Stolarsky-type identities, energy optimization, uniform tessellations, and one-bit sensing

Dmitriy Bilyk
University of Minnesota
IHP, Paris, France

Optimal and random point configurations:
From Statistical Physics to Approximation Theory

July 1, 2016
Good point distributions

- Lattices
- Energy minimization, polarization
- Monte-Carlo
- Other random point processes (jittered sampling, determinantal)
- Covering/packing problems
- Low-discrepancy sets
- Cubature formulas
- Uniform tessellation, almost isometric embeddings
Discrepancy

- U: a set with a natural probability measure μ
 (e.g., $[0, 1]^d$, S^d, \mathbb{R}^d, etc.)
Discrepancy

- U: a set with a natural probability measure μ
 (e.g., $[0, 1]^d$, S^d, \mathbb{R}^d, etc.)
- \mathcal{A} - a collection of subsets of U ("test sets", e.g., balls, cubes, convex sets, spherical caps)
• \(U \): a set with a natural probability measure \(\mu \) (e.g., \([0, 1]^d, S^d, \mathbb{R}^d\), etc.)

• \(\mathcal{A} \) - a collection of subsets of \(U \) (“test sets”, e.g., balls, cubes, convex sets, spherical caps)

• Choose an \(N \)-point set in \(Z \subset U \)

• Discrepancy of \(Z \) with respect to \(\mathcal{A} \):

\[
D_{\mathcal{A}}(Z) = \sup_{A \in \mathcal{A}} \left| \frac{\#(Z \cap A)}{N} - \mu(A) \right|.
\]
Discrepancy

- **U**: a set with a natural probability measure μ (e.g., $[0, 1]^d$, S^d, \mathbb{R}^d, etc.)
- **A**: a collection of subsets of U (“test sets”, e.g., balls, cubes, convex sets, spherical caps)
- Choose an N-point set in $Z \subset U$
- Discrepancy of Z with respect to A:

 $$D_A(Z) = \sup_{A \in A} \left| \frac{\#(Z \cap A)}{N} - \mu(A) \right|.$$

- Optimal discrepancy wrt A:

 $$D_N(A) = \inf_{\#Z=N} D_A(Z).$$
Discrepancy

- U: a set with a natural probability measure μ (e.g., $[0, 1]^d$, S^d, \mathbb{R}^d, etc.)
- \mathcal{A} - a collection of subsets of U ("test sets", e.g., balls, cubes, convex sets, spherical caps)
- Choose an N-point set in $Z \subset U$
- Discrepancy of Z with respect to \mathcal{A}:

$$D_\mathcal{A}(Z) = \sup_{A \in \mathcal{A}} \left| \frac{\#(Z \cap A)}{N} - \mu(A) \right|.$$

- Optimal discrepancy wrt \mathcal{A}:

$$D_N(\mathcal{A}) = \inf_{\#Z=N} D_\mathcal{A}(Z).$$

- sup $\rightarrow L^2$-average: L^2 discrepancy.
For $x \in \mathbb{S}^d$, $t \in [-1, 1]$ define spherical caps:

$$C(x, t) = \{y \in \mathbb{S}^d : \langle x, y \rangle \geq t \}.$$

For a finite set $Z = \{z_1, z_2, ..., z_N\} \subset \mathbb{S}^d$ define

$$D_{cap}(Z) = \sup_{x \in \mathbb{S}^d, t \in [-1, 1]} \left| \frac{\#(Z \cap C(x, t))}{N} - \sigma(C(x, t)) \right|.$$

Theorem (Beck, ’84)

There exists constants $c_d, C_d > 0$ such that

$$c_d N^{-\frac{1}{2} - \frac{1}{2d}} \leq \inf_{\#Z = N} D_{cap}(Z) \leq C_d N^{-\frac{1}{2} - \frac{1}{2d}} \sqrt{\log N}.$$
Define the spherical cap L^2 discrepancy

\[
D_{\text{cap},L^2}(Z) = \left(\int_{S^d} \int_{-1}^{1} \left| \frac{\#(Z \cap C(x, t))}{N} - \sigma(C(x, t)) \right|^2 dt \, d\sigma(x) \right)^{\frac{1}{2}}.
\]
Define the spherical cap L^2 discrepancy

$$D_{\text{cap},L^2}(Z) = \left(\int_{S^d} \int_{-1}^{1} \left| \frac{\#(Z \cap C(x,t))}{N} - \sigma(C(x,t)) \right|^2 \, dt \, d\sigma(x) \right)^{1/2}.$$

Theorem (Stolarsky invariance principle)

For any finite set $Z = \{z_1, \ldots, z_N\} \subset S^d$
Spherical caps: L^2 Stolarsky Principle

Define the spherical cap L^2 discrepancy

\[
D_{\text{cap},L^2}(Z) = \left(\int_{S^d} \int_{-1}^{1} \left| \frac{\#(Z \cap C(x,t))}{N} - \sigma(C(x,t)) \right|^2 dt \, d\sigma(x) \right)^{\frac{1}{2}}.
\]

Theorem (Stolarsky invariance principle)

