Recent advances on log gases, IHP
March 21st 2014

Large-N asymptotic expansions in 1-d repulsive particle systems

Gaëtan Borot
MPIM Bonn & MIT

based on joint works with
Alice Guionnet, MIT
Karol Kozlowski, Dijon
1. Model and results

2. Schwinger-Dyson equations

3. Sketch of proof of the main result

4. Conclusion
The β ensembles

- Probability measure on $A^N \subseteq \mathbb{R}^N$

$$d\mu_N^A = \frac{1}{Z_N^A} \exp \left(N \sum_{i=1}^{N} T(\lambda_i) \right) \prod_{1 \leq i < j \leq N} |\lambda_i - \lambda_j|^\beta \prod_{i=1}^{N} 1_A(\lambda_i) d\lambda_i \quad \beta > 0$$

- It is the measure induced on eigenvalues of a random matrix M

$$dM e^{N \text{Tr} T(M)} \begin{cases}
\beta = 1 & \text{real symmetric matrices} \\
\beta = 2 & \text{hermitian matrices} \\
\beta = 4 & \text{quaternionic self-dual matrices}
\end{cases}$$

Wigner, Dyson, Mehta (50s-60s)

$M = \text{triagonal}$ all $\beta > 0$, T polynomial of even degree

Dumitriu, Edelman ’02
Krishnapur, Rider, Virág ’13
Mean-field models

- Probability measure on $A^N \subseteq \mathbb{R}^N$

$$d\mu_N = \frac{1}{Z_N} \exp \left(N^2 \mathcal{T}_0(\lambda_N) \right) \prod_{1 \leq i < j \leq N} |\lambda_i - \lambda_j|^{\beta} \prod_{i=1}^N 1_{A}(\lambda_i) d\lambda_i \quad \beta > 0$$

where $L_N^{(\lambda)} = \frac{1}{N} \sum_{i=1}^N \delta_{\lambda_i}$ is the (random) empirical measure

- Exemples

 in Chern-Simons theory

 $$\mathcal{T}_0(\mu) = \int \int d\mu(x) d\mu(y) \sum_m \beta_m \ln \left| \frac{\sinh[\alpha_m(x-y)]}{\alpha_m(x-y)} \right|$$

 O(n) model on random lattices

 $$\mathcal{T}_0(\mu) = -\frac{n}{2} \int \int d\mu(x) d\mu(y) \ln |x+y|$$

- Here, we take

 $$\mathcal{T}_0(\mu) = \int T(x_1, \ldots, x_r) \prod_{i=1}^r d\mu(x_i)$$

 T real-analytic on A^r
We would like to study when $N \to \infty$...

- the (random) empirical measure $L_N^{(\lambda)} = \frac{1}{N} \sum_{i=1}^{N} \delta_{\lambda_i}$

- what kind of random variable is $\sum_{i=1}^{N} f(\lambda_i) = N \int f(\xi) dL_N^{(\lambda)}(\xi)$?

- the partition function

$$Z_N = \int_{A^N} \exp \left(N^2 \mathcal{T}_0(L_N^{(\lambda)}) \right) \prod_{1 \leq i < j \leq N} |\lambda_i - \lambda_j|^\beta \prod_{i=1}^{N} d\lambda_i$$

- the k-point correlators

$$W_k(x_1, \ldots, x_k) = \text{Cumulant} \left(\int \frac{N \, dL_N^{(\lambda)}(\xi_1)}{x_1 - \xi_1}, \ldots, \int \frac{N \, dL_N^{(\lambda)}(\xi_k)}{x_k - \xi_k} \right)$$
The leading order ... is given by a continuous approximation

- Define the energy functional on a proba. measure μ

$$\mathcal{T}(\mu) = \int \left[\prod_{i=1}^{r} d\mu(x_i) \right] T(x_1, \ldots, x_r) + \frac{\beta}{2} \iint d\mu(x_1) d\mu(x_2) \ln |x_1 - x_2|$$

