Atoms in the limiting spectrum of sparse graphs

Justin Salez (lpma)
A graph $G = (V, E)$ can be represented by its adjacency matrix:

$$A_{ij} = \begin{cases} 1 & \text{if } \{i, j\} \in E \\ 0 & \text{otherwise} \end{cases}$$

Eigenvalues $\lambda_1 \geq \ldots \geq \lambda_{|V|}$ capture essential information about G.

$$\mu_G := \frac{1}{|V|} \sum_{k=1}^{\delta} \lambda_k$$

Question: How does μ_G typically look when G is large?
A graph $G = (V, E)$ can be represented by its adjacency matrix:

$$A_{ij} = \begin{cases}
1 & \text{if } \{i, j\} \in E \\
0 & \text{otherwise.}
\end{cases}$$
A graph $G = (V, E)$ can be represented by its adjacency matrix:

$$A_{ij} = \begin{cases} 1 & \text{if } \{i, j\} \in E \\ 0 & \text{otherwise.} \end{cases}$$

Eigenvalues $\lambda_1 \geq \ldots \geq \lambda_{|V|}$ capture essential information about G.

Question: How does μ_G typically look when G is large?
A graph $G = (V, E)$ can be represented by its adjacency matrix:

$$A_{ij} = \begin{cases}
1 & \text{if } \{i, j\} \in E \\
0 & \text{otherwise}.
\end{cases}$$

Eigenvalues $\lambda_1 \geq \ldots \geq \lambda_{|V|}$ capture essential information about G.

$$\mu_G := \frac{1}{|V|} \sum_{k=1}^{|V|} \delta \lambda_k$$
A graph $G = (V, E)$ can be represented by its **adjacency matrix**:

$$A_{ij} = \begin{cases} 1 & \text{if } \{i, j\} \in E \\ 0 & \text{otherwise.} \end{cases}$$

Eigenvalues $\lambda_1 \geq \ldots \geq \lambda_{|V|}$ capture essential information about G.

$$\mu_G := \frac{1}{|V|} \sum_{k=1}^{|V|} \delta \lambda_k$$

Question: How does μ_G **typically** look when G is large?
SPECTRUM OF A RANDOM GRAPH ON 10000 NODES
SPECTRUM OF A RANDOM GRAPH ON 10000 NODES
THE SEMI-CIRCLE LAW

Erdős-Rényi model: \(n \) nodes, edges present with proba \(p \).

Theorem (Wigner, 50's): if \(np \rightarrow \infty \),

\[
\mu_{G_n}(\sqrt{np}(1-p/n) d\lambda) \longrightarrow_{n \to \infty} \sqrt{4 - \lambda^2} 2\pi 1(|\lambda| \leq 2) d\lambda.
\]

Uniformly chosen random \(d \) -regular graph on \(n \) nodes.

Theorem (Tran-Vu-Wang, 2010): if \(d(1 - d/n) \rightarrow \infty \),

\[
\mu_{G_n}(\sqrt{d(1 - d/n)} d\lambda) \longrightarrow_{n \to \infty} \sqrt{4 - \lambda^2} 2\pi 1(|\lambda| \leq 2) d\lambda.
\]

In both cases, graphs are required to be dense: \(|E| \gg |V|\).

What about sparse graphs: \(|E| \approx |V|\)?
THE SEMI-CIRCLE LAW

- Erdős-Rényi model: n nodes, edges present with proba p_n
THE SEMI-CIRCLE LAW

▶ Erdős-Rényi model: \(n \) nodes, edges present with proba \(p_n \)

Theorem (Wigner, 50’s): if \(np_n (1 - p_n) \to \infty \),

▶ What about sparse graphs: \(|E| \approx |V|\)?
THE SEMI-CIRCLE LAW

- Erdős-Rényi model: n nodes, edges present with proba p_n

Theorem (Wigner, 50’s): if $np_n(1 - p_n) \rightarrow \infty$,

$$\mu_{G_n}\left(\sqrt{np_n(1 - p_n)}d\lambda\right) \xrightarrow[n \rightarrow \infty]{} \frac{\sqrt{4 - \lambda^2}}{2\pi} 1(|\lambda| \leq 2) d\lambda.$$
THE SEMI-CIRCLE LAW

- Erdős-Rényi model: \(n \) nodes, edges present with proba \(p_n \)

Theorem (Wigner, 50’s): if \(np_n(1 - p_n) \to \infty \),

\[
\mu_{G_n}\left(\sqrt{np_n(1 - p_n)}d\lambda\right) \xrightarrow{n\to\infty} \frac{\sqrt{4 - \lambda^2}}{2\pi}1(|\lambda| \leq 2)d\lambda.
\]

