Local single ring theorem

Zhigang Bao
Hong Kong University of Science and Technology

Random matrices and their applications,
Kyoto university, May 21-25 2018

Joint with László Erdős and Kevin Schnelli

Eigenvalues vs Singular values

Horn's question:

Given a generic non-Hermitian square matrix $X \in M_{N}(\mathbb{C})$, what is the relationship between its eigenvalues and singular values?

EVs: $\quad \lambda_{1}(X), \lambda_{2}(X), \ldots, \lambda_{N}(X), \quad$ descending in magnitude
SVs (EVs of $\left.\sqrt{X X^{*}}\right)$: $\quad s_{1}(X), s_{2}(X), \ldots, s_{N}(X), \quad$ descending

Answer: [Weyl's inequalities]

For any $X \in M_{N}(\mathbb{C})$ and any $1 \leqslant k \leqslant N$

$$
\prod_{\ell=1}^{k}\left|\lambda_{\ell}(X)\right| \leqslant \prod_{\ell=1}^{k} s_{\ell}(X)
$$

and equality holds when $k=N$ (both sides are $|\operatorname{det}(X)|)$.

A randomized question

Random X with given SVs

$$
\begin{array}{ll}
& X=U S V^{*} \\
S=\operatorname{diag}\left(s_{1}, \ldots, s_{N}\right) \text { is given, } \quad & U, V \text { independent Haar unitary. }
\end{array}
$$

Question Is there any typical behavior of the set of EVs given the set of the SVs, if one selects U and V uniformly?

Distribution of N numbers: the empirical measure

Empirical spectral distribution: For any $X \in M_{N}(\mathbb{C})$, Borel set $\mathcal{D} \subset \mathbb{C}$,

$$
\mu_{X}=\frac{1}{N} \sum_{i} \delta_{\lambda_{i}(X)}, \quad \text { i.e. } \quad \mu_{X}(\mathcal{D})=\frac{\left|\left\{i: \lambda_{i}(X) \in \mathcal{D}\right\}\right|}{N}
$$

Specifically, we are interested in the weak limit of the measure μ_{X}, whose definition involves free additive convolution.

Stieltjes transform

Definition: For any probab. measure μ on \mathbb{R}, its Stieltjes transform $m_{\mu}(z)$ is

$$
m_{\mu}(z)=\int \frac{1}{\lambda-z} \mathrm{~d} \mu(\lambda), \quad z \in \mathbb{C}^{+}
$$

Inverse formula: one to one correspondence between measure and its Stieltjes transform: density of μ given by

$$
\rho(E)=\frac{1}{\pi} \lim _{\eta \downarrow 0} \operatorname{Im} m_{\mu}(E+\mathrm{i} \eta) .
$$

Notation: For μ_{A} and μ_{B}, we use $\mu_{A} \boxplus \mu_{B}$ to denote their free additive convolution, and use $m_{\mu_{A}}(z), m_{\mu_{B}}(z)$ and $m_{\mu_{A} \boxplus \mu_{B}}(z)$ to denote their Stieltjes transforms.

Free convolution via subordination

Definition via subordination functions [Voiculescu '93, Biane '98, BelinschiBercovici '07, Chistyakov-Götze '11]

There exist unique analytic $\omega_{A}, \omega_{B}: \mathbb{C}^{+} \rightarrow \mathbb{C}^{+}$, s.t. $\operatorname{Im} \omega_{k}(z) \geqslant \operatorname{Im} z$ and $\lim _{\eta \uparrow \infty} \frac{\omega_{k}(i \eta)}{i \eta}=1$ for $k=A, B$, such that

$$
\begin{equation*}
m_{\mu_{A} \boxplus \mu_{B}}(z):=\quad m_{\mu_{A}}\left(\omega_{B}(z)\right)=m_{\mu_{B}}\left(\omega_{A}(z)\right), \tag{*}
\end{equation*}
$$

$$
-\left[m_{\mu_{A}}\left(\omega_{B}(z)\right)\right]^{-1}=\omega_{A}(z)+\omega_{B}(z)-z
$$

- $\omega_{A}(z), \omega_{B}(z)$: subordination functions
- (*): self-consistent equation (SCE)

Another definition R-transform [Voiculescu '86]

Additive model

Let $A=A_{N}$ and $B=B_{N}$ be two deterministic Hermitian matrices with ESD μ_{A} and μ_{B}. Let U be Haar unitary matrix.