- Assumption 1: uniqueness of maximizer μ_{eq}

- Characterization: exists a constant C such that $\mathcal{T}'(\mu_{eq})[\delta_x] \leq C$

 for $x \in A$ μ_{eq}-everywhere

- Assumption 2: local strict concavity at μ_{eq}

 for any $\nu = \text{finite signed measure of mass } 0$

 $$-\mathcal{T}''(\mu_{eq})[\nu, \nu] = \mathfrak{D}^2[\nu] \in [0, +\infty]$$

 and $= 0$ iff $\nu = 0$
The leading order ... is given by a continuous approximation

- Define the energy functional on a proba measure μ

$$\mathcal{T}(\mu) = \int \left[\prod_{i=1}^{r} d\mu(x_i) \right] T(x_1, \ldots, x_r) + \frac{\beta}{2} \iint d\mu(x_1)d\mu(x_2) \ln |x_1 - x_2|$$

- Assumption 1: uniqueness of maximizer μ_{eq}
- Assumption 2: local strict concavity at μ_{eq}

Lemma

$$L_N^{(\lambda)} \rightarrow \mu_{eq} \quad \text{almost surely and in expectation}$$

$$Z_N = \exp \left\{ N^2 \left(\mathcal{T}(\mu_{eq}) + o(1) \right) \right\}$$
A particle at position x feels the effective potential

$$J(x) = \mathcal{T}'(\mu_{eq})[\delta_x] - \sup_{\xi \in A} \mathcal{T}'(\mu_{eq})[\delta_{\xi}]$$

Lemma

For any closed $F \subseteq A$

$$\mathbb{P}[\exists i, \lambda_i \in F] \leq \exp\left\{ N \left(\sup_{x \in F} J(x) + o(1) \right) \right\}$$

One can restrict to a compact $B \subseteq A$ neighborhood of $\{J(x) = 0\}$

$$Z_N^B = Z_N^A \left(1 + o(e^{-cN}) \right)$$
Large deviations of empirical measure

- Natural “distance” \(-\mathcal{T}''(\mu_{eq})[\nu, \nu] = \mathcal{D}^2[\nu] \in [0, +\infty]\) but \(\mathcal{D}[L_N^{(\lambda)} - \mu_{eq}] = +\infty\) because of atoms and log singularity

- Let us pick a nice regularization \(\text{idea from Maïda, Maurel-Segala}\)

\[
L_N^{(\lambda)} = \frac{1}{N} \sum_{i=1}^{N} \delta_{\lambda_i} \sim \widetilde{L}_N^{(\lambda)}
\]

Lemma

If \(T\) is smooth, we have for \(N\) large enough

\[
\mathbb{P}_N [\mathcal{D}[\tilde{L}_N^{(\lambda)} - \mu_{eq}] > t] \leq \exp \left(N \ln N - N^2 t^2 / 2 \right)
\]
The equilibrium measure

- T real-analytic $\implies \left\{ \begin{array}{l} \mu_{eq} \text{ is supported on a finite number of segments} \\
S = \bigcup_{h=0}^{g} [a_h, b_h] \end{array} \right.$

- $\alpha \in \partial S$ is a hard edge if $\alpha \in \partial A$, is a soft edge otherwise

\[
d\mu_{eq}(x) = \frac{1_{S(x)}dx}{2\pi} M(x) \prod_{\alpha \text{ soft}} |x - \alpha|^{1/2} \prod_{\alpha \text{ hard}} |x - \alpha|^{-1/2}
\]

- We say that μ_{eq} is off-critical when $M(x) > 0$ on A
Finite size corrections: we assume ...

