Statistics of the real roots of real random polynomials

G. Schehr

Laboratoire de Physique Théorique et Modèles Statistiques
Orsay, Université Paris XI

Optimal and random point configurations
IHP, June 27- July 1st

Real random polynomials

\[P_n(x) = \sum_{i=0}^{n} a_i x^i \]

\[a_i \equiv \text{ind. random variables}, \quad \mathbb{E}(a_i) = 0, \quad \mathbb{E}(a_i a_j) = \sigma_i^2 \delta_{ij} \]

\[P_n(\lambda_i) = 0, \quad \lambda_1, \ldots, \lambda_d \in \mathbb{R} \]
Real random polynomials

\[P_n(x) = \sum_{i=0}^{n} a_i x^i \]

\(a_i \equiv \text{ind. random variables,} \)

\[\mathbb{E}(a_i) = 0, \mathbb{E}(a_i a_j) = \sigma_i^2 \delta_{ij} \]

\[P_n(\lambda_i) = 0, \lambda_1, \cdots, \lambda_d \in \mathbb{R} \]

General question: statistics of \(\lambda_i \)'s ?
Bloch, Pólya, *On the roots of certain algebraic equations* (1932),

Littlewood, Offord, *On the number of real roots of a random algebraic equation* (1939),

Kac, *On the average number of real roots of a random algebraic equation*, (1943),

Edelman, Kostlan, *How many zeros of random polynomials are real?* (1999),
Bloch, Pólya, *On the roots of certain algebraic equations* (1932),

Littlewood, Offord, *On the number of real roots of a random algebraic equation* (1939),

Kac, *On the average number of real roots of a random algebraic equation*, (1943),

Bogomolny, Bohigas, Leboeuf, *Quantum chaotic dynamics and random polynomials*, (1992),

Edelman, Kostlan, *How many zeros of random polynomials are real?* (1999),

Introduction: topics of this talk

Real random polynomials

\[P_n(x) = \sum_{i=0}^{n} a_i x^i \]

\[a_i \equiv \text{ind. random variables,} \]

\[\mathbb{E}(a_i) = 0, \mathbb{E}(a_i a_j) = \sigma_i^2 \delta_{ij} \]

How many zeros of \(P_n(x) \) are real?

Condensation of the roots of \(P_n(x) \) on the real axis

Random polynomials having few or no real roots

Probability of no real root and first-passage problems of stochastic processes

G. Schehr (LPTMS Orsay)
Introduction: topics of this talk

Real random polynomials

\[P_n(x) = \sum_{i=0}^{n} a_i x^i \]

\[a_i \equiv \text{ind. random variables,} \]

\[\mathbb{E}(a_i) = 0, \quad \mathbb{E}(a_i a_j) = \sigma_i^2 \delta_{ij} \]

1. How many zeros of \(P_n \) are real?
Introduction: topics of this talk

Real random polynomials

\[P_n(x) = \sum_{i=0}^{n} a_i x^i \]

\[a_i \equiv \text{ind. random variables,} \]
\[\mathbb{E}(a_i) = 0, \mathbb{E}(a_i a_j) = \sigma_i^2 \delta_{ij} \]

1. How many zeros of \(P_n \) are real?

Condensation of the roots of \(P_n \) on the real axis
Introduction: topics of this talk

Real random polynomials

\[P_n(x) = \sum_{i=0}^{n} a_i x^i \]

\[a_i \equiv \text{ind. random variables, } \]

\[\mathbb{E}(a_i) = 0, \mathbb{E}(a_i a_j) = \sigma_i^2 \delta_{ij} \]

1. How many zeros of \(P_n \) are real?

Condensation of the roots of \(P_n \) on the real axis

2. Random polynomials having few or no real roots
Real random polynomials

\[P_n(x) = \sum_{i=0}^{n} a_i x^i \]

\[a_i \equiv \text{ind. random variables,} \]
\[\mathbb{E}(a_i) = 0, \quad \mathbb{E}(a_i a_j) = \sigma_i^2 \delta_{ij} \]

1. How many zeros of \(P_n \) are real?

Condensation of the roots of \(P_n \) on the real axis

2. Random polynomials having few or no real roots

Probability of no real root and first-passage problems of stochastic processes
Outline

1. Condensation of the roots of random polynomials on the real axis
 - Motivations: Kac’s polynomials and beyond
 - Condensation transition
 - Derivation of the results

2. Polynomials having few real roots
 - Motivation: roots of Kac’s random polynomials
 - First passage problems and persistence
 - Derivation: mapping to a Gaussian Stationary Process

3. Conclusion
1. Condensation of the roots of random polynomials on the real axis
 - Motivations: Kac’s polynomials and beyond
 - Condensation transition
 - Derivation of the results

2. Polynomials having few real roots
 - Motivation: roots of Kac’s random polynomials
 - First passage problems and persistence
 - Derivation: mapping to a Gaussian Stationary Process

3. Conclusion
Motivations: Kac’s polynomials

Real Kac’s polynomials

\[K_n(x) = \sum_{i=0}^{n} a_i x^i \]

\(a_i \equiv \text{Gaussian random variables,} \quad \mathbb{E}(a_i) = 0, \quad \mathbb{E}(a_i a_j) = \sigma^2 \delta_{ij} \)
Motivations: Kac’s polynomials