Theorem [Voiculescu '91] Let $H=A+U B U^{*}$ and $\mu_{H}:=\frac{1}{N} \sum \delta_{\lambda_{i}(H)}$. Under certain mild conditions, $\mu_{H} \Rightarrow \mu_{A} \boxplus \mu_{B}$ almost surely, as $N \rightarrow \infty$.

Other proofs [Speicher'93, Biane'98, Collins'03, Pastur-Vasilchuk'00]

Remark Voiculescu's result identifies the law of the sum of two large Hermitian matrices in a randomly chosen relative basis.

Examples

semicircle \boxplus semicircle

semicircle \boxplus Bernoulli

$=$

Bernoulli \boxplus Bernoulli

three point masses \boxplus three point masses

Bulk regime where the density is bounded below and above.

Single ring theorem

Random X with given SVs $\quad X=U S V^{*}, \quad U, V$ indept Haar
Empirical Singular value distribution $\quad \mu_{S}:=\frac{1}{N} \sum \delta_{s_{i}(X)} \Rightarrow \mu_{\infty}$
Brown measure (associated with μ_{∞}) : denoted by ν_{∞}, given by

$$
\mathrm{d} \nu_{\infty}(w)=\frac{1}{2 \pi} \Delta_{w}\left(\int_{\mathbb{R}} \log |u| \mu_{\infty,|w|}(\mathrm{d} u)\right) \mathrm{d} w \wedge \mathrm{~d} \bar{w}, \quad w \in \mathbb{C}
$$

Here Δ_{w} is the Laplacian w.r.t. $\operatorname{Re}(w)$ and $\operatorname{Im}(w)$, and

$$
\mu_{\infty,|w|}:=\mu_{\infty}^{\text {sym }} \boxplus \delta_{|w|}^{\text {sym }},
$$

where $\mu^{\text {sym }}(I)=(\mu(I)+\mu(-I)) / 2$.

Single ring theorem [Guionnet-Krishnapur-Zeitouni '11] Under several technical assumptions, $\mu_{X}=\frac{1}{N} \sum_{i} \delta_{\lambda_{i}(X)}$ converges weakly (in probab.) to the Brown measure ν_{∞}. In addition, the support of ν_{∞} is a single ring on \mathbb{C}, with the inner radius $r_{-}:=\left[\int x^{-2} \mathrm{~d} \mu_{\infty}(x)\right]^{-\frac{1}{2}}$ and outer radius $r_{+}:=\left[\int x^{2} \mathrm{~d} \mu_{\infty}(x)\right]^{\frac{1}{2}}$

Remarks

Remark 1 Single ring theorem was discovered in [Feinberg-Zee '97], for a special class of non-Hermitian matrices, without full rigor.

Remark 2 In [Guionnet-Krishnapur-Zeitouni '11], there are several hard-tocheck assumptions. One of them on the smallest singular value of $X-z, z \in \mathbb{C}$ was removed in [Rudelson-Vershynin '14].

Remark 3 The Brown measure ν_{∞} was previously analyzed in [HaagerupLarsen '00]

Non-asymptotic counterpart of ν_{∞}

Replacing μ_{∞} by μ_{S}, we define the non-asymptotic counterpart of ν_{∞}

$$
\mathrm{d} \nu_{S}(w):=\frac{1}{2 \pi} \Delta_{w}\left(\int_{\mathbb{R}} \log |u| \mu_{S,|w|}(\mathrm{d} u)\right) \mathrm{d} w \wedge \mathrm{~d} \bar{w}, \quad w \in \mathbb{C}
$$

where $\mu_{S,|w|}=\mu_{S}^{\text {sym }} \boxplus \delta_{|w|}^{\text {sym }}$.