- Uniqueness of maximizer μ_{eq}
- Local strict concavity at μ_{eq}

\[V = V_0 + (1/N)V_1 + \cdots \]
\[
\begin{cases}
 V_0 & \text{real analytic on } A \\
 V_1 & \text{complex analytic on } A
\end{cases}
\]

- Control of large deviations $J(x) < 0$ for $x \in A \setminus S$
- μ_{eq} is off-critical
- f = test function, analytic on A
Result in the 1-cut regime

- **1/N asymptotic expansion**

\[
Z_N = N^{\gamma N + \gamma'} \exp \left[\sum_{m \geq -2} N^{-m} F[m] + O(N^{-\infty}) \right]
\]

\[\gamma, \gamma' \text{ depend only on } \beta \text{ and the nature of the edges}\]

- **Central limit theorem**

\[
\left(\sum_{i=1}^{N} f(\lambda_i) - N \int_{A} f(\xi) d\mu_{eq}(\xi) \right) \longrightarrow \text{ (non-centered) gaussian}
\]
Result in the \((g + 1)\)-cuts regime

- Oscillatory asymptotic expansion

\[
Z_N = N^{\gamma N + \gamma'} (\mathcal{D}_N \Theta_{-N\epsilon_{eq}})(F^{[-1]'}|F^{[2]''}) \exp \left[\sum_{m \geq -2} N^{-m} F^m + O(N^{-\infty}) \right]
\]

where \(\mathcal{D}_N = \sum_{p \geq 0} \frac{1}{p!} \sum_{\ell_1, \ldots, \ell_p \geq 1 \atop m_1, \ldots, m_p \geq -2 \atop \sum_i (m_i + \ell_i) > 0} N^{-\sum_i (m_i + \ell_i)} \prod_{i=1}^p \frac{F_{\epsilon_{eq}|i}(\ell_i)}{\ell_i!} \cdot \nabla \otimes \ell_i \)

acts as a differential operator on the Siegel theta function

\[
\Theta_{\mu}(w|Q) = \sum_{m \in \mathbb{Z}^g} e^{w \cdot (m+\mu) + \frac{1}{2} (m+\mu) \cdot Q \cdot (m+\mu)}
\]

- (Pseudo)-periodicity come from \(\mu = -N\epsilon_{eq} \mod \mathbb{Z}^g\)
Result in the \((g + 1)\)-cuts regime

- No central limit theorem in general ...

\[
\mathbb{E}\left[e^{is\left(\sum_{i=1}^{N} f(\lambda_i) - N \int f(x) d\mu_{eq}(x)\right)}\right] \sim e^{is m_1[f] - m_2[f] s^2/2} \frac{\Theta - N\epsilon_{eq}(F^{[-1]'} + is v[f] | F^{[-2]''})}{\Theta - N\epsilon_{eq}(F^{[-1]'} | F^{[-2]''})}
\]

(non-centered) gaussian

+ discrete Gaussian, centered at \(\mu = -N\epsilon_{eq} \mod \mathbb{Z}^g\)

step \(v[f] \propto \left(\int_{S} \frac{f(x) x^i dx}{\prod_{\alpha} |x - \alpha|^{1/2}}\right)_{0 \leq i \leq g-1}\)

Corollary

\[
\left(\sum_{i=1}^{N} f(\lambda_i) - N \int_{A} f(\xi) d\mu_{eq}(\xi)\right)
\]

converges in law along subsequences
History of β ensembles : 1-cut regime

$\beta = 2$
- If $1/N$ expansion exists, then
 \[Z_N = N^{\gamma N + \gamma'} \exp \left[\sum_{m \geq -1} N^{-2m} F^{\{m\}} \right] \]
 and $F^{\{m\}}$ can be computed by the moment method
 \textit{Ambjørn, Chekhov, Kristjansen, Makeenko, 90s}

- Rewriting of $F^{\{m\}}$ in terms of a universal topological recursion
 \textit{Eynard, ’04}

- Existence of $1/N$ expansion by
 - analysis of SD equations \textit{Albeverio, Pastur, Shcherbina ’01}
 - RH techniques \textit{Ercolani, McLaughlin ’02}
 - analysis of int. system \textit{Bleher, Its, ’05}
History of β ensembles: 1-cut regime

$\beta > 0$
- If $1/N$ expansion exists, then $Z_N = N^{\gamma N + \gamma'} \exp \left[\sum_{m \geq -2} N^{-m} F[m] \right]$
 and $F[m]$ computed by a β-topological recursion
 Chekhov, Eynard ’06