Real Kac’s polynomials

$$K_n(x) = \sum_{i=0}^{n} a_i x^i$$

$$a_i \equiv \text{Gaussian random variables,} \quad \mathbb{E}(a_i) = 0, \quad \mathbb{E}(a_i a_j) = \sigma^2 \delta_{ij}$$

Complex roots
Motivations: Kac’s polynomials

Real Kac’s polynomials

\[K_n(x) = \sum_{i=0}^{n} a_i x^i \]

\[a_i \equiv \text{Gaussian random variables,} \]
\[\mathbb{E}(a_i) = 0, \quad \mathbb{E}(a_i a_j) = \sigma^2 \delta_{ij} \]

Complex roots

Real roots

\[\mathbb{E}(N_n) \equiv \text{average number of roots on the real axis} \]
\[\mathbb{E}(N_n) = \frac{2}{\pi} \log n + \mathcal{O}(1) \]

G. Schehr (LPTMS Orsay)
Motivations: Kac’s polynomials

Real Kac’s polynomials

\[K_n(x) = \sum_{i=0}^{n} a_i x^i \]

\[a_i \equiv \text{Gaussian random variables,} \quad \mathbb{E}(a_i) = 0, \quad \mathbb{E}(a_i a_j) = \sigma^2 \delta_{ij} \]

Complex roots

\[\mathbb{E}(N_n) \equiv \text{average number of roots on the real axis} \]

\[\mathbb{E}(N_n) \sim \frac{2}{\pi} \log n \ll n \]

Real roots

M. Kac ’43
Motivations: Kac’s polynomials

Real Kac’s polynomials

\[K_n(x) = \sum_{i=0}^{n} a_i x^i \]

\[a_i \equiv \text{Gaussian random variables, } \mathbb{E}(a_i) = 0, \mathbb{E}(a_i a_j) = \sigma^2 \delta_{ij} \]

Complex roots

Real roots

\[\mathbb{E}(N_n) \equiv \text{average number of roots on the real axis} \]

\[\mathbb{E}(N_n) \sim \frac{2}{\pi} \log n \ll n \]

Q: how can one increase \(\mathbb{E}(N_n) \) by modifying \(\mathbb{E}(a_i^2) \)?
Beyond Kac’s polynomials

Weyl polynomials

\[
W_n(x) = \sum_{i=0}^{n} a_i x^i
\]

\[a_i \equiv \text{independent random variables},\]
\[\mathbb{E}(a_i) = 0, \quad \mathbb{E}(a_i a_j) = \sigma_i^2 \delta_{ij}, \quad \sigma_i = \frac{1}{\sqrt{i!}}\]

Complex roots

\[\sim \sqrt{n}\]

Real roots

\[\mathbb{E}(N_n) = \frac{2}{\pi} \sqrt{n} + o(\sqrt{n})\]
Beyond Kac’s polynomials

Littlewood & Offord’s random polynomials

\[L_n(x) = \sum_{i=0}^{n} a_i x^i \]

\[a_i = \frac{\epsilon_i}{\sqrt{(i!)^i}}, \epsilon_i = \pm 1 \]

\[\mathbb{E}(a_i) = 0, \mathbb{E}(a_i a_j) = \frac{1}{(i!)^j} \delta_{ij} \]
Beyond Kac's polynomials

Littlewood & Offord’s random polynomials

\[L_n(x) = \sum_{i=0}^{n} a_i x^i \]

\[a_i = \frac{\epsilon_i}{\sqrt{(i!)^i}} , \quad \epsilon_i = \pm 1 \]

\[\mathbb{E}(a_i) = 0, \quad \mathbb{E}(a_i a_j) = \frac{1}{(i!)^j} \delta_{ij} \]

* All roots are real with probability one: \(N_n = \mathbb{E}(N_n) = n \)

* (Quasi)-periodic structure:

\[x_0 = 0 , \quad x_m = m^m m! , \quad m \leq n \]

one root in \([x_{m-1}, x_m]\) or in \([-x_{m-1}, -x_m]\) with probability one
Kac’s polynomials and beyond

1. Kac polynomials

\[K_n(x) = \sum_{i=0}^{n} a_i x^i, \quad \mathbb{E}(a_i^2) = \sigma^2 \implies \mathbb{E}(N_n) \propto \log n \]

2. Weyl polynomials

\[W_n(x) = \sum_{i=0}^{n} a_i x^i, \quad \mathbb{E}(a_i^2) = (i!)^{-1} \implies \mathbb{E}(N_n) \propto \sqrt{n} \]

3. Littlewood-Offord polynomials

\[L_n(x) = \sum_{i=0}^{n} a_i x^i, \quad \mathbb{E}(a_i^2) = (i!)^{-i} \implies \mathbb{E}(N_n) \propto n \]
Kac’s polynomials and beyond

1. Kac polynomials: $K_n(x) = \sum_{i=0}^{n} a_i x^i$, $\mathbb{E}(a_i^2) \sim e^{-i^0}$
 $\mathbb{E}(N_n) \propto \log n$

2. Weyl polynomials: $W_n(x) = \sum_{i=0}^{n} a_i x^i$, $\mathbb{E}(a_i^2) \sim e^{-i \ln i}$
 $\mathbb{E}(N_n) \propto \sqrt{n}$

3. Littlewood-Offord polynomials: $L_n(x) = \sum_{i=0}^{n} a_i x^i$, $\mathbb{E}(a_i^2) \sim e^{-i^2 \ln i}$
 $\mathbb{E}(N_n) \propto n$
Kac’s polynomials and beyond