For any finite set \(Z = \{ z_1, \ldots, z_N \} \subset S^d \)

\[
\frac{1}{N^2} \sum_{i,j=1}^{N} \| z_i - z_j \| + c_d \left[D_{L^2,\text{cap}} \right]^2 = \text{const}
\]

\[
= \int_{S^d} \int_{S^d} \| x - y \| \, d\sigma(x) \, d\sigma(y).
\]
Define the spherical cap \(L^2 \) discrepancy

\[
D_{cap,L^2}(Z) = \left(\int_{S^d} \int_{-1}^{1} \left| \frac{\#(Z \cap C(x,t))}{N} - \sigma(C(x,t)) \right|^2 \, dt \, d\sigma(x) \right)^{1/2}.
\]

Theorem (Stolarsky invariance principle)

For any finite set \(Z = \{z_1, \ldots, z_N\} \subset S^d *

\[
c_d \left[D_{cap,L^2}(Z) \right]^2 = \int_{S^d} \int_{S^d} \|x - y\| \, d\sigma(x) \, d\sigma(y) - \frac{1}{N^2} \sum_{i,j=1}^{N} \|z_i - z_j\|.
\]
Spherical caps: L^2 Stolarsky Principle

Define the spherical cap L^2 discrepancy

$$D_{cap,L^2}(Z) = \left(\int_{S^d} \int_{-1}^1 \left| \frac{\#(Z \cap C(x,t))}{N} - \sigma(C(x,t)) \right|^2 dt \, d\sigma(x) \right)^{\frac{1}{2}}.$$

Theorem (Stolarsky invariance principle)

For any finite set $Z = \{z_1, \ldots, z_N\} \subset S^d$

$$c_d \left[D_{cap,L^2}(Z) \right]^2 =$$

$$= \int_{S^d} \int_{S^d} \|x - y\| \, d\sigma(x) d\sigma(y) - \frac{1}{N^2} \sum_{i,j=1}^{N} \|z_i - z_j\|.$$

- Proofs: Stolarsky (’73), Brauchart, Dick (’12), DB (’16).
Define the spherical cap discrepancy of fixed height t:

$$D_{L^2, \text{cap}}(Z) := \left(\int_{S^d} \left| \frac{1}{N} \sum_{j=1}^{N} 1_{C(x,t)}(z_j) - \sigma(C(x,t)) \right|^2 \, d\sigma(x) \right)^{1/2}$$
Spherical caps: L^2 Stolarsky Principle

- Define the spherical cap discrepancy of fixed height t:

$$D_{L^2,\text{cap}}^{(t)}(Z) := \left(\int_{\mathbb{S}^d} \left| \frac{1}{N} \sum_{j=1}^{N} 1_{C(x,t)}(z_j) - \sigma(C(x,t)) \right|^2 \, d\sigma(x) \right)^{1/2}$$

-

$$\left[D_{L^2,\text{cap}}^{(t)}(Z) \right]^2 = \frac{1}{N^2} \sum_{i,j=1}^{N} \sigma(C(z_i, t) \cap C(z_j, t)) - (\sigma(C(p, t)))^2.$$
Spherical caps: L^2 Stolarsky Principle

- Define the spherical cap discrepancy of fixed height t:

$$D_{L^2, \text{cap}}^{(t)}(Z) := \left(\int_{\mathbb{S}^d} \left| \frac{1}{N} \sum_{j=1}^{N} 1_{C(x,t)}(z_j) - \sigma(C(x,t)) \right|^2 d\sigma(x) \right)^{1/2}$$

- Using this definition, we have:

$$\left[D_{L^2, \text{cap}}^{(t)}(Z) \right]^2 = \frac{1}{N^2} \sum_{i,j=1}^{N} \sigma(C(z_i,t) \cap C(z_j,t)) - (\sigma(C(p,t)))^2.$$

- Averaging over $t \in [-1, 1]$

$$\int_{-1}^{1} \sigma(C(x,t) \cap C(y,t)) \, dt = 1 - C_d \|x - y\|$$

$$\int_{-1}^{1} (\sigma(C(p,t)))^2 \, dt = 1 - C_d \int_{\mathbb{S}^d} \int_{\mathbb{S}^d} \|x - y\| \, d\sigma(x) d\sigma(y).$$
L^2 discrepancy for spherical cap discrepancy of fixed height t satisfies:

$$\left[D_{L^2, \text{cap}}^{(t)}(Z) \right]^2 = \frac{1}{N^2} \sum_{i,j=1}^{N} \sigma(C(z_i, t) \cap C(z_j, t)) - \left(\sigma(C(p, t)) \right)^2.$$
Hemisphere discrepancy

- L^2 discrepancy for spherical cap discrepancy of fixed height t satisfies:
 \[
 \left[D_{L^2,\text{cap}}^{(t)}(Z)\right]^2 = \frac{1}{N^2} \sum_{i,j=1}^{N} \sigma(C(z_i,t) \cap C(z_j,t)) - (\sigma(C(p,t)))^2.
 \]

- Taking $t = 0$ (i.e. hemispheres)
Hemisphere discrepancy

- L^2 discrepancy for spherical cap discrepancy of fixed height t satisfies:

$$\left[D_{L^2,\text{cap}}^{(t)}(Z)\right]^2 = \frac{1}{N^2} \sum_{i,j=1}^{N} \sigma(C(z_i, t) \cap C(z_j, t)) - (\sigma(C(p, t)))^2.$$

- Taking $t = 0$ (i.e. hemispheres)