- Central limit theorem
 Johansson ’98

- Existence of $1/N$ expansion (analysis of SD eqn)
 Borot, Guionnet ’11
History of β ensembles: multi-cut regime

$\beta = 2$
- numerous observations of oscillatory behavior
 physicists, ‘90s
- Riemann-Hilbert techniques up to o(1)
 Deift, Kriecherbauer, McLaughlin, Venakides, Zhou, ...
- heuristic derivation up to o(1)
 Bonnet, David, Eynard ’00
- generalization to all orders
 Eynard ’07
- observation of “no CLT”
 Pastur ’06

$\beta > 0$
- Proof of “no CLT” and asymptotics of Z_N^A up to o(1)
 Shcherbina ’12
- General proof
 Borot, Guionnet ’13
History of mean-field models

\[\text{d}\mu_N = \frac{1}{Z_N} \exp \left(N^2 \mathcal{T}_0(L_N^{(\lambda)}) \right) \prod_{1 \leq i < j \leq N} |\lambda_i - \lambda_j|^\beta \prod_{i=1}^{N} 1_A(\lambda_i) \text{d}\lambda_i \]

with r-body interaction \(\mathcal{T}_0(\mu) = \int T(x_1, \ldots, x_r) \prod_{i=1}^{r} \text{d}\mu(x_i) \)

- same results for mean field models
 Borot, Guionnet, Kozlowski ’13
- computation of expansion by topological recursion
 Borot, ’13
Large-N asymptotic expansions in 1-d repulsive particle systems

1. Model and results

2. Schwinger-Dyson equations

3. Sketch of proof of the main result

4. Conclusion
What are Schwinger-Dyson equations?

= relations between expectation values from integration by parts

- In the model
 \[d\mu_N = \frac{1}{Z_N} \exp\left(N^2 T_0(L_N^{(\lambda)})\right) \prod_{1 \leq i < j \leq N} |\lambda_i - \lambda_j|^{\beta} \prod_{i=1}^{N} 1_A(\lambda_i) d\lambda_i \]

we find for any smooth test function \(h \) and smooth functional \(O \)

\[
\mathbb{E}\left[\left(\sum_i N h(\lambda_i) T'_0(L_N^{(\lambda)})[\delta\lambda_i] + \beta \sum_{i<j} \frac{h(\lambda_i) - h(\lambda_j)}{\lambda_i - \lambda_j} + \sum_i h'(\lambda_i) \right) O(L_N^{(\lambda)}) \right] \\
+ \sum_i N^{-1} h(\lambda_i) O'(L_N^{(\lambda)})[\delta\lambda_i] \right] + \text{boundary} = 0
\]
What are Schwinger-Dyson equations?

- Remind the k-points correlators

\[W_k(x_1, \ldots, x_k) = \text{Cumulant}(\int \frac{N \, dL^{(\lambda)}_N(\xi_1)}{x_1 - \xi_1}, \ldots, \int \frac{N \, dL^{(\lambda)}_N(\xi_k)}{x_k - \xi_k}) \]

- Choose \(h_z(x) = \frac{1}{z - x} \) and \(\mathcal{O}_{z_2, \ldots, z_k}(L^{(\lambda)}_N) = \prod_{i=2}^{k} \int \frac{dL^{(\lambda)}_N(\xi_i)}{z_i - \xi_i} \)

for \(z, z_i \in \mathbb{C} \setminus A \)

\(\rightarrow \) family of functional relations between \(W_1, \ldots, W_{r+k-1} \)

indexed by \(k \geq 1 \)
Decompose \(W_1(z) = N \left(W_{eq}(z) + \delta_{-1} W_1(z) \right) \) with \(W_{eq}(z) = \int \frac{d\mu_{eq}(\xi)}{z - \xi} \)