1. **Kac polynomials**:
 \[K_n(x) = \sum_{i=0}^{n} a_i x^i, \quad \mathbb{E}(a_i^2) \sim e^{-i^0} \]
 \[\mathbb{E}(N_n) \propto \log n \]

2. **Weyl polynomials**:
 \[W_n(x) = \sum_{i=0}^{n} a_i x^i, \quad \mathbb{E}(a_i^2) \sim e^{-i \ln i} \]
 \[\mathbb{E}(N_n) \propto \sqrt{n} \]

3. **Littlewood-Offord polynomials**:
 \[L_n(x) = \sum_{i=0}^{n} a_i x^i, \quad \mathbb{E}(a_i^2) \sim e^{-i^2 \ln i} \]
 \[\mathbb{E}(N_n) \propto n \]

A family of random polynomials indexed by \(\alpha \)

\[P_n(x) = \sum_{i=0}^{n} a_i x^i, \quad \mathbb{E}(a_i^2) = e^{-i^\alpha} \]
1. Condensation of the roots of random polynomials on the real axis
 - Motivations: Kac’s polynomials and beyond
 - Condensation transition
 - Derivation of the results

2. Polynomials having few real roots
 - Motivation: roots of Kac’s random polynomials
 - First passage problems and persistence
 - Derivation: mapping to a Gaussian Stationary Process

3. Conclusion
A family of random polynomials indexed by α

$$P_n(x) = \sum_{i=0}^{n} a_i x^i, \quad \mathbb{E}(a_i^2) = e^{-i\alpha}$$

$$\langle N_n \rangle \sim \log n \quad \langle N_n \rangle \sim n^{\alpha/2} \quad \langle N_n \rangle \sim n$$

Kac \quad Weyl \quad Littlewood-Offord
Condensation transition: the density

A change of variable:

\[Y = \left(\frac{2}{\alpha} \ln x \right)^{\frac{1}{\alpha-1}} \]
Condensation transition: the density

- A change of variable:

\[Y = \left(\frac{2}{\alpha} \ln x \right)^{\frac{1}{\alpha-1}} \]

\[\langle N_n \rangle \sim \log n \]
\[\langle N_n \rangle \sim n^{\alpha/2} \]
\[\langle N_n \rangle \sim n \]

\(0\) \quad \text{Kac} \quad \text{Weyl} \quad \text{Littlewood-Offord} \quad \alpha
Condensation transition: the density

- A change of variable:
 \[Y = \left(\frac{2}{\alpha} \ln x \right) \frac{1}{\alpha - 1} \]

- The density \(\hat{\rho}_n(Y) \) across the transition

\[\langle N_n \rangle \sim \log n \quad \langle N_n \rangle \sim n^{\alpha/2} \quad \langle N_n \rangle \sim n \]

\[0 \quad 1 \quad 2 \quad \alpha \]

Kac \quad Weyl \quad Littlewood-Offord

\[1 < \alpha < 2 \]
\[\alpha = 2 \]
\[\alpha > 2 \]
Outline

1. Condensation of the roots of random polynomials on the real axis
 - Motivations: Kac’s polynomials and beyond
 - Condensation transition
 - Derivation of the results

2. Polynomials having few real roots
 - Motivation: roots of Kac’s random polynomials
 - First passage problems and persistence
 - Derivation: mapping to a Gaussian Stationary Process

3. Conclusion
\begin{align*}
P_n(\lambda_i) &= 0, \quad \lambda_1, \cdots, \lambda_d \in \mathbb{R} \\
\rho_n(x) &= \sum_{i=1}^{d} \mathbb{E}[\delta(x - \lambda_i)]
\end{align*}
Average density of real roots

\[P_n(\lambda_i) = 0, \lambda_1, \cdots, \lambda_d \in \mathbb{R} \]

\[\rho_n(x) = \sum_{i=1}^{d} \mathbb{E}[\delta(x - \lambda_i)] = \mathbb{E}[|P_n'(x)| \delta(P_n(x))] \]
Average density of real roots

\[P_n(\lambda_i) = 0 , \lambda_1, \cdots , \lambda_d \in \mathbb{R} \]

\[\rho_n(x) = \sum_{i=1}^{d} \mathbb{E}[\delta(x - \lambda_i)] = \mathbb{E}[|P'_n(x)| \delta(P_n(x))] \]

\[= \int_{-\infty}^{\infty} dy |y| \mathbb{E}[\delta(P'_n(x) - y) \delta(P_n(x))] \]
Average density of real roots

\[P_n(\lambda_i) = 0, \quad \lambda_1, \cdots, \lambda_d \in \mathbb{R} \]

\[\rho_n(x) = \sum_{i=1}^{d} \mathbb{E}[\delta(x - \lambda_i)] = \mathbb{E}[|P_n'(x)| \delta(P_n(x))] \]

\[= \int_{-\infty}^{\infty} dy |y| \mathbb{E}[\delta(P_n'(x) - y) \delta(P_n(x))] \]

After some algebra...

\[\rho_n(x) = \frac{\sqrt{c_n(x)(c_n'(x)/x + c_n''(x))} - [c_n'(x)]^2}{2\pi c_n(x)} , \]

\[c_n(x) = \mathbb{E}[P_n(x)P_n(x)] = \sum_{k=0}^{n} e^{-k\alpha} x^{2k} \]
Average density of real roots

