelson-Vershynin'14] There exists positive constants c > 0 and $C < \infty$, s.t.

$$\mathbb{P}\left(\min_{i} |\lambda_{i}(H_{w})| \leq \frac{t}{|w|}\right) \leq \left(\frac{t}{|w|}\right)^{c} N^{C}.$$

The above provides an upper bound for $\text{Im}_{\mu_{H_w}}(i\eta) \leq \frac{\eta}{\min_i |\lambda_i(H_w)|^2 + \eta^2}$ when $\eta \to 0$.

We still need an upper bound of $\text{Im}_{\mu_{S,|w|}}(i\eta)$ for small η .

0 is in the bulk of $\mu_{S,|w|}$

Consequence To derive the bulk local law of the non-Hermitian matrix, one only needs the bulk local law for the Hermitian matrix, since

$$\Big|\int_{N^{-L}}^{N^{L}} \mathrm{Im}\Big(m_{\mu_{H_{w}}}(\mathrm{i}\eta) - m_{\mu_{S,|w|}}(\mathrm{i}\eta)\Big) \mathrm{d}\eta\Big| \prec \int_{N^{-L}}^{N^{L}} \frac{1}{N\eta} \mathrm{d}\eta \prec \frac{1}{N}$$

Block additive model

Write

$$A = -\begin{pmatrix} & w \\ & w^* & \end{pmatrix}, \qquad B \coloneqq \begin{pmatrix} & S \\ & S & \end{pmatrix}, \qquad \mathcal{U} \coloneqq \begin{pmatrix} & U & \\ & & V \end{pmatrix}$$

With the above notation

$$H_w = \begin{pmatrix} X - w \\ X^* - w^* \end{pmatrix} = \begin{pmatrix} USV^* - w \\ VSU^* - w^* \end{pmatrix} = A + \mathcal{U}B\mathcal{U}^*.$$

Observe that $\mu_A = \delta^{\text{sym}}_{|w|}$, $\mu_B = \mu^{\text{sym}}_S$.

Our aim

Prove the local law for block additive model with parameter $z = 0 + i\eta$.

Two ingredients

- Stability of SCE at $z = \mathbf{0} + i\eta$
- Approximate SCE for block additive model

Local stability in the bulk

Recall

$$egin{aligned} m_{A\boxplus B}(z) &\coloneqq m_A(\omega_B(z)) = m_B(\omega_A(z)), \ &-[m_A(\omega_B(z))]^{-1} = \omega_A(z) + \omega_B(z) - z \end{aligned}$$

Write it as $\Phi_{\mu_A,\mu_B}(\omega_A(z),\omega_B(z),z)$ = 0 with

$$\Phi_{\mu_A,\mu_B}(\omega_1,\omega_2,z) \coloneqq \begin{pmatrix} -[m_A(\omega_2)]^{-1} - \omega_1 - \omega_2 + z \\ -[m_B(\omega_1)]^{-1} - \omega_1 - \omega_2 + z \end{pmatrix}$$

and prove a stability result [B.-Erdős-Schnelli '15], i.e., if

$$\Phi_{\mu_A,\mu_B}(\omega_A^c(z),\omega_B^c(z),z)=\mathbf{r}(z),$$

and $|\omega^c_{A/B}(z)-\omega_{A/B}(z)|\leqslant\delta$, then

$$|\omega_{A/B}^c(z)-\omega_{A/B}(z)|\leqslant C\|\mathbf{r}(z)\|_{2}$$

if $\operatorname{Re} z \in \operatorname{bulk}$ of $\mu_A \boxplus \mu_B$ and $\operatorname{Im} z \geq 0$.