Remark Write $\mu_{X}-\nu_{\infty}=\left(\mu_{X}-\nu_{S}\right)+\left(\nu_{S}-\nu_{\infty}\right)$. For convergence speed of μ_{X}, it would be more appropriate to work with $\mu_{X}-\nu_{S}$ since $\nu_{S} \Rightarrow \nu_{\infty}$ can be arbitrarily slow.

Example

$$
\mu_{S}:=\frac{1}{2} \delta_{1}+\frac{1}{2} \delta_{2}
$$

inner radius:

$$
r_{-}:=\left[\int x^{-2} \mathrm{~d} \mu_{S}(x)\right]^{-\frac{1}{2}}
$$

outer radius:
$r_{+}:=\left[\int x^{2} \mathrm{~d} \mu_{S}(x)\right]^{\frac{1}{2}}$

Properties

1: ν_{S} possesses a radially-symmetric density.
2: The support of ν_{S} is a single ring.

Special cases

Circular Unitary Ensemble
X: Haar Unitary Matrix

$$
\mu_{S}=\delta_{1}
$$

Ginibre Ensemble
X : i.i.d. Gaussian matrix

$$
\mu_{S}(\mathrm{~d} x) \approx \frac{1}{\pi} \sqrt{4-x^{2}} \mathbf{1}_{(0,2)}(x) \mathrm{d} x
$$

Our question: Local law

Global law For any fixed continuity set $\mathcal{D} \subset \mathbb{C}$ of ν_{S},

$$
\begin{equation*}
\frac{\mu_{X}(\mathcal{D})-\nu_{S}(\mathcal{D})}{|\mathcal{D}|} \stackrel{\mathrm{P}}{\Rightarrow} 0 \tag{*}
\end{equation*}
$$

Our question (local law) Does the convergence still hold if $|\mathcal{D}|=o(1)$, and how small can $|\mathcal{D}|$ be?

Remark Global law cannot exclude the existence of big hole or eigenvalue clustering on a scale of $o(1)$, but local law can.

Remark Actually, the LHS of $(*)$ is bounded by $\frac{1}{N|\mathcal{D}|}$ for all $|\mathcal{D}| \gg \frac{1}{N}$, which implies a convergence rate $\frac{1}{N}$.

Local single ring theorem (bulk)

Local single ring theorem (bulk) [B.- Erdős-Schnelli '16] Suppose $\|S\| \sim$ 1 and $\mu_{S} \Rightarrow \mu_{\infty}$ is not one point mass. Let $\left|w_{0}\right| \in\left[r_{-}+\tau, r_{+}-\tau\right]$ for some small $\tau>0$. Let $f: \mathbb{C} \rightarrow \mathbb{R}$ be compactly supported, smooth, s.t $\|f\|_{\infty} \leqslant C$, $\left\|f^{\prime}\right\|_{\infty} \leqslant N^{C}$. Then for $\alpha \in(0,1 / 2]$, we have

$$
N^{2 \alpha}\left|\int_{\mathbb{C}} f\left(N^{\alpha}\left(w-w_{0}\right)\right)\left[\mu_{X}(\mathrm{~d} w)-\nu_{S}(\mathrm{~d} w)\right]\right|<N^{-1+2 \alpha}\|\Delta f\|_{L^{1}(\mathbb{C})}
$$

Remark If $f(x) \approx \mathbf{1}(x \in \widetilde{\mathcal{D}})$, then $f\left(N^{\alpha}\left(w-w_{0}\right)\right) \approx \mathbf{1}\left(w \in w_{0}+N^{-\alpha} \widetilde{\mathcal{D}}\right)=: \mathbf{1}(w \in \mathcal{D})$.

Previous work [Benaych-Georges '15] $\left(|\mathcal{D}| \geqslant(\log N)^{-1 / 2}\right)$.

