Dunkl jump processes: relaxation and a phase transition

Sergio Andraus and Makoto Katori

Department of Physics, Faculty of Science and Engineering, Chuo University

Random matrices and their applications Kyoto University, 2018-05-22 Dunkl processes are generalizations of multidimensional Brownian motion obtained through the use of differential-difference operators (Dunkl operators) to construct the infinitesimal generator (Dunkl Laplacian). They are associated to root systems, and have discontinuities.

- Continuous part: radial Dunkl processes.
 - A_{N-1} : Dyson model ($\beta > 0$)
 - $B_{\rm N}$: Wishart-Laguerre processes / interacting Bessel processes (β > 0, ν > -1/2)
- Discontinuous part: Dunkl Jump processes

Example: process of type A_{N-1}

Figure: Sample of the Dunkl process of type A_{N-1} and its jump count for N = 10, $\beta = 8$. The horizontal lines represent jumps.

S. Andraus, M. Katori (Chuo U.)

Dunkl jump processes

Problems we study

- Dunkl jump process
 - $\bullet \ \ \mathsf{Dynamics} \to \mathsf{master} \ \mathsf{equation}$
 - $\bullet~\mbox{Relaxation} \rightarrow \mbox{behavior}$ at long times and convergence to equilibrium

• Jump counting process

- Long-time behavior and jump rate
- Phase transition in the bulk scaling limit (t \sim N) for the processes of type A_{N-1} and B_N at $\beta_c=1$

For details, please come see the poster!