Theorem (Stolarsky for hemispheres, DB '16, Skriganov '16)

$$\left[D_{L^2,\text{hem}}(Z)\right]^2 = \left[D_{L^2,\text{cap}}^{(0)}(Z)\right]^2$$

$$= \frac{1}{2} \left(\int \int_{S^d \times S^d} d(x, y) \, d\sigma(x) \, d\sigma(y) - \frac{1}{N^2} \sum_{i,j=1}^{N} d(z_i, z_j) \right).$$
\[[D_{L^2, \text{hem}}(Z)]^2 = \frac{1}{2} \left(\frac{1}{2} - \frac{1}{N^2} \sum_{i,j=1}^{N} d(z_i, z_j) \right). \]
\[[D_{L^2,\text{hem}}(Z)]^2 = \frac{1}{2} \left(\frac{1}{2} - \frac{1}{N^2} \sum_{i,j=1}^{N} d(z_i, z_j) \right) . \]

- For any \(Z = \{z_1, \ldots, z_N\} \subset S^d \)
 \[
 \frac{1}{N^2} \sum_{i,j=1}^{N} d(z_i, z_j) \leq \frac{1}{2}
 \]
Hemisphere Stolarsky: simple corollaries

\[
[D_{L^2,\text{hem}}(Z)]^2 = \frac{1}{2} \left(\frac{1}{2} - \frac{1}{N^2} \sum_{i,j=1}^{N} d(z_i, z_j) \right).
\]

- For any \(Z = \{z_1, \ldots, z_N\} \subset S^d \)

\[
\frac{1}{N^2} \sum_{i,j=1}^{N} d(z_i, z_j) \leq \frac{1}{2}
\]

- For even \(N \):

\[
\frac{1}{N^2} \sum_{i,j=1}^{N} d(z_i, z_j) = \frac{1}{2} \iff Z - \text{symmetric}.
\]
Hemisphere Stolarsky: simple corollaries

\[[D_{L^2, \text{hem}}(Z)]^2 = \frac{1}{2} \left(\frac{1}{2} - \frac{1}{N^2} \sum_{i,j=1}^{N} d(z_i, z_j) \right). \]

- For any \(Z = \{z_1, \ldots, z_N\} \subset S^d \)
 \[
 \frac{1}{N^2} \sum_{i,j=1}^{N} d(z_i, z_j) \leq \frac{1}{2}
 \]

- For even \(N \):
 \[
 \frac{1}{N^2} \sum_{i,j=1}^{N} d(z_i, z_j) = \frac{1}{2} \iff Z - \text{symmetric}.
 \]

- For odd \(N \) the maximal value is
 \[
 \frac{1}{N^2} \sum_{i,j=1}^{N} d(z_i, z_j) = \frac{1}{2} - \frac{1}{2N^2}.
 \]
Fejes-Toth ’59: $d = 1$ and conjectured for $d \geq 2$.
Sperling, ’60 (even N)
Larcher, ’61 (odd N)
Hemisphere Stolarsky for general measures

Let μ be a probability measure on \mathbb{S}^d. Define the geodesic distance energy integral

$$I_g(\mu) = \int_{\mathbb{S}^d} \int_{\mathbb{S}^d} d(x, y) \, d\mu(x) d\mu(y).$$

Then the following version of the Stolarsky principle holds:

$$\int_{\mathbb{S}^d} \left(\mu(H(x)) - \frac{1}{2} \right)^2 \, d\sigma(x) = \frac{1}{2} \cdot \left(I_g(\mu) \right).$$

For any probability measure μ:

$$I_g(\mu) \leq \frac{1}{2}.$$

$I_g(\mu) = \frac{1}{2}$ (i.e. μ is a maximizer) iff $\mu(H(x)) = \frac{1}{2}$ for σ-a.e. $x \in \mathbb{S}^d$ iff μ is symmetric, i.e. $\mu(E) = \mu(-E)$.
Let μ be a probability measure on \mathbb{S}^d. Define the geodesic distance energy integral

$$I_g(\mu) = \int_{\mathbb{S}^d} \int_{\mathbb{S}^d} d(x, y) \ d\mu(x)d\mu(y).$$

Let $H(x) = C(x, 0)$ denote the hemisphere with center at x. Then the following version of the Stolarsky principle holds:

$$\int_{\mathbb{S}^d} \left(\mu(H(x)) - \frac{1}{2} \right)^2 d\sigma(x) = \frac{1}{2} \cdot \left(\frac{1}{2} - I_g(\mu) \right).$$
Let μ be a probability measure on S^d. Define the geodesic distance energy integral

$$I_g(\mu) = \int_{S^d} \int_{S^d} d(x, y) \, d\mu(x) \, d\mu(y).$$

Let $H(x) = C(x, 0)$ denote the hemisphere with center at x. Then the following version of the Stolarsky principle holds:

$$\int_{S^d} \left(\mu(H(x)) - \frac{1}{2} \right)^2 \, d\sigma(x) = \frac{1}{2} \cdot \left(\frac{1}{2} - I_g(\mu) \right).$$

- For any probability measure μ: $I_g(\mu) \leq \frac{1}{2}$.