Notation $A<B:|A| \leqslant N^{\varepsilon}|B|$ with high probability for any given $\varepsilon>0$.

Related work: Local circular law

Ginibre ensemble can be extended by considering i.i.d. entries (no unitary invariance). Global/local circular laws have been widely studied.

Global [Ginibre '65] (complex Gaussian), [Girko '84] (independent entries, without full rigor), [Bai '97] (i.i.d., bounded density), [Tao-Vu, '10] (i.i.d., second moment).....

Local [Bourgade-Yau-Yin '14], [Yin '14], [Tao-Vu '15](bulk/edge local laws, optimal scale)

Method (of Bourgade-Yau-Yin):
Girko's Hermitization + Local law for Hermitian matrix

Girko's Hermitization

Logarithmic potential

$$
\mathcal{P}_{\mu}(w):=-\int_{\mathbb{C}} \log |\lambda-w| \mu(\mathrm{d} \lambda)
$$

Example 1

$$
\begin{aligned}
& \mathcal{P}_{\mu_{X}}(w)=-\frac{1}{N} \sum_{i} \log \left|\lambda_{i}(X)-w\right|=-\frac{1}{N} \log \operatorname{det}|X-w| \\
& =-\frac{1}{2 N} \log \operatorname{det}\left|(X-w)(X-w)^{*}\right|=:-\frac{1}{2 N} \log \operatorname{det}\left|H_{w}\right|
\end{aligned}
$$

where

$$
H_{w}=\left(\begin{array}{ll}
& X-w \\
X^{*}-w^{*} &
\end{array}\right)
$$

Example 2

$$
\begin{aligned}
\left.\mathcal{P}_{\nu_{S}}(w)=-\frac{1}{2 \pi} \int_{\mathbb{C}} \log \right\rvert\, \lambda & -w \mid \Delta_{\lambda}\left(\int_{\mathbb{R}} \log |u| \mu_{S,|\lambda|}(\mathrm{d} u)\right) \mathrm{d} \lambda \wedge \mathrm{~d} \bar{\lambda} \\
& =-\int_{\mathbb{R}} \log |u| \mu_{S,|w|}(\mathrm{d} u)
\end{aligned}
$$

Reduction to log determinant

A fact For any smooth and compactly supported $F: \mathbb{C} \rightarrow \mathbb{R}$

$$
2 \pi \int_{\mathbb{C}} F(\lambda) \mu(\mathrm{d} \lambda)=-\int_{\mathbb{C}} \Delta_{w} F(w) \cdot \mathcal{P}_{\mu}(w) \mathrm{d} w \wedge \mathrm{~d} \bar{w}
$$

since $2 \pi F(\lambda)=\int_{\mathbb{C}} \Delta_{w} F(w) \log |w-\lambda| \mathrm{d} w \wedge \mathrm{~d} \bar{w}$.

Consequence For (local) single ring theorem, it suffices to estimate

$$
\left|\mathcal{P}_{\mu_{X}}(w)-\mathcal{P}_{\nu_{S}}(w)\right|=\left|\frac{1}{2 N} \log \operatorname{det}\right| H_{w}\left|-\int_{\mathbb{R}} \log \right| u\left|\mu_{S,|w|}(\mathrm{d} u)\right|
$$

Task For optimal local single ring theorem, one needs

$$
\left|\frac{1}{2 N} \log \operatorname{det}\right| H_{w}\left|-\int_{\mathbb{R}} \log \right| u\left|\mu_{S,|w|}(\mathrm{d} u)\right|<\frac{1}{N}
$$

Remark For global law, an $o(1)$ bound will be sufficient.