Schwinger-Dyson equations can be recast

\[(\mathcal{K} + \delta \mathcal{K})[\delta_{-1} W_1](z) = A_1 + \text{boundary}\]

\[(\mathcal{K} + \delta \mathcal{K})[W_n(\cdot, z_2, \ldots, z_n)](z) = A_n + \text{boundary}\]

with: \(\mathcal{K}[f](z) = 2W_{eq}(z)f(z) + \frac{2}{\beta} \mathcal{T}_0(\mu_{eq}) \left[\frac{f(\lambda)d\lambda}{z - \lambda} \right] \)

\[\delta \mathcal{K}[f](z) = 2\delta_{-1} W_1(z)f(z) + N^{-1}(1 - 2/\beta) \partial_z f(z) + \cdots\]
Asymptotic analysis

- Introduce norms $\|f\|_\Gamma = \sup_{z \in \text{Ext}(\Gamma)} |f(z)|$

- Large deviations of empirical measure

\[
\|N\delta_{-1}W_1\|_{\Gamma_1} \leq C_1 (N \ln N)^{1/2} \\
\|W_k\|_{\Gamma_k} \leq C_k (N \ln N)^{k/2}
\]

- Large deviation of single eigenvalue: boundary effects $\in o(e^{-cN})$

- Rigidity of SD equations: if \mathcal{K} invertible and $\|\mathcal{K}^{-1}[f]\|_{\Gamma_{i+1}} \leq c \|f\|_{\Gamma_i}$

\[
\left\{
\begin{array}{c}
\|N\delta_{-1}W_1\|_{\Gamma_{i_1}} \leq c_1 (\eta_N \kappa_N + 1) \\
\|W_k\|_{\Gamma_{i_k}} \leq c_k (\eta_N^k \kappa_N + N^{2-k})
\end{array}
\right.
\]

\[
\downarrow
\]

\[
\left\{
\begin{array}{c}
\|N\delta_{-1}W_1\|_{\Gamma_{i_1+2}} \leq c_1' (\eta_N (\eta_N/N) \kappa_N + 1) \\
\|W_k\|_{\Gamma_{i_k+2}} \leq c_k' (\eta_N^k (\eta_N/N) \kappa_N + N^{2-k})
\end{array}
\right.
\]
Asymptotic analysis

Large deviations of empirical measure
+ Rigidity of SD equations

Corollary

If \mathcal{K} invertible and $\|\mathcal{K}^{-1}[f]\|_{\Gamma_{i+1}} \leq c \|f\|_{\Gamma_i}$ we have, for any $M \geq 0$ an asymptotic expansion

$$W_k = \sum_{m=k-2}^{M-1} N^{-m} W_k^{[m]} + O(N^{-M}; \Gamma_{M,k})$$

- **Remark:**

 $(g + 1)$ cuts
 $c = \text{nb. critical conditions}$
 $\dim \ker \mathcal{K} = g + c$
Large-N asymptotic expansions in 1-d repulsive particle systems

1. Model and results

2. Schwinger-Dyson equations

3. Sketch of proof of the main result

4. Conclusion
Scheme of the proof

Models with fixed filling fractions

1. Eq. measure and regularity (potential theory)
2. Invertibility of \mathcal{K} (functional + cx analysis)
3. Expansion of correlators
4. Expansion of partition fn.
 interpolation

Initial model (multi-cut regime)

same large deviations estimates

same Schwinger-Dyson equations

5. Expansion of partition fn.
 series analysis
From large deviations on single eigenvalue: up to $o(e^{-cN})$, we can choose

We will study $\mu^{(A_0,\ldots,A_g)}(N_0,\ldots,N_g) = \mu^A_N$ conditioned to have \(\begin{cases} N_0 \text{ first } \lambda \text{'s in } A_0 \\ N_1 \text{ next } \lambda \text{'s in } A_1 \\ \text{etc.} \end{cases} \)

The partition function decomposes

$$Z_N^A = \sum_{N_0+\ldots+N_g=N} \frac{N!}{\prod_{h=0}^g N_h!} Z^{(A_0,\ldots,A_g)}(N_0,\ldots,N_g)$$

$\epsilon_h = N_h/N$ are the filling fractions
Equilibrium measures ...