Hemisphere Stolarsky for general measures
Let μ be a probability measure on \mathbb{S}^d. Define the geodesic distance energy integral

$$I_g(\mu) = \int_{\mathbb{S}^d} \int_{\mathbb{S}^d} d(x, y) \, d\mu(x) d\mu(y).$$

Let $H(x) = C(x, 0)$ denote the hemisphere with center at x. Then the following version of the Stolarsky principle holds:

$$\int_{\mathbb{S}^d} \left(\mu(H(x)) - \frac{1}{2} \right)^2 \, d\sigma(x) = \frac{1}{2} \cdot \left(\frac{1}{2} - I_g(\mu) \right).$$

- For any probability measure μ: $I_g(\mu) \leq \frac{1}{2}$.
- $I_g(\mu) = \frac{1}{2}$ (i.e. μ is a maximizer) iff $\mu(H(x)) = \frac{1}{2}$ for σ-a.e. $x \in \mathbb{S}^d$.

Dmitriy Bilyk

Points on a sphere
Let μ be a probability measure on \mathbb{S}^d. Define the geodesic distance energy integral

$$I_g(\mu) = \int_{\mathbb{S}^d} \int_{\mathbb{S}^d} d(x, y) \, d\mu(x) d\mu(y).$$

Let $H(x) = C(x, 0)$ denote the hemisphere with center at x. Then the following version of the Stolarsky principle holds:

$$\int_{\mathbb{S}^d} \left(\mu(H(x)) - \frac{1}{2} \right)^2 \, d\sigma(x) = \frac{1}{2} \left(\frac{1}{2} - I_g(\mu) \right).$$

- For any probability measure μ: $I_g(\mu) \leq \frac{1}{2}$.
- $I_g(\mu) = \frac{1}{2}$ (i.e. μ is a maximizer) iff $\mu(H(x)) = \frac{1}{2}$ for σ-a.e. $x \in \mathbb{S}^d$ iff μ is symmetric, i.e. $\mu(E) = \mu(-E)$.
Let μ be a Borel probability measure on \mathbb{S}^d. Then

$$I_E(\mu) = \int_{\mathbb{S}^d} \int_{\mathbb{S}^d} \|x - y\| \, d\mu(x)d\mu(y)$$

has a unique maximizer $\mu = \sigma$ (Bjorck, ’56)
Let μ be a Borel probability measure on \mathbb{S}^d. Then

$$I_E(\mu) = \int_{\mathbb{S}^d} \int_{\mathbb{S}^d} \|x - y\| \, d\mu(x) \, d\mu(y)$$

has a unique maximizer $\mu = \sigma$ (Bjorck, ’56)

However,

$$I_g(\mu) = \int_{\mathbb{S}^d} \int_{\mathbb{S}^d} d(x, y) \, d\mu(x) \, d\mu(y)$$

is maximized by any symmetric measure μ.
Let μ be a Borel probability measure on the sphere S^d. For $\lambda > 0$ define the energy integral

$$I_\lambda = \int_{S^d} \int_{S^d} |x - y|^\lambda d\mu(x) d\mu(y)$$

Maximizers (Bjorck ’56):

- $0 < \lambda < 2$: unique maximizer is surface measure,
- $\lambda = 2$: any measure with center of mass at 0,
- $\lambda > 2$: mass $\frac{1}{2}$ at two opposite poles.
Let μ be a Borel probability measure on the sphere \mathbb{S}^d. For $\lambda > 0$ define the energy integral

$$I_\lambda = \int_{\mathbb{S}^d} \int_{\mathbb{S}^d} (d(x, y))^\lambda d\mu(x) d\mu(y)$$

Maximizers (DB, F. Dai ’16):

- $0 < \lambda < 1$: unique maximizer is σ,
- $\lambda = 1$: any symmetric measure,
- $\lambda > 1$: mass $\frac{1}{2}$ at two opposite poles.
Let μ be a Borel probability measure on the sphere S^d. For $\lambda > 0$ define the energy integral

$$I_{\lambda} = \int_{S^d} \int_{S^d} (d(x, y))^\lambda \mu(x) d\mu(y)$$

Maximizers (DB, F. Dai ’16):

- $0 < \lambda < 1$: unique maximizer is σ,
- $\lambda = 1$: any symmetric measure,
- $\lambda > 1$: mass $\frac{1}{2}$ at two opposite poles.

$d = 1$: Brauchart, Hardin, Saff, ’12
Let $x, y \in \mathbb{S}^d$.
choose a random hyperplane z^\perp, $z \in \mathbb{S}^d$.

\[P(z^\perp \text{separates } x \text{ and } y) = d(x, y), \]
where d is the normalized geodesic distance on the sphere, i.e.
\[d(x, y) = \cos^{-1} \left(\frac{\langle x, y \rangle}{\|x\| \|y\|} \right). \]
Let \(x, y \in \mathbb{S}^d \)
choose a random hyperplane \(z^\perp, z \in \mathbb{S}^d \).

Then

\[
\mathbb{P}(z^\perp \text{ separates } x \text{ and } y) = \mathbb{P}(\text{sign}(z, x) \neq \text{sign}(z, y)) = d(x, y),
\]

where \(d \) is the normalized geodesic distance on the sphere, i.e.

\[
d(x, y) = \frac{\cos^{-1}\langle x, y \rangle}{\pi}.
\]
Hamming distance

Consider a set of vectors $Z = \{z_1, z_2, \ldots, z_N\}$ on the sphere S^d. Define the Hamming distance as

$$d_H(x, y) := \frac{\#\{z_k \in Z : \text{sign}(x \cdot z_k) \neq \text{sign}(y \cdot z_k)\}}{N},$$

i.e. the proportion of hyperplanes z_k^\perp that separate x and y.