Reduction to Stieltjes transform

ESD of $H_{w}: \mu_{H_{w}}=\frac{1}{2 N} \sum_{i=1}^{2 N} \delta_{\lambda_{i}\left(H_{w}\right)}$

We can rewrite

$$
\left|\frac{1}{2 N} \log \operatorname{det}\right| H_{w}\left|-\int_{\mathbb{R}} \log \right| u\left|\mu_{S,|w|}(\mathrm{d} u)\right|=\left|\int_{\mathbb{R}} \log \right| u\left|\mathrm{~d}\left(\mu_{H_{w}}-\mu_{S,|w|}\right)\right|
$$

A basic equation (used in [Tao-Vu '15])

$$
\int_{\mathbb{R}} \log |u| \mu(\mathrm{d} u)=\int_{\mathbb{R}} \log |u-\mathrm{i} K| \mu(\mathrm{d} u)-\int_{0}^{K} \operatorname{Im} m_{\mu}(\mathrm{i} \eta) \mathrm{d} \eta
$$

Choosing $K=N^{L}$,

$$
\int_{\mathbb{R}} \log |u-\mathrm{i} K| \mathrm{d}\left(\mu_{H_{w}}-\mu_{S,|w|}\right) \ll \frac{1}{N}
$$

Further task

$$
\left|\int_{0}^{N^{L}} \operatorname{Im}\left(m_{\mu_{H_{w}}}(\mathrm{i} \eta)-m_{\mu_{S,|w|}}(\mathrm{i} \eta)\right) \mathrm{d} \eta\right|<\frac{1}{N} .
$$

Local law for Stieltjes transform

Theorem [B.-Erdős-Schnelli '16] : Suppose that $|w| \in\left[r_{-}+\tau, r_{+}-\tau\right]$ for some small $\tau>0$, we have the following uniformly in $\eta>0$

$$
\left|\operatorname{Im}\left(m_{\mu_{H_{w}}}(\mathrm{i} \eta)-m_{\mu_{S,|w|}}(\mathrm{i} \eta)\right)\right|<\frac{1}{N \eta}
$$

The above is not sufficient to control the integral over $\left[0, N^{L}\right]$. For the tiny η regime, $\eta \in\left[0, N^{-L}\right]$, we need

Theorem [Rudelson-Vershynin'14] There exists positive constants $c>0$ and $C<\infty$, s.t.

$$
\mathbb{P}\left(\min _{i}\left|\lambda_{i}\left(H_{w}\right)\right| \leqslant \frac{t}{|w|}\right) \leqslant\left(\frac{t}{|w|}\right)^{c} N^{C} .
$$

The above provides an upper bound for $\operatorname{Im} m_{\mu_{H_{w}}}(\mathrm{i} \eta) \leqslant \frac{\eta}{\min _{i}\left|\lambda_{i}\left(H_{w}\right)\right|^{2}+\eta^{2}}$ when $\eta \rightarrow 0$. We still need an upper bound of $\operatorname{Im} m_{\mu_{S,|w|}}(i \eta)$ for small η.

0 is in the bulk of $\mu_{S,|w|}$

Theorem [B.-Erdős-Schnelli '16] : Let $J=\left[r_{-}+\tau, r_{+}-\tau\right]$ for any given (small) $\tau>0$. For $\mu_{S,|w|}:=\mu_{S}^{\text {sym }} \boxplus \delta_{|w|}^{\text {sym }}$, we have

Consequently, 0 is in the bulk of $\mu_{S,|w|}$.

Consequence To derive the bulk local law of the non-Hermitian matrix, one only needs the bulk local law for the Hermitian matrix, since

$$
\left|\int_{N^{-L}}^{N^{L}} \operatorname{Im}\left(m_{\mu_{H w}}(\mathrm{i} \eta)-m_{\mu_{S,|w|}}(\mathrm{i} \eta)\right) \mathrm{d} \eta\right|<\int_{N^{-L}}^{N^{L}} \frac{1}{N \eta} \mathrm{~d} \eta<\frac{1}{N} .
$$

Block additive model

Write

$$
A=-\left(\begin{array}{cc}
& w \\
w^{*} &
\end{array}\right), \quad B:=\left(\begin{array}{cc}
& S \\
S &
\end{array}\right), \quad \mathcal{U}:=\left(\begin{array}{ll}
U & \\
& V
\end{array}\right)
$$