- Assumption 1: uniqueness of maximizer (= \(\mu_{eq} \)) of
 \[
 \mathcal{T}(\mu) = \int \left[\prod_{i=1}^{r} d\mu(x_i) \right] T(x_1, \ldots, x_r) + \frac{\beta}{2} \iint d\mu(x_1)d\mu(x_2) \ln |x_1 - x_2|
 \]
 among all proba. measures

 Let \(\epsilon_{eq,h} = \mu_{eq}[A_h] \) be the equilibrium filling fraction

- Assumption 2: local strict concavity at \(\mu_{eq} \)

Lemma 1

For \(\epsilon \) close enough to \(\epsilon_{eq} \)

\(\mathcal{T} \) has a unique maximizer (= \(\mu_{eq,\epsilon} \)) over proba. measure with \(\mu[A_h] = \epsilon_h \)
Equilibrium measures ...

- Assumption 1: uniqueness of maximizer (= μ_{eq}) of
 \[\mathcal{T}(\mu) = \int \left[\prod_{i=1}^{k} d\mu(x_i) \right] T(x_1, \ldots, x_k) + \frac{\beta}{2} \iint d\mu(x_1)d\mu(x_2) \ln |x_1 - x_2| \]
 among all proba. measures

 Let $\epsilon_{eq,h} = \mu_{eq}[A_h]$ be the equilibrium filling fraction

- Assumption 2: local strict concavity at μ_{eq}
- Assumption 3: T is analytic
- Assumption 4: μ_{eq} has ($g + 1$) cuts and is off-critical

Lemma 2

For ϵ close enough to ϵ_{eq}

- $\mu_{eq;\epsilon}$ has ($g + 1$) cuts and is off-critical
- The edges depend smoothly on ϵ
- The density of $\mu_{eq;\epsilon}$ depends smoothly on ϵ away from edges
Equilibrium measures ...

- Assumption 1: uniqueness of maximizer (= μ_{eq}) of

$$\mathcal{T}(\mu) = \int \left[\prod_{i=1}^{k} d\mu(x_i) \right] T(x_1, \ldots, x_k) + \frac{\beta}{2} \iint d\mu(x_1)d\mu(x_2) \ln |x_1 - x_2|$$

among all proba. measures

Let $\epsilon_{eq,h} = \mu_{eq}[A_h]$ be the equilibrium filling fraction

- Assumption 2: local strict concavity at μ_{eq}

- Assumption 3: T is analytic

- Assumption 4: μ_{eq} has $(g + 1)$ cuts and is off-critical

Lemma 3

For ϵ close enough to ϵ_{eq}

the large deviation estimates also holds uniformly

in the conditioned model with filling fractions ϵ
The return of the master operator

- The correlators W_k in the initial model
 $W_{k;\epsilon}$ in the conditioned model

 satisfy the same Schwinger-Dyson equations

- We have
 \[\int_{A_{h_1}} \cdots \int_{A_{h_k}} W_{k;\epsilon}(z_1, \ldots, z_k) \prod_{i=1}^{k} \frac{dz_i}{2i\pi} = \delta_{k,1} N_{\epsilon_{h_1}} \]

 we need the restriction $K_{0;\epsilon}$ of K_{ϵ} to the codim. $= g$ subspace

 \[\{ f, \quad \forall h, \quad \int_{A_h} f(z)dz = 0 \} \]

Lemma 4

For ϵ close enough to ϵ_{eq}

$K_{0;\epsilon}$ is continuously invertible, and $K_{0;\epsilon}^{-1}$ depends smoothly on ϵ
Asymptotic expansion of correlators in the conditioned model

Corollary

For \(\epsilon \) close enough to \(\epsilon_{\text{eq}} \)

we have, for any \(M \geq 0 \), an asymptotic expansion

\[
W_{k; \epsilon} = \sum_{m=k-2}^{M-1} W^{[m]}_{k; \epsilon} + O(N^{-M}; \Gamma_{M,k})
\]

depending smoothly on \(\epsilon \), with remainder uniform in \(\epsilon \)
Partition function of the conditioned model

\[
\frac{Z_{N;\epsilon}^{(T_1)}}{Z_{N;\epsilon}^{(T_0)}} = \exp \left(N^{2-r} \int \partial_t T_t(x_1, \ldots, x_r) \prod_{i=1}^r dL_{N;\epsilon}^{(\lambda), T_t(x_i)} \right)
\]

can be expressed in terms of \(W_{T_t}^{j;\epsilon} \) for the model with interaction \(T_t \)