- Saddle point calculation

\[\rho_n(x) = \frac{\sqrt{c_n(x)(c_n'(x)/x + c_n''(x)) - [c_n'(x)]^2}}{2\pi c_n(x)}, \]

\[c_n(x) = \mathbb{E}[P_n(x)P_n(x)] = \sum_{k=0}^{n} e^{-k^\alpha} x^{2k} = \sum_{k=0}^{n} \exp[-\phi(k, x)] \]

\[\phi(u, x) = u^\alpha - 2u \ln x \]
Average density of real roots

- Saddle point calculation

\[
\rho_n(x) = \frac{\sqrt{c_n(x)(c'_n(x)/x + c''_n(x)) - [c'_n(x)]^2}}{2\pi c_n(x)},
\]

\[
c_n(x) = \mathbb{E}[P_n(x)P_n(x)] = \sum_{k=0}^{n} e^{-k\alpha} x^{2k} = \sum_{k=0}^{n} \exp[-\phi(k, x)]
\]

\[
\phi(u, x) = u^{\alpha} - 2u \ln x \quad \sim \exp[-\phi(u^*(x), x)]
\]

where \(\partial_u \phi(u^*(x), x) = 0 \)
Average density of real roots

- **Saddle point calculation**

\[
\rho_n(x) = \frac{\sqrt{c_n(x)(c'_n(x)/x + c''_n(x)) - [c'_n(x)]^2}}{2\pi c_n(x)},
\]

\[
c_n(x) = \mathbb{E}[P_n(x)P_n(x)] = \sum_{k=0}^n e^{-k\alpha} x^{2k} = \sum_{k=0}^n \exp[-\phi(k, x)]
\]

\[
\phi(u, x) = u^\alpha - 2u \ln x \quad \simeq \:\exp[-\phi(u^*(x), x)]
\]

where \(\partial_u \phi(u^*(x), x) = 0\)

- **3 different cases depending on \(\alpha\)**

1. \(\alpha < 1\): \(u^*(x) = n\)
2. \(1 < \alpha < 2\): \(u^*(x) < n\) \& \(\partial_u^2 \phi(u^*(x), x) \to 0, \: x \to \infty\)
3. \(\alpha > 2\): \(u^*(x) < n\) \& \(\partial_u^2 \phi(u^*(x), x) \to \infty, \: x \to \infty\)
Condensation transition: to summarize

- A change of variable:
 \[Y = \left(\frac{2}{\alpha} \ln x \right) \left(\frac{1}{\alpha-1} \right) = u^*(x) \]

- The density \(\hat{\rho}_n(Y) \) across the transition

\[\langle N_n \rangle \sim \log n \quad \langle N_n \rangle \sim n^{\alpha/2} \quad \langle N_n \rangle \sim n \]

\[\alpha \]

\[1 < \alpha < 2 \]

\[\alpha = 2 \]

\[\alpha > 2 \]
1. Condensation of the roots of random polynomials on the real axis
 - Motivations: Kac’s polynomials and beyond
 - Condensation transition
 - Derivation of the results

2. Polynomials having few real roots
 - Motivation: roots of Kac’s random polynomials
 - First passage problems and persistence
 - Derivation: mapping to a Gaussian Stationary Process

3. Conclusion
Motivations: Real random polynomials

Real Kac’s polynomials

\[K_n(x) = \sum_{i=0}^{n-1} a_i x^i \]

\[a_i \equiv \text{Gaussian random variables,} \]

\[\mathbb{E}(a_i) = 0, \mathbb{E}(a_i a_j) = \delta_{ij} \]
Motivations: Real random polynomials

Real Kac’s polynomials

\[K_n(x) = \sum_{i=0}^{n-1} a_i x^i \]

\[a_i \equiv \text{Gaussian random variables, } \mathbb{E}(a_i) = 0, \mathbb{E}(a_i a_j) = \delta_{ij} \]

Complex roots

![Diagram of complex roots](image.png)
Motivations : Real random polynomials

Real Kac’s polynomials

\[K_n(x) = \sum_{i=0}^{n-1} a_i x^i \]

\[a_i \equiv \text{Gaussian random variables,} \]

\[\mathbb{E}(a_i) = 0, \quad \mathbb{E}(a_i a_j) = \delta_{ij} \]

Real roots

\[\mathbb{E}(N_n) \equiv \text{mean number of roots on the real axis} \]

M. Kac ’43

\[\mathbb{E}(N_n) \sim \frac{2}{\pi} \log n \]
Motivations: **Real roots** of Kac's polynomials

\[
q_0(n) \equiv \text{Probability that } K_n(x) \text{ has no real root in } [0, 1]
\]

\[
q_0(n) \propto n^{-\gamma}
\]

with \(\gamma = 0.19(1) \) \hspace{1cm} \text{(Numerics)}
Outline

1. Condensation of the roots of random polynomials on the real axis
 - Motivations: Kac’s polynomials and beyond
 - Condensation transition
 - Derivation of the results

2. Polynomials having few real roots
 - Motivation: roots of Kac’s random polynomials
 - First passage problems and persistence
 - Derivation: mapping to a Gaussian Stationary Process

3. Conclusion
Persistence probability $p_0(t)$

- $X(t) \equiv$ stochastic random variable evolving in time t, $\mathbb{E}[X(t)] = 0$
- Persistence probability