With the above notation

$$
H_{w}=\left(\begin{array}{rr}
& X-w \\
X^{*}-w^{*} &
\end{array}\right)=\left(\begin{array}{ll}
& U S V^{*}-w \\
V S U^{*}-w^{*} &
\end{array}\right)=A+\mathcal{U} B \mathcal{U}^{*}
$$

Observe that $\mu_{A}=\delta_{|w|}^{\text {sym }}, \mu_{B}=\mu_{S}^{\text {sym }}$.

Our aim

Prove the local law for block additive model with parameter $z=0+\mathrm{i} \eta$.

Two ingredients

- Stability of SCE at $z=0+\mathrm{i} \eta$
- Approximate SCE for block additive model

Local stability in the bulk

Recall

$$
\begin{aligned}
m_{A \boxplus B}(z) & :=\quad m_{A}\left(\omega_{B}(z)\right)=m_{B}\left(\omega_{A}(z)\right), \\
& -\left[m_{A}\left(\omega_{B}(z)\right)\right]^{-1}=\omega_{A}(z)+\omega_{B}(z)-z .
\end{aligned}
$$

Write it as $\Phi_{\mu_{A}, \mu_{B}}\left(\omega_{A}(z), \omega_{B}(z), z\right)=0$ with

$$
\Phi_{\mu_{A}, \mu_{B}}\left(\omega_{1}, \omega_{2}, z\right):=\binom{-\left[m_{A}\left(\omega_{2}\right)\right]^{-1}-\omega_{1}-\omega_{2}+z}{-\left[m_{B}\left(\omega_{1}\right)\right]^{-1}-\omega_{1}-\omega_{2}+z}
$$

and prove a stability result [B.-Erdős-Schnelli '15], i.e., if

$$
\Phi_{\mu_{A}, \mu_{B}}\left(\omega_{A}^{c}(z), \omega_{B}^{c}(z), z\right)=\mathbf{r}(z)
$$

and $\left|\omega_{A / B}^{c}(z)-\omega_{A / B}(z)\right| \leqslant \delta$, then

$$
\left|\omega_{A / B}^{c}(z)-\omega_{A / B}(z)\right| \leqslant C\|\mathbf{r}(z)\|
$$

if Rez bulk of $\mu_{A} \boxplus \mu_{B}$ and $\operatorname{Im} z \geqslant 0$.

Approximate SCE for block additive model

Green function: $G(z):=\left(H_{w}-z\right)^{-1}$, note

$$
m_{\mu_{H w}}(z)=\frac{1}{N} \sum \frac{1}{\lambda_{i}\left(H_{w}\right)-z}=\operatorname{tr} G(z)=\frac{1}{N} \sum G_{i i}(z) .
$$

Approximate subordination functions

$$
\omega_{A}^{c}(z):=z-\frac{\operatorname{tr} A G(z)}{m_{\mu_{H}}(z)}, \quad \omega_{B}^{c}(z):=z-\frac{\operatorname{tr} \mathcal{U} B \mathcal{U}^{*} G(z)}{m_{\mu_{H_{w}}(z)}} .
$$

From $\left(A+U B U^{*}-z\right) G=I$, we have

$$
-\left[m_{\mu_{H_{w}}(z)}\right]^{-1}=\omega_{A}^{c}(z)+\omega_{B}^{c}(z)-z .
$$

Our aim: Show that

$$
\left|m_{\mu_{H_{w}}(z)}-m_{A}\left(\omega_{B}^{c}(z)\right)\right|<\frac{1}{N \eta}, \quad\left|m_{\mu_{H_{w}}(z)}-m_{B}\left(\omega_{A}^{c}(z)\right)\right|<\frac{1}{N \eta} .
$$

Two steps for approximate SCE

Step 1 Green function subordination (entrywise local law)

$$
\max _{i}\left|\left(G(z)-G_{A}\left(\omega_{B}^{c}(z)\right)\right)_{i i}\right|<\frac{1}{\sqrt{N \eta}}
$$

Step 2 Fluctuation averaging (average improves the bound)

$$
\left|m_{\mu_{H w}(z)}-m_{A}\left(\omega_{B}^{c}(z)\right)\right|<\frac{1}{N \eta}
$$

Remark Proof is similar to the local law of additive model [B-Erdős-Schnelli '17], but with new difficulties: no full Haar unitary for block model, uniform control on the parameter w, etc.