- If we can find a interpolating family \((T_t)_{t \in [0,1]} \)
 - respecting uniformly our assumptions
 - for which \(Z_{N;\epsilon}^{(T_0)} \) is known

we deduce an expansion

\[
Z_{N;\epsilon}^{(T_1)} = Z_{N;\epsilon}^{(T_0)} \times \exp \left(\sum_{m=-2}^{M-1} N^{-m} F_{\epsilon}^{[m]} + O(N^{-M}) \right)
\]

- Idea: interpolate in the space of equilibrium measures

\((\mu_{eq;\epsilon}^t)_{t \in [0,1]} \leftarrow (T_t)_{t \in [0,1]}\)
An interpolation path ...

Convex linear combination with semi-circles

Squeezing the supports

\[
Z_{N;\epsilon}^{(T_t)} \overset{t \to 0}{\sim} \prod_{0 \leq h < h' \leq g} \left| \frac{a_h + b_h - a_{h'} - b_{h'}}{2} \right|^{N^2 \epsilon_h \epsilon_{h'} \beta} \prod_{h=0}^{g} \left(\text{Selberg } \beta-\text{Gaussian integral over } \mathbb{R}^{N_h} \right)
\]
We initially wanted to compute
\[Z_N = \sum_{N_0 + \cdots + N_g = N} \frac{N!}{\prod_{h=0}^{g} N_h!} Z_{N;(N_0/N, \ldots, N_g/N)} \]

- From large deviations of empirical measures:

\[Z_N = \left(\sum_{|N - N \epsilon^*| \leq \ln N} \frac{N!}{\prod_{h=0}^{g} N_h!} Z_{N;N/N} \right) \left(1 + O(e^{-cN})\right) \]

- For \(N - N \epsilon^* \in o(N) \), we just proved, with \(\epsilon = (N_h/N)_{1 \leq h \leq g} \)

\[\frac{N!}{\prod_{h=0}^{g} N_h!} Z_{N;\epsilon} = N^{\gamma N + \gamma'} \exp \left[\sum_{m=-2}^{M-1} N^{-m} F^{[m]}_{\epsilon} + O(N^{-M}) \right] \]

where \(F^{[m]}_{\epsilon} \) depend smoothly on \(\epsilon \approx \epsilon_{eq} \)

- Extra lemma: \((\nabla_{\epsilon} F^{[-2]})_{\epsilon_{eq}} = 0 \) and \((\nabla_{\epsilon} \nabla_{\epsilon} F^{[-2]})_{\epsilon_{eq}} < 0 \)
We plug the asymptotic formula and use a Taylor expansion at \(\epsilon \approx \epsilon_{eq} \)

- E.g. up to \(o(1) \):

\[
Z_N = N^{\gamma N + \gamma'} e^{N^2 F_{eq}[[-2]]} + NF_{eq}[[-1]] + F_{eq}[0] \\
\times \left(\sum_{|N - N\epsilon_{eq}| \leq \ln N} e^{\frac{1}{2} (\nabla \otimes^2 F[[-2]])_{eq} \cdot (N - N\epsilon_{eq}) \otimes^2 + (\nabla F[[-1]])_{eq} \cdot (N - N\epsilon_{eq})} \right) (1 + O(e^{-c'(\ln N)^3 / N}))
\]