 $p_0(t) \equiv$ Proba. that X has not changed sign up to time t
Persistence probability $p_0(t)$

- $X(t) \equiv$ stochastic random variable evolving in time t, $\mathbb{E}[X(t)] = 0$
- Persistence probability

 $p_0(t) \equiv$ Proba. that X has not changed sign up to time t

Persistence in *spatially extended systems*

- phase ordering kinetics
Introduction: Phase ordering kinetics

- Glauber dynamics of 2d Ising model at $T = 0$, $H_{\text{Ising}} = -J \sum_{\langle i,j \rangle} \sigma_i \sigma_j$ with $\sigma_j = \pm 1$

$$t_1 = 0$$
Introduction: Phase ordering kinetics

- Glauber dynamics of 2d Ising model at $T = 0$, $H_{\text{Ising}} = -J \sum_{\langle i, j \rangle} \sigma_i \sigma_j$ with $\sigma_i, \sigma_j = \pm 1$

$t_1 = 0$

$t_2 = 10^2$
Introduction: Phase ordering kinetics

- Glauber dynamics of 2d Ising model at $T = 0$, $H_{\text{Ising}} = -J \sum_{\langle i,j \rangle} \sigma_i \sigma_j$, $\sigma_j = \pm 1$

$t_1 = 0$

$t_2 = 10^2$

$t_3 = 10^4$
Introduction: Phase ordering kinetics

- Glauber dynamics of 2d Ising model at \(T = 0 \),
 \[
 H_{\text{Ising}} = -J \sum_{\langle i,j \rangle} \sigma_i \sigma_j \\
 \sigma_j = \pm 1
 \]

\(t_1 = 0 \)

\(t_2 = 10^2 \)

\(t_3 = 10^4 \)

\(t_4 = 10^6 \)
Introduction

Persistence probability $p_0(t)$

- $X(t) \equiv$ stochastic random variable evolving in time t, $\mathbb{E}[X(t)] = 0$
- Persistence probability

 $p_0(t) \equiv$ Proba. that X has not changed sign up to time t

Persistence in spatially extended systems

- phase ordering kinetics ('94-)

G. Schehr (LPTMS Orsay)
Persistence probability $p_0(t)$
- $X(t) \equiv$ stochastic random variable evolving in time t, $\mathbb{E}[X(t)] = 0$
- Persistence probability

 $p_0(t) \equiv$ Proba. that X has not changed sign up to time t
Persistence probability $p_0(t)$

- $X(t) \equiv$ stochastic random variable evolving in time t, $\mathbb{E}[X(t)] = 0$
- Persistence probability

 $p_0(t) \equiv$ Proba. that X has not changed sign up to time t

Persistence in spatially extended systems

- phase ordering kinetics ('94-)
- diffusion field ('96-)
- height of a fluctuating interface ('97-)
- ...
Introduction

Persistence probability $p_0(t)$
- $X(t) \equiv$ stochastic random variable evolving in time t, $\mathbb{E}[X(t)] = 0$
- Persistence probability $p_0(t) \equiv$ Proba. that X has not changed sign up to time t

Persistence in spatially extended systems
- phase ordering kinetics ('94-)
- diffusion field ('96-)
- height of a fluctuating interface ('97-)
- ...

$p_0(t) \propto t^{-\theta_p}$

“Persistence and First-Passage Properties in Non-equilibrium Systems”
Motivations: persistence for the diffusion equation

Diffusion equation with random initial conditions

\[\partial_t \phi(x, t) = \nabla^2 \phi(x, t) \]
\[\mathbb{E}(\phi(x, 0)\phi(x', 0)) = \delta^d(x - x') \]
Motivations: persistence for the diffusion equation

Diffusion equation with random initial conditions

\[\partial_t \phi(x, t) = \nabla^2 \phi(x, t) \]
\[\mathbb{E}(\phi(x, 0)\phi(x', 0)) = \delta^d(x - x') \]

- Diffusion equation (or heat equation) is universal and ubiquitous in nature
- Ordering dynamics for $O(N)$-symmetric spin models in the limit $N \to \infty$
- see A. Dembo, S. Mukherjee, Ann. Probab. 15
Motivations: persistence for the diffusion equation

Diffusion equation with random initial conditions

\[\partial_t \phi(x, t) = \nabla^2 \phi(x, t) \]
\[\mathbb{E}(\phi(x, 0)\phi(x', 0)) = \delta^d(x - x') \]

Single length scale
\[\ell(t) \propto t^{1/2} \]

- Diffusion equation (or heat equation) is universal and ubiquitous in nature
- Ordering dynamics for \(O(N) \)-symmetric spin models in the limit \(N \to \infty \)
- see A. Dembo, S. Mukherjee, Ann. Probab. 15
Motivations: persistence for the diffusion equation

Diffusion equation with random initial conditions

\[\partial_t \phi(x, t) = \nabla^2 \phi(x, t) \]

\[\mathbb{E}(\phi(x, 0)\phi(x', 0)) = \delta^d(x - x') \]

Single length scale

\[\ell(t) \propto t^{1/2} \]

Persistence \(p_0(t, L) \) for a \(d \)-dim. system of linear size \(L \)

\[p_0(t, L) \equiv \text{Proba. that } \phi(x, t) \text{ has not changed sign up to } t \]