We briefly explain the approach with the simpler additive model $A+U B U^{*}$.

Step 1: Green function subordination

Non-optimal way: Using the full randomness of U at one time
Full expectation $\mathbb{E}\left[G_{i i}\right]+$ Gromov-Milman Concentration for $G_{i i}-\mathbb{E}\left[G_{i i}\right]$

$$
\text { G.-M.: } \quad \mathbb{P}(|f(U)-\mathbb{E}[f(U)]| \leqslant \delta) \geqslant 1-\exp \left(-c \frac{N \delta^{2}}{\mathcal{L}_{f}^{2}}\right), \quad \mathcal{L}_{f}: \text { Lip. }
$$

E.g. $f(U)=G_{i i}$: $\quad \mathcal{L}_{f}=1 / \eta^{2} \Longrightarrow \delta \gg 1 / \sqrt{N \eta^{4}} \Longrightarrow \eta \gg N^{-\frac{1}{4}}$

Optimal way: Separating some partial randomness \mathbf{u}_{i} from U
Partial expectation $\mathbb{E}_{\mathbf{u}_{i}}\left[G_{i i}\right]+$ Concentration for $G_{i i}-\mathbb{E}_{\mathbf{u}_{i}}\left[G_{i i}\right]$

Remark: In general, to identify $\mathbb{E}[\cdot]$ is easier than $\mathbb{E}_{\mathbf{u}_{i}}[\cdot]$, to estimate $(\mathrm{Id}-\mathbb{E})[\cdot]$
is harder than $\left(\mathrm{Id}-\mathbb{E}_{\mathbf{u}_{i}}\right)[\cdot]$.

Householder reflection as partial randomness

Proposition [Diaconis-Shahshahani '87] U : Haar on $\mathcal{U}(N)$,

$$
U=-\mathrm{e}^{\mathrm{i} \theta_{1}}\left(I-\mathbf{r}_{1} \mathbf{r}_{1}^{*}\right)\left(\begin{array}{cc}
1 & \\
& U_{1}
\end{array}\right), \quad \mathbf{r}_{1}:=\sqrt{2} \frac{\mathbf{e}_{1}+\mathrm{e}^{-\mathrm{i} \theta_{1}} \mathbf{u}_{1}}{\left\|\mathbf{e}_{1}+\mathrm{e}^{-\mathrm{i} \theta_{1}} \mathbf{u}_{1}\right\|_{2}}
$$

$\mathbf{u}_{1} \in \mathcal{S}_{\mathbb{C}}^{N-1}:$ uniform, $U_{1} \in \mathcal{U}(N-1)$: Haar, \mathbf{u}_{1}, U_{1} independent.

Remark 1 Analogously, we have independent pair \mathbf{u}_{i} and U_{i} for all i. Actually, $-\mathrm{e}^{\mathrm{i} \theta_{i}}\left(I-\mathbf{r}_{i} \mathbf{r}_{i}^{*}\right)$ is the Householder reflection sending \mathbf{e}_{i} to \mathbf{u}_{i}. Actually, \mathbf{u}_{i} is the i-th column of U.

Remark 2 Independence between \mathbf{u}_{i} and U^{i} enables us to work on the partial expectation $\mathbb{E}_{\mathbf{u}_{i}}\left[G_{i i}\right]$ and the concentration of $G_{i i}-\mathbb{E}_{\mathbf{u}_{i}}\left[G_{i i}\right]$.