Approximate SCE for block additive model

Green function:
$$G(z) \coloneqq (H_w - z)^{-1}$$
, note

$$m_{\mu_{H_w}}(z) = \frac{1}{N} \sum \frac{1}{\lambda_i(H_w) - z} = \operatorname{tr} G(z) = \frac{1}{N} \sum G_{ii}(z).$$
Approximate subordination functions

$$\omega_A^c(z) \coloneqq z - \frac{\operatorname{tr} AG(z)}{m_{\mu_{H_w}(z)}}, \qquad \omega_B^c(z) \coloneqq z - \frac{\operatorname{tr} \mathcal{U} B\mathcal{U}^*G(z)}{m_{\mu_{H_w}(z)}}.$$

From $(A + UBU^* - z)G = I$, we have

$$-[m_{\mu_{H_w}(z)}]^{-1} = \omega_A^c(z) + \omega_B^c(z) - z.$$

Our aim: Show that

$$\left|m_{\mu_{H_w}(z)} - m_A(\omega_B^c(z))\right| \prec \frac{1}{N\eta}, \qquad \left|m_{\mu_{H_w}(z)} - m_B(\omega_A^c(z))\right| \prec \frac{1}{N\eta}.$$

Two steps for approximate SCE

Step 1 Green function subordination (entrywise local law)

$$\max_{i} \left| \left(G(z) - G_A(\omega_B^c(z)) \right)_{ii} \right| \prec \frac{1}{\sqrt{N\eta}}$$

Step 2 Fluctuation averaging (average improves the bound)

$$\left|m_{\mu_{H_w}(z)} - m_A(\omega_B^c(z))\right| \prec \frac{1}{N\eta}$$

Remark Proof is similar to the local law of additive model [B-Erdős-Schnelli '17], but with new difficulties: no full Haar unitary for block model, uniform control on the parameter w, etc.

We briefly explain the approach with the simpler additive model $A + UBU^*$.

Step 1: Green function subordination

Non-optimal way: Using the full randomness of U at one time

Full expectation $\mathbb{E}[G_{ii}]$ + Gromov-Milman Concentration for $G_{ii} - \mathbb{E}[G_{ii}]$

G.-M.:
$$\mathbb{P}(|f(U) - \mathbb{E}[f(U)]| \leq \delta) \geq 1 - \exp(-c\frac{N\delta^2}{\mathcal{L}_f^2}), \qquad \mathcal{L}_f$$
: Lip.

E.g.
$$f(U) = G_{ii}$$
: $\mathcal{L}_f = 1/\eta^2 \Longrightarrow \delta \gg 1/\sqrt{N\eta^4} \Longrightarrow \eta \gg N^{-\frac{1}{4}}$

Optimal way: Separating some partial randomness \mathbf{u}_i from U

Partial expectation $\mathbb{E}_{\mathbf{u}_i}[G_{ii}]$ + Concentration for $G_{ii} - \mathbb{E}_{\mathbf{u}_i}[G_{ii}]$

Remark: In general, to identify $\mathbb{E}[\cdot]$ is easier than $\mathbb{E}_{\mathbf{u}_i}[\cdot]$, to estimate $(\mathrm{Id} - \mathbb{E})[\cdot]$ is harder than $(\mathrm{Id} - \mathbb{E}_{\mathbf{u}_i})[\cdot]$.

Householder reflection as partial randomness

 $\begin{array}{|c|c|c|c|c|} \textbf{Proposition} & [\text{Diaconis-Shahshahani '87}] \ U : \ \text{Haar on } \mathcal{U}(N), \\ & U = -e^{i\theta_1} (I - \mathbf{r}_1 \mathbf{r}_1^*) \begin{pmatrix} 1 \\ & U_1 \end{pmatrix}, \qquad \mathbf{r}_1 \coloneqq \sqrt{2} \frac{\mathbf{e}_1 + e^{-i\theta_1} \mathbf{u}_1}{\|\mathbf{e}_1 + e^{-i\theta_1} \mathbf{u}_1\|_2} \\ & \mathbf{u}_1 \in \mathcal{S}_{\mathbb{C}}^{N-1} \colon \text{uniform}, \quad U_1 \in \mathcal{U}(N-1) \colon \text{Haar}, \quad \mathbf{u}_1, \ U_1 \text{ independent}. \end{array}$

Remark 1 Analogously, we have independent pair \mathbf{u}_i and U_i for all i. Actually, $-e^{i\theta_i}(I - \mathbf{r}_i \mathbf{r}_i^*)$ is the Householder reflection sending \mathbf{e}_i to \mathbf{u}_i . Actually, \mathbf{u}_i is the *i*-th column of U.