S. N. Majumdar, C. Sire, A. J. Bray and S. J. Cornell, PRL 96

B. Derrida, V. Hakim and R. Zeitak, PRL 96
Motivations: persistence for the diffusion equation

Diffusion equation with random initial conditions

\[\partial_t \phi(x, t) = \nabla^2 \phi(x, t) \]
\[\mathbb{E}(\phi(x, 0)\phi(x', 0)) = \delta^d(x - x') \]

Single length scale \(\ell(t) \propto t^{1/2} \)

Persistence \(p_0(t, L) \) for a \(d \)-dim. system of linear size \(L \)

\[p_0(t, L) \equiv \text{Proba. that } \phi(x, t) \text{ has not changed sign up to } t \]

\[p_0(t, L) \sim t^{-\theta(d)} L^{-2\theta(d)} \]

G. Schehr (LPTMS Orsay) Real roots of real random polynomials IHP, June 27, 2016 25 / 39
Diffusion equation with random initial conditions

\[\partial_t \phi(x, t) = \nabla^2 \phi(x, t) \]
\[\mathbb{E}(\phi(x, 0) \phi(x', 0)) = \delta^d(x - x') \]

Single length scale
\[\ell(t) \propto t^{1/2} \]

Persistence \(p_0(t, L) \) for a \(d \)-dim. system of linear size \(L \)

\[p_0(t, L) \equiv \text{Proba. that } \phi(x, t) \text{ has not changed sign up to } t \]

\[p_0(t, L) \propto L^{-2\theta(d)} h(t/L^2) \]

\[\theta(1) = 0.1207 \]
\[\theta(2) = 0.1875, \quad \text{Numerics} \]
Generalized Kac’s polynomials

\[K_n(x) = a_0 + \sum_{i=1}^{n-1} a_i i^{(d-2)/4} x^i \]

\[a_i \equiv \text{Gaussian random variables, } \mathbb{E}(a_i) = 0, \mathbb{E}(a_i a_j) = \delta_{ij} \]
Generalized Kac’s polynomials

$$K_n(x) = a_0 + \sum_{i=1}^{n-1} a_i i^{(d-2)/4} x^i$$

$$a_i \equiv \text{Gaussian random variables, } \mathbb{E}(a_i) = 0, \mathbb{E}(a_i a_j) = \delta_{ij}$$

Proba. of no real root in $[0, 1]$

$$q_0(n) \propto n^{-b(d)}$$

Persistence of diffusion

$$\rho_0(t, L) \propto L^{-2\theta(d)}$$
Purpose: a link between random polynomials & diffusion equation

Generalized Kac’s polynomials

\[K_n(x) = a_0 + \sum_{i=1}^{n-1} a_i x^{(d-2)/4} \]

\[a_i \equiv \text{Gaussian random variables,} \quad \mathbb{E}(a_i) = 0, \quad \mathbb{E}(a_i a_j) = \delta_{ij} \]

Proba. of no real root in \([0, 1]\)

\[q_0(n) \propto n^{-b(d)} \]

Persistence of diffusion

\[p_0(t, L) \propto L^{-2\theta(d)} \]

\[b(d) = \theta(d) \]

G. S., S. N. Majumdar 07

G. Schehr (LPTMS Orsay)
Purpose: a link between random polynomials & diffusion equation

Generalized Kac's polynomials

\[K_n(x) = a_0 + \sum_{i=1}^{n-1} a_i i^{(d-2)/4} x^i \]

\[a_i \equiv \text{Gaussian random variables, } \mathbb{E}(a_i) = 0, \mathbb{E}(a_i a_j) = \delta_{ij} \]

Proba. of no real root in [0, 1]

\[q_0(n) \propto n^{-b(d)} \]

Persistence of diffusion

\[p_0(t, L) \propto L^{-2\theta(d)} \]

\[b(d) = \theta(d) \]

G. S., S. N. Majumdar 07
A. Dembo, S. Mukherjee 15
1. Condensation of the roots of random polynomials on the real axis
 - Motivations: Kac’s polynomials and beyond
 - Condensation transition
 - Derivation of the results

2. Polynomials having few real roots
 - Motivation: roots of Kac’s random polynomials
 - First passage problems and persistence
 - Derivation: mapping to a Gaussian Stationary Process

3. Conclusion
Persistence of diffusion equation

\[\partial_t \phi(x, t) = \nabla^2 \phi(x, t) \]

\[\mathbb{E}(\phi(x, 0)\phi(x', 0)) = \delta^d(x - x') \]

\[G(x, t) = (4\pi t)^{-\frac{d}{2}} \exp\left(-\frac{x^2}{4t}\right) \]

\[\phi(x, t) = \int_{|y|<L} d^d y G(x - y, t) \phi(y, 0) \]
Persistence of diffusion equation

\[\partial_t \phi(x, t) = \nabla^2 \phi(x, t) \]
\[\mathbb{E}(\phi(x, 0)\phi(x', 0)) = \delta^d(x - x') \]
\[\phi(x, t) = \int_{|y|<L} d^d y G(x - y, t)\phi(y, 0) \]
\[G(x, t) = (4\pi t)^{-\frac{d}{2}} \exp(-x^2/4t) \]

Mapping of \(\phi(x, t) \) to a Gaussian stationary process

1. Normalized process \(X(t) = \frac{\phi(x,t)}{[\mathbb{E}[\phi(x,t)^2]]^{1/2}} \)
\[\mathbb{E}(X(t)X(t')) \sim \begin{cases}
 \left(4\frac{tt'}{(t+t')^2}\right)^\frac{d}{4}, & t, t' \ll L^2 \\
 1, & t, t' \gg L^2
\end{cases} \]