In other words,

$$d_H(x, y) = \frac{1}{2N} \cdot \|\phi_Z(x) - \phi_Z(y)\|_1,$$

where $\phi_Z : S^d \to \mathcal{H}^N = \{-1, +1\}^N \subset \mathbb{R}^N$ is given by

$$\phi_Z(x) = \{\text{sign}(x \cdot z_k)\}_{k=1}^N = \text{sign}(Zx).$$
Define

$$\Delta_Z(x, y) := d_H(x, y) - d(x, y).$$
The main question

Define
\[\Delta_Z(x, y) := d_H(x, y) - d(x, y). \]

Let \(K \subset S^d \). We say that \(Z \) induces a \(\delta \)-uniform tessellation of \(K \) if
\[\sup_{x, y \in K} |\Delta_Z(x, y)| \leq \delta. \]
Define

\[\Delta_Z(x, y) := d_H(x, y) - d(x, y). \]

Let \(K \subset S^d \). We say that \(Z \) induces a \(\delta \)-uniform tessellation of \(K \) if

\[\sup_{x, y \in K} |\Delta_Z(x, y)| \leq \delta. \]

Examples of \(K \):

- \(K = S^d \)
- \(K \) finite
- sparse vectors
Definition

Let X, Y be metric spaces. A δ-isometric embedding of X into Y (a δ-RIP map) is a map $f : X \to Y$ such that for each $x, y \in X$

$$|d_X(x, y) - d_Y(f(x), f(y))| \leq \delta.$$
Motivation: almost isometric embeddings

Definition

Let X, Y be metric spaces. A δ-isometric embedding of X into Y (a δ-RIP map) is a map $f : X \rightarrow Y$ such that for each $x, y \in X$

$$|d_X(x, y) - d_Y(f(x), f(y))| \leq \delta.$$

Z is a δ-uniform tessellation of K

iff

$$\phi_Z(x) = \{\text{sign}(x \cdot z_k)\}_{k=1}^{N} \text{sign}(Zx)$$

is a δ-RIP map from K into the Hamming cube $\mathcal{H}^{N} = \{-1, 1\}^{N}$.

Question: Given $K \subset S^d$ and $\delta > 0$, what is the smallest value of N so that K can be δ-isometrically embedded into H_N?

Prior results:

Plan, Vershynin, '13: $N = C\delta^{-6} \omega(K)^2$ random points yield a δ-uniform tessellation of K with high probability.
Motivation: almost isometric embeddings

Definition

Let X, Y be metric spaces. A δ-isometric embedding of X into Y (a δ-RIP map) is a map $f : X \rightarrow Y$ such that for each $x, y \in X$

$$|d_X(x, y) - d_Y(f(x), f(y))| \leq \delta.$$

Z is a δ-uniform tessellation of K iff

$$\phi_Z(x) = \{\text{sign}(x \cdot z_k)\}_{k=1}^{N} \text{sign}(Zx)$$

is a δ-RIP map from K into the Hamming cube $\mathcal{H}^N = \{-1, 1\}^N$.

Question: Given $K \subset S^d$ and $\delta > 0$, what is the smallest value of N so that K can be δ-isometrically embedded into \mathcal{H}^N?
Motivation: almost isometric embeddings

Definition

Let X, Y be metric spaces. A δ-isometric embedding of X into Y (a δ-RIP map) is a map $f : X \to Y$ such that for each $x, y \in X$

$$|d_X(x, y) - d_Y(f(x), f(y))| \leq \delta.$$

Z is a δ-uniform tessellation of K

iff

$\phi_Z(x) = \{\text{sign}(x \cdot z_k)\}_{k=1}^N \text{sign}(Z x)$ is a δ-RIP map from K into the Hamming cube $\mathcal{H}^N = \{-1, 1\}^N$.

Question: Given $K \subset S^d$ and $\delta > 0$, what is the smallest value of N so that K can be δ-isometrically embedded into \mathcal{H}^N?

Prior results:

Plan, Vershynin, ’13: $N = C\delta^{-6} \omega(K)^2$ random points yield a δ-uniform tessellation of K with high probability.
Motivation: cells with small diameter

Lemma

Every cell of a δ-uniform tessellation of K by hyperplanes has diameter at most δ.

Picture from Baraniuk, Foucart, Needell, Plan, Wooters

Points on a sphere
Motivation: cells with small diameter

Lemma

Every cell of a δ-uniform tessellation of K by hyperplanes has diameter at most δ.

Proof:
if x and y are in the same cell then

$$d(x, y) = |d(x, y) - d_H(x, y)| \leq \delta.$$
Motivation: one-bit compressed sensing

- Let $x \in K \subset S^{n-1} \subset \mathbb{R}^n$ represent a signal.
- $\langle x, z_k \rangle$ are linear measurements, $k = 1, \ldots, m$, $m \ll n$.