It is the general term of a super-exponentially fast converging series:

\[
Z_N = N^{\gamma N + \gamma'} e^{N^2 F_{eq}[[-2]]} + NF_{eq}[[-1]] + F_{eq}[0] \\
\times \left(\sum_{N \in \mathbb{Z}^g} e^{\frac{1}{2} (\nabla \otimes^2 F[[-2]])_{eq} \cdot (N - N\epsilon_{eq}) \otimes^2 + (\nabla F[[-1]])_{eq} \cdot (N - N\epsilon_{eq})} \right) (1 + O(e^{-c''(\ln N)^3 / N}))
\]

- We recognize \(\Theta - N\epsilon_{eq} \left((\nabla F[[-1]])_{eq} \left| (\nabla \otimes^2 F[[-2]])_{eq} \right. \right) \)
Including higher orders yields terms of the form

\[
\sum_{\mathbf{N} \in \mathbb{Z}_g} \frac{1}{p!} \left(\prod_{i=1}^{p} \frac{(\nabla \otimes \ell_i \, F[m_i])_{eq}}{\ell_i!} \right) \cdot (\mathbf{N} - N\epsilon_{eq}) \otimes (\sum_i \ell_i) \cdot e^{\frac{1}{2} \mathbf{Q} \cdot (\mathbf{N} - N\epsilon_{eq}) \otimes^2 + \mathbf{w} \cdot (\mathbf{N} - N\epsilon_{eq})}
\]

We recognize

\[
\sum_{\mathbf{N} \in \mathbb{Z}_g} \frac{1}{p!} \left(\prod_{i=1}^{p} \frac{(\nabla \otimes \ell_i \, F[m_i])_{eq}}{\ell_i!} \right) \cdot (\nabla_{\mathbf{w}} (\sum_i \ell_i) \Theta_{-N\epsilon_{eq}})(\mathbf{w} | \mathbf{Q})
\]

Here \(\mathbf{Q} = (\nabla \otimes^2 F[-2])_{eq} \) and \(\mathbf{w} = (\nabla F[-1])_{eq} \)

We justified step by step the heuristics of Bonnet, David, Eynard '00, Eynard '07
Oscillatory asymptotic expansion

\[Z_N = N^{\gamma N + \gamma'} (D_N \Theta_{-N\epsilon_{eq}}) (\nabla F[-1]_{eq} | (\nabla \otimes^2 F[-2])_{eq}) \exp \left[\sum_{m \geq -2} N^{-m} F[m] + O(N^{-\infty}) \right] \]

where \[D_N = \sum_{p \geq 0} \frac{1}{p!} \sum_{\ell_1, \ldots, \ell_p \geq 1, m_1, \ldots, m_p \geq -2} N^{-\sum_i (m_i + \ell_i)} \prod_{i=1}^{p} \left(\nabla \otimes \ell_i F[m_i] \right)_{eq} \cdot \nabla \otimes \ell_i \]

acts as a differential operator on the Siegel theta function

\[\Theta_\mu (w|Q) = \sum_{m \in \mathbb{Z}^g} e^{w \cdot (m+\mu) + \frac{1}{2} (m+\mu) \cdot Q \cdot (m+\mu)} \]

Moving characteristics

\[\mu = -N\epsilon_{eq} \mod \mathbb{Z}^g \]

Quadratic form

\[Q = -\text{Hessian}_{\epsilon=\epsilon_{eq}} [T(\mu_{eq};\epsilon)] \]
All order asymptotics for β-ensembles in the multi-cut regime

1. Beta-ensembles and random matrices
2. Applications to orthogonal polynomials
3. Sketch of the proof of the main result
4. Conclusion
In progress

- A toy model for XXZ spin correlation functions (two-scale problem)

\[Z_N = \prod_{1 \leq i < j \leq N} \sinh[N^\alpha c_1(\lambda_i - \lambda_j)] \sinh[N^\alpha c_2(\lambda_i - \lambda_j)] \prod_{i=1}^{N} e^{-N^{1+\alpha} V(\lambda_i)} d\lambda_i \]

Open problems

- Same questions for \(\lambda_i \in \mathbb{Z} \)?

 no Schwinger-Dyson equations ...

- Same questions for multi-matrix models?

 more complicated Schwinger-Dyson equations and convexity issues ...

- Universality from Schwinger-Dyson equations?