2. New time variable \(T = \log t, \) for \(t \ll L^2 \)
\[\mathbb{E}(X(T)X(T')) = \left[\cosh((T - T')/2)\right]^{-d/2} \]
Persistence for a Gaussian stationary process (GSP)

- \(X(T) \) is a GSP with correlations

 \[
 \mathbb{E}(X(T)X(T')) = a(T - T') \\
 a(T) = (\cosh(T/2))^{-d/2}
 \]

- Persistence probability \(\mathcal{P}_0(T) \) (by Slepian's lemma)

 For \(T \gg 1 \) \(a(T) \propto \exp(-\frac{d}{2}T) \Rightarrow \mathcal{P}_0(T) \propto \exp(-\theta(d)T) \)

- Reverting back to \(t = \exp(T) \)

 \[
 p_0(t, L) \sim t^{-\theta(d)} \quad 1 \ll t \ll L^2
 \]
Persistence of diffusion equation

- Normalized process $X(t) = \frac{\phi(x,t)}{[\mathbb{E}[\phi(x,t)^2]]^{1/2}}$

\[
\mathbb{E}(X(t)X(t')) \sim \begin{cases}
\left(4\frac{tt'}{(t+t')^2}\right)^\frac{d}{4} & , \quad t, t' \ll L^2 \\
1 & , \quad t, t' \gg L^2
\end{cases}
\]
Persistence of diffusion equation

- Normalized process \(X(t) = \frac{\phi(x,t)}{[\mathbb{E}[\phi(x,t)^2]]^{1/2}} \)

\[
\mathbb{E}(X(t)X(t')) \sim \begin{cases}
(4 \frac{tt'}{(t+t')^2})^{\frac{d}{4}}, & t, t' \ll L^2 \\
1, & t, t' \gg L^2
\end{cases}
\]

\[p_0(t, L) \propto L^{-2\theta(d)} h(t/L^2) \]

\[h(u) \sim \begin{cases}
u \sim \nu^{-\theta(d)}, & \nu \ll 1 \\
u \sim c^{\text{st}}, & \nu \gg 1 \end{cases} \]
Real roots of generalized Kac’s polynomials

\[K_n(x) = a_0 + \sum_{i=1}^{n-1} a_i i^{(d-2)/4} x^i \]

Averaged density of real roots

\[\rho_n(x) = \mathbb{E}[|K_n'(x)| \delta(K_n(x))] \]

Real roots concentrate around \(x = \pm 1 \)

\[\rho_n(\pm 1) \sim A_d n \]

\[A_d = \frac{2 \sqrt{d/(d + 4)}}{\pi (d + 2)} \]
Real roots of generalized Kac’s polynomials

\[K_n(x) = a_0 + \sum_{i=1}^{n-1} a_i i^{(d-2)/4} x^i \]

Averaged density of real roots for \(n \to \infty \)

\[\rho_\infty(x) = \frac{(\text{Li}_{-1-d/2}(x^2)(1 + \text{Li}_{1-d/2}(x^2)) - \text{Li}_{-d/2}^2(x^2))^{1/2}}{\pi |x|(1 + \text{Li}_{1-d/2}(x^2))} \]
Real roots of generalized Kac’s polynomials

\[K_n(x) = a_0 + \sum_{i=1}^{n-1} a_i x^{(d-2)/4} x^i \]

Mean number of real roots in \([0, 1]\): Kac-Rice formula

\[\mathbb{E}(N_n[0, 1]) = \int_0^1 \rho_n(x) \, dx \sim \frac{1}{2\pi} \sqrt{\frac{d}{2}} \log n \]
Probability of no real root for $K_n(x)$

Dembo et al. ’02

Statistical independence of $K_n(x)$ in the 4 sub-intervals

⇒ Focus on the interval $[0, 1]$

$$P_0(x, n) \equiv \text{Proba. that } K_n(x) \text{ has no real root in } [0, x]$$
Probability of no real root for $K_n(x)$

- **Two-point correlator**

$$C_n(x, y) = \mathbb{E}(K_n(x)K_n(y)) = \sum_{i=0}^{n-1} i^{(d-2)/2} (xy)^i$$

- **Normalization**

$$C_n(x, y) = \frac{C_n(x, y)}{(C_n(x, x))^{1/2} (C_n(y, y))^{1/2}}$$

- **Change of variable**

$$x = 1 - \frac{1}{t}, \quad t \gg 1$$
Probability of no real root for $K_n(x)$

Normalized correlator in the scaling limit

Scaling limit

\[t \gg 1 \quad , \quad n \gg 1 \quad \text{keeping} \quad \tilde{t} = \frac{t}{n} \quad \text{fixed} \]

\[C_n(t, t') \rightarrow C(\tilde{t}, \tilde{t}') \quad \text{with the asymptotic behaviors} \]

\[
C(\tilde{t}, \tilde{t}') \sim \begin{cases}
\left(\frac{4 \tilde{t} \tilde{t}'}{(\tilde{t} + \tilde{t}')^2} \right)^{\frac{d}{4}} , & \tilde{t}, \tilde{t}' \ll 1 \\
1 , & \tilde{t}, \tilde{t}' \gg 1
\end{cases}
\]
Persistence of diffusion equation (reminder)

\[\partial_t \phi(x, t) = \nabla^2 \phi(x, t) \]
\[\mathbb{E}(\phi(x, 0)\phi(x', 0)) = \delta^d(x - x') \]
\[\phi(x, t) = \int d^d y G(x - y) \phi(y, 0) \]
\[G(x, t) = (4\pi t)^{-\frac{d}{2}} \exp(-x^2/4t) \]