- Uniformly chosen random \(d_n \)-regular graph on \(n \) nodes.
THE SEMI-CIRCLE LAW

▶ Erdős-Rényi model: \(n \) nodes, edges present with proba \(p_n \)

Theorem (Wigner, 50’s): if \(np_n(1 - p_n) \to \infty \),

\[
\mu_{G_n} \left(\sqrt{np_n(1 - p_n)} d\lambda \right) \xrightarrow{n \to \infty} \frac{\sqrt{4 - \lambda^2}}{2\pi} \mathbf{1}_{(|\lambda| \leq 2)} d\lambda.
\]

▶ Uniformly chosen random \(d_n \)-regular graph on \(n \) nodes.

Theorem (Tran-Vu-Wang, 2010): if \(d_n(1 - d_n/n) \to \infty \),

\[
\mu_{G_n} \left(\sqrt{d_n(1 - d_n/n)} d\lambda \right) \xrightarrow{n \to \infty} \frac{\sqrt{4 - \lambda^2}}{2\pi} \mathbf{1}_{(|\lambda| \leq 2)} d\lambda.
\]

▶ In both cases, graphs are required to be dense: \(|E| \gg |V|\)

▶ What about sparse graphs: \(|E| \approx |V|\)?
THE SEMI-CIRCLE LAW

- Erdős-Rényi model: \(n \) nodes, edges present with proba \(p_n \)

Theorem (Wigner, 50’s): if \(np_n(1 - p_n) \to \infty \),

\[
\mu_{G_n} \left(\sqrt{np_n(1 - p_n)}d\lambda \right) \xrightarrow{n \to \infty} \frac{\sqrt{4 - \lambda^2}}{2\pi} 1(|\lambda| \leq 2) d\lambda.
\]

- Uniformly chosen random \(d_n \)-regular graph on \(n \) nodes.

Theorem (Tran-Vu-Wang, 2010): if \(d_n(1 - d_n/n) \to \infty \),

\[
\mu_{G_n} \left(\sqrt{d_n(1 - d_n/n)}d\lambda \right) \xrightarrow{n \to \infty} \frac{\sqrt{4 - \lambda^2}}{2\pi} 1(|\lambda| \leq 2) d\lambda.
\]

- In both cases, graphs are required to be dense: \(|E| \gg |V|\)
THE SEMI-CIRCLE LAW

- Erdős-Rényi model: \(n \) nodes, edges present with proba \(p_n \)

Theorem (Wigner, 50’s): if \(np_n(1 - p_n) \to \infty \),

\[
\mu_{G_n} \left(\sqrt{np_n(1 - p_n)} d\lambda \right) \xrightarrow{n \to \infty} \frac{\sqrt{4 - \lambda^2}}{2\pi} 1(|\lambda| \leq 2) d\lambda.
\]

- Uniformly chosen random \(d_n \)-regular graph on \(n \) nodes.

Theorem (Tran-Vu-Wang, 2010): if \(d_n(1 - d_n/n) \to \infty \),

\[
\mu_{G_n} \left(\sqrt{d_n(1 - d_n/n)} d\lambda \right) \xrightarrow{n \to \infty} \frac{\sqrt{4 - \lambda^2}}{2\pi} 1(|\lambda| \leq 2) d\lambda.
\]

- In both cases, graphs are required to be **dense**: \(|E| \gg |V| \)
- What about **sparse graphs**: \(|E| \propto |V| \)?
GRAPH WITH AVERAGE DEGREE 3 ON 1000 NODES
GRAPH WITH AVERAGE DEGREE 3 ON 1000 NODES
GRAPH WITH AVERAGE DEGREE 3 ON 10000 NODES
RANDOM 3-REGULAR GRAPH ON 10000 NODES
RANDOM 3-REGULAR GRAPH ON 10000 NODES
Along many sequences \(\{G_n\}_{n \geq 1} \) of sparse graphs, the spectrum \(\mu \) converges to a deterministic, model-dependent limit \(\mu \):

\[
\mu_{G_n} \rightarrow \mu \quad \text{as} \quad n \to \infty
\]

- Random \(d \)-regular graph on \(n \) nodes (McKay, 1981)
- Erdős-Rényi graph with edge probability \(p \sim cn \) (Khorunzhy-Shcherbina-Vengerovsky 2004)
- Uniform random tree on \(n \) vertices (Bhamidi-Evans-Sen 2009)

Actually, this phenomenon is just one of the many consequences of the fact that the underlying local geometry converges.
Along many sequences \(\{ G_n \}_{n \geq 1} \) of sparse graphs, the spectrum \(\mu_{G_n} \) approaches a deterministic, \textbf{model-dependent} limit \(\mu \):
SPECTRA OF SPARSE GRAPHS