Jaques, Laska, Boufounos, Baraniuk: embeddings to Hamming cube through $\phi_Z(x) = \text{sign}(Zx)$.
Motivation: one-bit compressed sensing

- Let $x \in K \subset S^{n-1} \subset \mathbb{R}^n$ represent a signal.
- $\langle x, z_k \rangle$ are linear measurements, $k = 1, \ldots, m$, $m \ll n$.
- $\text{sign} \langle x, z_k \rangle$ are quantized linear measurements.
Motivation: one-bit compressed sensing

- Let $x \in K \subset \mathbb{S}^{n-1} \subset \mathbb{R}^n$ represent a signal.
- $\langle x, z_k \rangle$ are linear measurements, $k = 1, \ldots, m$, $m \ll n$.
- $\text{sign}\langle x, z_k \rangle$ are quantized linear measurements.
- Can one reconstruct/approximate x from these measurements?
Motivation: one-bit compressed sensing

- Let $x \in K \subset \mathbb{S}^{n-1} \subset \mathbb{R}^n$ represent a signal.
- $\langle x, z_k \rangle$ are linear measurements, $k = 1, \ldots, m$, $m \ll n$.
- $\text{sign} \langle x, z_k \rangle$ are quantized linear measurements.
- Can one reconstruct/approximate x from these measurements?
- s-parse signals: $K_s = \{ x \in \mathbb{S}^{n-1} : |\text{supp}(x)| \leq s \}$.

Jaques, Laska, Boufounos, Baraniuk: embeddings to Hamming cube through $\phi_Z(x) = \text{sign}(Zx)$.
Motivation: one-bit compressed sensing

- Let $x \in K \subset \mathbb{S}^{n-1} \subset \mathbb{R}^n$ represent a signal.
- $\langle x, z_k \rangle$ are linear measurements, $k = 1, \ldots, m$, $m \ll n$.
- $\text{sign}\langle x, z_k \rangle$ are quantized linear measurements.
- Can one reconstruct/approximate x from these measurements?
- s-parse signals: $K_s = \{x \in \mathbb{S}^{n-1} : |\text{supp}(x)| \leq s\}$.
- Jaques, Laska, Boufounos, Baraniuk: embeddings to Hamming cube through $\phi_Z(x) = \text{sign}(Zx)$.

Points on a sphere
Let γ be the standard Gaussian vector in \mathbb{R}^{d+1}. The Gaussian mean width of K is defined as

$$\omega(K) = \mathbb{E} \sup_{x,y \in K} |\langle \gamma, x-y \rangle|.$$
Let γ be the standard Gaussian vector in \mathbb{R}^{d+1}. The Gaussian mean width of K is defined as

$$\omega(K) = \mathbb{E} \sup_{x, y \in K} |\langle \gamma, x - y \rangle|.$$

“Hemisphere” process: mean zero Gaussian process with $\mathbb{E}G_x^2 = \frac{1}{4}$ with increments

$$(\mathbb{E}|G_x - G_y|^2)^{1/2} = \|1_{H(x)} - 1_{H(y)}\|_2 = \sqrt{d(x, y)},$$

where $H(x)$ is the hemisphere $H(x) = \{z \in \mathbb{S}^d : z \cdot x > 0\}$. Hemisphere mean width

$$H(K) = \mathbb{E} \sup_{x, y \in K} |G_x - G_y|.$$
Mean Gaussian width and “hemisphere” width

- Let γ be the standard Gaussian vector in \mathbb{R}^{d+1}. The Gaussian mean width of K is defined as
 $$\omega(K) = \mathbb{E} \sup_{x,y \in K} |\langle \gamma, x - y \rangle|.$$

- “Hemisphere” process: mean zero Gaussian process with $\mathbb{E}G_x^2 = \frac{1}{4}$ with increments
 $$\left(\mathbb{E}|G_x - G_y|^2\right)^{1/2} = \|1_{H(x)} - 1_{H(y)}\|_2 = \sqrt{d(x,y)},$$
 where $H(x)$ is the hemisphere $H(x) = \{z \in \mathbb{S}^d : z \cdot x > 0\}$. Hemisphere mean width
 $$H(K) = \mathbb{E} \sup_{x,y \in K} |G_x - G_y|.$$

- Sudakov’s inequality:
 $$\sqrt{\log N(K, \delta)} \lesssim \begin{cases} \delta^{-1} \omega(K) \\ \delta^{-1/2} H(K) \end{cases}$$
Main results (DB, Lacey, ’15-16)

- **Small cells:** If $m \gtrsim \delta^{-1} \log N(K, c\delta)$, then w.h.p. m random vectors induce a tessellation with δ-small cells.
Main results (DB, Lacey, ’15-16)

- **Small cells:** If $m \gtrsim \delta^{-1} \log N(K, c\delta)$, then w.h.p. m random vectors induce a tessellation with δ-small cells.

- **Uniform tessellation:** If $m \gtrsim \delta^{-2} H(K)^2$, then there exists a δ-isometry $\phi : \mathbb{S}^d \rightarrow \mathcal{H}^m$, i.e.
 \[\sup_{x,y \in K} \left| d(x, y) - d_H(\phi(x), \phi(y)) \right| < \delta. \]
Main results (DB, Lacey, ’15-16)

- **Small cells:** If $m \gtrapprox \delta^{-1} \log N(K, c\delta)$, then w.h.p. m random vectors induce a tessellation with δ-small cells.

- **Uniform tessellation:** If $m \gtrapprox \delta^{-2} H(K)^2$, then there exists a δ-isometry $\phi : \mathbb{S}^d \to \mathcal{H}^m$, i.e.
 \[
 \sup_{x, y \in K} |d(x, y) - d_H(\phi(x), \phi(y))| < \delta.
 \]

- **Sparse case:** Let K_s be the set of s-sparse vectors in \mathbb{S}^d. If $m \gtrapprox \delta^{-2} s \log_+ \frac{d}{s}$, then for a random set Z of m points in \mathbb{S}^d w.h.p. we have
 \[
 \sup_{x, y \in K_s} |d(x, y) - d_H(\phi_Z(x), \phi_Z(y))| < \delta.
 \]
Main results (DB, Lacey, ’15-16)

- **Small cells:** If $m \gtrsim \delta^{-1} \log N(K, c\delta)$, then w.h.p. m random vectors induce a tessellation with δ-small cells.