Remark 2 Independence between \mathbf{u}_i and U^i enables us to work on the partial expectation $\mathbb{E}_{\mathbf{u}_i}[G_{ii}]$ and the concentration of $G_{ii} - \mathbb{E}_{\mathbf{u}_i}[G_{ii}]$.

Step 2: Fluctuation averaging

We use a method inspired by [Khorunzhy-Khoruzhenko-Pastur '96]. Let \mathcal{P}_i be certain variant of $G_{ii} - (G_A(\omega_B^c))_{ii}$ and let

$$\mathfrak{m}^{(k,\ell)} = \left(\frac{1}{N}\sum \mathcal{P}_i\right)^k \left(\frac{1}{N}\sum \overline{\mathcal{P}}_i\right)^\ell.$$

Claim: (Recursive moment estimate) For all $k \ge 2$, we have

$$\mathbb{E}\left[\mathfrak{m}^{(k,k)}\right] = \mathbb{E}\left[O_{\prec}\left(\frac{1}{N\eta}\right)\mathfrak{m}^{(k-1,k)}\right] + \mathbb{E}\left[O_{\prec}\left(\frac{1}{(N\eta)^2}\right)\mathfrak{m}^{(k-2,k)}\right] + \mathbb{E}\left[O_{\prec}\left(\frac{1}{(N\eta)^2}\right)\mathfrak{m}^{(k-1,k-1)}\right].$$

Then using Young or Hölder, we get, for any k,

$$\mathbb{E}[\mathfrak{m}^{(k,k)}] \prec \frac{1}{(N\eta)^{2k}}$$

which will lead to the fluctuation averaging estimate by Markov.

Proof of recursive moment estimate

The proof of the recursive moment estimate again relies on the partial randomness decomposition. Write $\mathbf{u}_i = (u_{ij})$. Roughly, we can write

$$\mathbb{E}[\mathfrak{m}^{(k,k)}] = \frac{1}{N} \sum_{i,j} \mathbb{E}\left[\overline{u}_{ij}h_{ij}(U,U^*)\mathfrak{m}^{(k-1,k)}\right] - \mathbb{E}\left[\mathfrak{cm}^{(k-1,k)}\right]$$
$$= \frac{1}{N} \sum_{i,j} \mathbb{E}\left[\overline{u}_{ij}h_{ij}(U,U^*)\left(\frac{1}{N}\sum \mathcal{P}_i\right)^{k-1}\left(\frac{1}{N}\sum \overline{\mathcal{P}}_i\right)^k\right] - \mathbb{E}\left[\mathfrak{cm}^{(k-1,k)}\right]$$

Observe that $u_{ij} \approx N_{\mathbb{C}}(0, \frac{1}{N})$. Using the integration by parts

$$\int_{\mathbb{C}} \overline{g} f(g, \overline{g}) e^{-\frac{|g|^2}{\sigma^2}} dg \wedge d\overline{g} = \sigma^2 \int_{\mathbb{C}} \partial_g f(g, \overline{g}) e^{-\frac{|g|^2}{\sigma^2}} dg \wedge d\overline{g}.$$

Taking derivative w.r.t. u_{ij} for $h_{ij}(U, U^*)$, $\left(\frac{1}{N}\sum \mathcal{P}_i\right)^{k-1}$ and $\left(\frac{1}{N}\sum \overline{\mathcal{P}}_i\right)^k$ gives

$$\mathbb{E}[\mathfrak{m}^{(k,k)}] = \mathbb{E}[\delta_1 \mathfrak{m}^{(k-1,k)}] + \mathbb{E}[\delta_2 \mathfrak{m}^{(k-2,k)}] + \mathbb{E}[\delta_3 \mathfrak{m}^{(k-1,k-1)}].$$

Estimating δ_i 's gives the answer.

THANK YOU!