Step 2: Fluctuation averaging

We use a method inspired by [Khorunzhy-Khoruzhenko-Pastur '96]. Let \mathcal{P}_{i} be certain variant of $G_{i i}-\left(G_{A}\left(\omega_{B}^{c}\right)\right)_{i i}$ and let

$$
\mathfrak{m}^{(k, \ell)}=\left(\frac{1}{N} \sum \mathcal{P}_{i}\right)^{k}\left(\frac{1}{N} \sum \overline{\mathcal{P}}_{i}\right)^{\ell}
$$

Claim: (Recursive moment estimate) For all $k \geqslant 2$, we have

$$
\mathbb{E}\left[\mathfrak{m}^{(k, k)}\right]=\mathbb{E}\left[O_{\prec}\left(\frac{1}{N \eta}\right) \mathfrak{m}^{(k-1, k)}\right]+\mathbb{E}\left[O_{<}\left(\frac{1}{(N \eta)^{2}}\right) \mathfrak{m}^{(k-2, k)}\right]+\mathbb{E}\left[O_{<}\left(\frac{1}{(N \eta)^{2}}\right) \mathfrak{m}^{(k-1, k-1)}\right] .
$$

Then using Young or Hölder, we get, for any k,

$$
\mathbb{E}\left[\mathfrak{m}^{(k, k)}\right]<\frac{1}{(N \eta)^{2 k}}
$$

which will lead to the fluctuation averaging estimate by Markov.

Proof of recursive moment estimate

The proof of the recursive moment estimate again relies on the partial randomness decomposition. Write $\mathbf{u}_{i}=\left(u_{i j}\right)$. Roughly, we can write

$$
\begin{aligned}
\mathbb{E}\left[\mathfrak{m}^{(k, k)}\right] & =\frac{1}{N} \sum_{i, j} \mathbb{E}\left[\bar{u}_{i j} h_{i j}\left(U, U^{*}\right) \mathfrak{m}^{(k-1, k)}\right]-\mathbb{E}\left[\mathfrak{c m}^{(k-1, k)}\right] \\
& =\frac{1}{N} \sum_{i, j} \mathbb{E}\left[\bar{u}_{i j} h_{i j}\left(U, U^{*}\right)\left(\frac{1}{N} \sum \mathcal{P}_{i}\right)^{k-1}\left(\frac{1}{N} \sum \overline{\mathcal{P}}_{i}\right)^{k}\right]-\mathbb{E}\left[\mathfrak{c m}^{(k-1, k)}\right]
\end{aligned}
$$

Observe that $u_{i j} \approx N_{\mathbb{C}}\left(0, \frac{1}{N}\right)$. Using the integration by parts

$$
\int_{\mathbb{C}} \bar{g} f(g, \bar{g}) \mathrm{e}^{-\frac{|g|^{2}}{\sigma^{2}}} \mathrm{~d} g \wedge \mathrm{~d} \bar{g}=\sigma^{2} \int_{\mathbb{C}} \partial_{g} f(g, \bar{g}) \mathrm{e}^{-\frac{|g|^{2}}{\sigma^{2}}} \mathrm{~d} g \wedge \mathrm{~d} \bar{g}
$$

Taking derivative w.r.t. $u_{i j}$ for $h_{i j}\left(U, U^{*}\right),\left(\frac{1}{N} \sum \mathcal{P}_{i}\right)^{k-1}$ and $\left(\frac{1}{N} \sum \overline{\mathcal{P}}_{i}\right)^{k}$ gives

$$
\mathbb{E}\left[\mathfrak{m}^{(k, k)}\right]=\mathbb{E}\left[\delta_{1} \mathfrak{m}^{(k-1, k)}\right]+\mathbb{E}\left[\delta_{2} \mathfrak{m}^{(k-2, k)}\right]+\mathbb{E}\left[\delta_{3} \mathfrak{m}^{(k-1, k-1)}\right]
$$

Estimating δ_{i} 's gives the answer.

THANK YOU!