- **Uniform tessellation:** If $m \gtrsim \delta^{-2} H(K)^2$, then there exists a δ-isometry $\phi : \mathbb{S}^d \to \mathcal{H}^m$, i.e.
 $\sup_{x,y \in K} |d(x, y) - d_H(\phi(x), \phi(y))| < \delta$.

- **Sparse case:** Let K_s be the set of s-sparse vectors in \mathbb{S}^d. If $m \gtrsim \delta^{-2} s \log + \frac{d}{s}$, then for a random set Z of m points in \mathbb{S}^d w.h.p. we have $\sup_{x,y \in K_s} |d(x, y) - d_H(\phi_Z(x), \phi_Z(y))| < \delta$.

- **One-bit Johnson-Lindenstrauss lemma:** If K is finite and $m \gtrsim \delta^{-2} \log(\#K)$, then there exists a δ-isometry between $K \subset \mathbb{S}^d$ and the Hamming cube \mathcal{H}^m.
Tessellations and discrepancy

\[H_x = \{ z : \langle z, x \rangle > 0 \} \]

\[W_{xy} = H_x \triangle H_y \]
\[= \{ z \in S^d : \text{sign} \langle z, x \rangle \neq \text{sign} \langle z, y \rangle \} \]
Tessellations and discrepancy

\[H_x = \{ z : \langle z, x \rangle > 0 \} \]

\[W_{xy} = H_x \triangle H_y \]
\[= \{ z \in S^d : \text{sign} \langle z, x \rangle \neq \text{sign} \langle z, y \rangle \} \]

\[\mathbb{P}(\text{sign} \langle z, x \rangle \neq \text{sign} \langle z, y \rangle) = \sigma(W_{xy}) = d(x, y) \]
Tessellations and discrepancy

\[H_x = \{ z : \langle z, x \rangle > 0 \} \]

\[W_{xy} = H_x \triangle H_y = \{ z \in S^d : \text{sign}(z, x) \neq \text{sign}(z, y) \} \]

\[\mathbb{P}(\text{sign}(z, x) \neq \text{sign}(z, y)) = \sigma(W_{xy}) = d(x, y) \]

\[\Delta_Z(x, y) = d_H(x, y) - d(x, y) = \frac{\#(Z \cap W_{xy})}{N} - \sigma(W_{xy}) \]

\[D_{\text{wedge}}(Z) = \| \Delta_Z(x, y) \|_\infty = \sup_{x, y \in S^d} \left| \frac{\#(Z \cap W_{xy})}{N} - \sigma(W_{xy}) \right| \].
Lemma

There exists an \(N \)-point set \(Z \subset \mathbb{S}^d \) with

\[
D_{\text{wedge}}(Z) \leq C_d N^{-\frac{1}{2}} - \frac{1}{2d} \sqrt{\log N}.
\]
Lemma

There exists an N-point set $Z \subset \mathbb{S}^d$ with

$$D_{\text{wedge}}(Z) \leq C_d N^{-\frac{1}{2} - \frac{1}{2d}} \sqrt{\log N}.$$

Corollary

This implies that for $\delta > 0$ there exists a δ-uniform tessellation of \mathbb{S}^d by N hyperplanes with

$$N \leq C'_d \delta^{-2 + \frac{2}{d+1}} \cdot \left(\log \frac{1}{\delta} \right)^{\frac{d}{d+1}}.$$
Lemma (Blümlinger, 1991)

For any N-point set $Z \subset S^d$

$$D_{\text{slice}}(Z) \gtrsim N^{-\frac{1}{2}} - \frac{1}{2d},$$

where D_{slice} is the spherical discrepancy with respect to “slices” $S_{xy} = \{ z \in S^d : \langle z, x \rangle > 0 \ \& \ \langle z, y \rangle > 0 \}$.
Lemma (Blümlinger, 1991)

For any N-point set $Z \subset S^d$

$$D_{\text{slice}}(Z) \gtrsim N^{-\frac{1}{2}} - \frac{1}{2d},$$

where D_{slice} is the spherical discrepancy with respect to “slices” $S_{xy} = \{z \in S^d : \langle z, x \rangle > 0 \& \langle z, y \rangle > 0\}$.

- Symmetrization can adapt this result to wedges W_{xy}, i.e. to $D_{\text{wedge}}(Z)$.
Lemma (Blümlinger, 1991)

For any N-point set $Z \subset S^d$

$$D_{\text{slice}}(Z) \gtrsim N^{-\frac{1}{2}} - \frac{1}{2d},$$

where D_{slice} is the spherical discrepancy with respect to “slices” $S_{xy} = \{z \in S^d : \langle z, x \rangle > 0 \& \langle z, y \rangle > 0\}$.

- Symmetrization can adapt this result to wedges W_{xy}, i.e. to $D_{\text{wedge}}(Z)$.