Mapping of \(\phi(x, t) \) to a Gaussian stationary process

1. Normalized process \(X(t) = \frac{\phi(x,t)}{\langle \phi(x,t)^2 \rangle^{1/2}} \)

\[\mathbb{E}(X(t)X(t')) \sim \begin{cases}
\left(\frac{tt'}{(t+t')^2} \right)^{\frac{d}{4}}, & t, t' \ll L^2 \\
1, & t, t' \gg L^2
\end{cases} \]

2. Persistence probability \(p_0(t, L) \)

\[p_0(t, L) \propto L^{-2\theta(d)} h(t/L^2) \]
Probability of no real root for $K_n(x)$

$$C(\tilde{t}, \tilde{t}') \sim \begin{cases} \left(4\frac{\tilde{t}\tilde{t}'}{(\tilde{t}+\tilde{t}')^2}\right)^\frac{d}{4} , & \tilde{t}, \tilde{t}' \ll 1 \\ 1 , & \tilde{t}, \tilde{t}' \gg 1 \end{cases}$$

$$P_0(x, n) \equiv \text{Proba. that } K_n(x) \text{ has no real root in } [0, x]$$

Scaling form for $P_0(x, n)$

$$P_0(x, n) \propto n^{-\theta(d)}\tilde{h}(n(1 - x))$$

$$\tilde{h}(u) \sim \begin{cases} c^{st} , & u \ll 1 \\ u^{\theta(d)} , & u \gg 1 \end{cases}$$
Probability of no real root for $K_n(x)$

Scaling form for $P_0(x, n)$

$$P_0(x, n) \propto n^{-\theta(d)} \tilde{h}(n(1 - x))$$

$$\tilde{h}(u) \sim \begin{cases}
\text{cst}, & u \ll 1 \\
 u^{\theta(d)}, & u \gg 1
\end{cases}$$

$q_0(n) \equiv$ Probability that $K_n(x)$ has no real root in $[0, 1]$

$$q_0(n) = P(1, n) \sim n^{-\theta(d)}$$
Numerical check of the scaling form

Numerical computation of $P_0(x, n)$ for $d = 2$

![Graph showing $P_0(x, n)$ for different values of n. The graph plots $1-x$ on the x-axis and $P_0(x, n)$ on the y-axis.]
Numerical check of the scaling form

Numerical computation of $P_0(x, n)$ for $d = 2$

$$P_0(x, n) \propto n^{-\theta(d)} \tilde{h}(n(1 - x))$$
Conclusion

- A condensation phenomenon of the roots on the real axis
- A link between diffusion equation and random polynomials

Proba. of no real root

\[q_0(n) \propto n^{-b(d)} \]

Persistence of diffusion

\[p_0(t, L) \propto L^{-2\theta(d)} \]

\[b(d) = \theta(d) \]

1. Universality see A. Dembo, S. Mukherjee 15

2. Towards exact results for \(\theta(d) \), \(1/(4\sqrt{3}) \leq \theta(2) \leq 1/4 \)
 - G. Molchan 12
 - W. Li, Q. M. Shao 02

see also D. Zaporozhets 06
A heuristic argument

Diffusion equation

\[\phi(x = 0, t) = (4\pi t)^{-d/2} \int_{0 < |x| < L} d^d x \exp\left(-\frac{x^2}{4t}\right) \phi(x, 0) \]

\[= \frac{S_d^{1/2}}{(4\pi t)^{d/2}} \int_0^L dr \ r^{\frac{1}{2}(d-1)} e^{-\frac{r^2}{4t}} \psi(r) \]

\[\psi(r) = S_d^{-1/2} r^{-\frac{1}{2}(d-1)} \lim_{\Delta r \to 0} \frac{1}{\Delta r} \int_{r < |x| < r + \Delta r} d^d x \ \phi(x, 0) \]

\[E(\psi(r)\psi(r')) = \delta(r - r') \]
A heuristic argument

- Diffusion equation

\[\phi(x = 0, t) \propto \int_0^{L^2} du \, u \frac{d-2}{4} e^{-\frac{u}{t}} \tilde{\Psi}(u) \]

\[\mathbb{E}(\tilde{\Psi}(u)\tilde{\Psi}(u')) = \delta(u - u') \]
A heuristic argument

- Diffusion equation

\[\phi(x = 0, t) \propto \int_{0}^{L^2} du \ u^{d-2} e^{-\frac{u}{t}} \tilde{\Psi}(u) \]

\[\mathbb{E}(\tilde{\Psi}(u)\tilde{\Psi}(u')) = \delta(u - u') \]

- Random polynomials: \(K_n(x) = a_0 + \sum_{i=1}^{n} a_i x^i \)

\[K_n(1 - 1/t) \sim a_0 + \sum_{i=1}^{n} i^{d-2} e^{-\frac{i}{4 t}} a_i \]

\[\sim \int_{0}^{n} du \ u^{d-2} e^{-\frac{u}{t}} a(u) \]

\[\mathbb{E}(a(u)a(u')) = \delta(u - u') \]