Corollary

This implies that for any $\delta > 0$, if there exists a δ-uniform tessellation of S^d by N hyperplanes, then

$$N \geq c_d \delta^{-2+\frac{2}{d+1}}.$$
There exist constants c_d, C_d, such that the following discrepancy bounds hold:

$$c_d N^{-\frac{1}{2} - \frac{1}{2d}} \leq \inf_{Z \subseteq S^d: \#Z = N} \Delta(Z) \leq C_d N^{-\frac{1}{2} - \frac{1}{2d}} \sqrt{\log N}.$$

Inverting this we find that the optimal value of N satisfies

$$\delta^{-2 - \frac{2}{d+1}} \leq N \leq \delta^{-2 - \frac{2}{d+1}} \left(\log \frac{1}{\delta} \right)^{\frac{d}{d+1}}.$$
Define the L^2 discrepancy for wedges

$$[D_{L^2,\text{wedge}}(Z)]^2 = \int_{S^d} \int_{S^d} \left(\frac{1}{N} \sum_{k=1}^{N} 1_{W_{xy}(z_k)} - \sigma(W_{xy}) \right)^2 d\sigma(x) d\sigma(y)$$
Stolarsky principle for wedge discrepancy

Define the L^2 discrepancy for wedges

$$\left[D_{L^2, \text{wedge}} (Z) \right]^2 = \int_{S^d} \int_{S^d} \left(\frac{1}{N} \sum_{k=1}^{N} 1_{W_{xy}} (z_k) - \sigma (W_{xy}) \right)^2 d\sigma(x) d\sigma(y)$$

Theorem (Stolarsky for wedges, DB, Lacey, ’15)

For any finite set $Z = \{z_1, \ldots, z_N\} \subset S^d$

$$\left[D_{L^2, \text{wedge}} (Z) \right]^2 = \frac{1}{N^2} \sum_{i,j=1}^{N} \left(\frac{1}{2} - d(z_i, z_j) \right)^2 \int_{S^d} \int_{S^d} \left(\frac{1}{2} - d(x, y) \right)^2 d\sigma(x) d\sigma(y).$$
Frame potential

- \(Z = \{ z_1, \ldots, z_N \} \subset S^d \) is a frame in \(\mathbb{R}^d \) iff there exist \(c, C > 0 \) such that for any \(x \in \mathbb{R}^{d+1} \)

\[
c \| x \|^2 \leq \sum_k |\langle x, z_k \rangle|^2 \leq C \| x \|^2.
\]
Frame potential

- $Z = \{z_1, \ldots, z_N\} \subset S^d$ is a frame in \mathbb{R}^d iff there exist $c, C > 0$ such that for any $x \in \mathbb{R}^{d+1}$
 \[c\|x\|^2 \leq \sum_k |\langle x, z_k \rangle|^2 \leq C\|x\|^2. \]

- $Z = \{z_1, \ldots, z_N\} \subset S^d$ is a tight frame iff there exists $A > 0$ such that for any $x \in \mathbb{R}^{d+1}$
 \[\sum_k |\langle x, z_k \rangle|^2 = A\|x\|^2. \]
• $Z = \{z_1, \ldots, z_N\} \subset S^d$ is a frame in \mathbb{R}^d iff there exist $c, C > 0$ such that for any $x \in \mathbb{R}^{d+1}$

$$c \|x\|^2 \leq \sum_k |\langle x, z_k \rangle|^2 \leq C \|x\|^2.$$

• $Z = \{z_1, \ldots, z_N\} \subset S^d$ is a tight frame iff there exists $A > 0$ such that for any $x \in \mathbb{R}^{d+1}$

$$\sum_k |\langle x, z_k \rangle|^2 = A \|x\|^2.$$

Theorem (Benedetto, Fickus)

A set $Z = \{z_1, \ldots, z_N\} \subset S^d$ is a tight frame in \mathbb{R}^{d+1} if and only if Z is a local minimizer of the frame potential:

$$F(Z) = \sum_{i,j=1}^N |\langle z_i, z_j \rangle|^2.$$
Stolarsky principle for slices

Define the L^2 discrepancy for slices

$S_{xy} = \{ z \in \mathbb{S}^d : \langle z, x \rangle > 0 \ \& \ \langle z, y \rangle > 0 \}$

$$[D_{L^2, \text{slice}}(Z)]^2 = \int_{\mathbb{S}^d} \int_{\mathbb{S}^d} \left(\frac{1}{N} \sum_{k=1}^{N} 1_{S_{xy}}(z_k) - \sigma(S_{xy}) \right)^2 d\sigma(x) d\sigma(y)$$
Stolarsky principle for slices

Define the L^2 discrepancy for slices

\[
S_{xy} = \{ z \in \mathbb{S}^d : \langle z, x \rangle > 0 \ \& \ \langle z, y \rangle > 0 \}
\]

\[
[D_{L^2, \text{slice}}(Z)]^2 = \int_{\mathbb{S}^d} \int_{\mathbb{S}^d} \left(\frac{1}{N} \sum_{k=1}^{N} 1_{S_{xy}}(z_k) - \sigma(S_{xy}) \right)^2 d\sigma(x) d\sigma(y)
\]

Theorem (Stolarsky for slices, DB, ’16)

For any finite set $Z = \{z_1, \ldots, z_N\} \subset \mathbb{S}^d$

\[
4[D_{L^2, \text{slice}}(Z)]^2 =
\frac{1}{N^2} \sum_{i,j=1}^{N} (1 - d(z_i, z_j))^2 - \int_{\mathbb{S}^d} \int_{\mathbb{S}^d} (1 - d(x, y))^2 d\sigma(x) d\sigma(y).
\]