Along many sequences \(\{ G_n \}_{n \geq 1} \) of sparse graphs, the spectrum \(\mu_{G_n} \) approaches a deterministic, \textbf{model-dependent} limit \(\mu \):

\[
\mu_{G_n} \xrightarrow{n \to \infty} \mu.
\]
Along many sequences $\{G_n\}_{n \geq 1}$ of sparse graphs, the spectrum μ_G approaches a deterministic, model-dependent limit μ:

$$\mu_G \xrightarrow{n \to \infty} \mu.$$

- Random d-regular graph on n nodes (McKay, 1981)
Along many sequences $\{G_n\}_{n \geq 1}$ of sparse graphs, the spectrum μ_{G_n} approaches a deterministic, **model-dependent** limit μ:

$$\mu_{G_n} \xrightarrow{n \to \infty} \mu.$$

- Random d—regular graph on n nodes (McKay, 1981)
- Erdős-Rényi $p_n \sim \frac{c}{n}$ (Khorunzhy-Shcherbina-Vengerovsky ’04)
Along many sequences \(\{G_n\}_{n \geq 1} \) of sparse graphs, the spectrum \(\mu_{G_n} \) approaches a deterministic, \textbf{model-dependent} limit \(\mu \):

\[
\mu_{G_n} \xrightarrow{n \to \infty} \mu.
\]

- Random \(d \)-regular graph on \(n \) nodes (McKay, 1981)
- Erdős-Rényi \(p_n \sim \frac{c}{n} \) (Khorunzhy-Shcherbina-Vengerovsky ’04)
- Uniform random tree on \(n \) vertices (Bhamidi-Evans-Sen ’09)
Along many sequences \(\{ G_n \}_{n \geq 1} \) of sparse graphs, the spectrum \(\mu_{G_n} \) approaches a deterministic, model-dependent limit \(\mu \):

\[
\mu_{G_n} \xrightarrow{n \to \infty} \mu.
\]

- Random \(d \)–regular graph on \(n \) nodes (McKay, 1981)
- Erdős-Rényi \(p_n \sim \frac{c}{n} \) (Khorunzhy-Shcherbina-Vengerovsky ’04)
- Uniform random tree on \(n \) vertices (Bhamidi-Evans-Sen ’09)

Actually, this phenomenon is just one of the many consequences of the fact that the underlying local geometry converges.
LOCAL WEAK CONVERGENCE (Benjamini-Schramm)
LOCAL WEAK CONVERGENCE (Benjamini-Schramm)

\[G_n \xrightarrow{\text{loc.}} \xrightarrow{n \to \infty} \mathcal{L} \]

\[\sum_{o \in V_n} 1 \{ B_R(G_n, o) \equiv \ast \} \xrightarrow{n \to \infty} \mathcal{L}(B_R(G, o) \equiv \ast) \]

\(\Delta L \) describes the local geometry of \(G_n \) around a random node.
LOCAL WEAK CONVERGENCE (Benjamini-Schramm)

\[G_n \xrightarrow{\text{loc.}}_{n \to \infty} \mathcal{L} \]

\[\forall R \in \mathbb{N}, 1 \leq |V_n| \sum_{o \in V_n} 1 \{ BR(G, o) \equiv \bullet \} \xrightarrow{n \to \infty} \mathcal{L}(BR(G, o) \equiv \bullet). \]

\[\triangledown \mathcal{L} \text{ describes the local geometry of } G_n \text{ around a random node.} \]
LOCAL WEAK CONVERGENCE (BENJAMINI-SCHRAMM)

\[G_n \xrightarrow{\text{loc.}}_{n \to \infty} \mathcal{L} \]

\[\mathcal{L} \] describes the local geometry of \(G_n \) around a random node.

\(\mathcal{L} \): probability distribution over locally finite rooted graphs \((G, o)\).
Local weak convergence (Benjamini–Schramm)

\[G_n \xrightarrow{\text{loc.}} \xrightarrow{n \to \infty} \mathcal{L} \]

\[\forall R \in \mathbb{N}, \quad \frac{1}{|V_n|} \sum_{o \in V_n} 1_{\{B_R(G_n,o) \equiv \bullet\}} \xrightarrow{n \to \infty} \mathcal{L}(B_R(G,o) \equiv \bullet). \]

\(\mathcal{L} \): probability distribution over locally finite rooted graphs \((G, o)\).
LOCAL WEAK CONVERGENCE (Benjamini-Schramm)

\[G_n \xrightarrow{\text{loc.}} \xrightarrow{n \to \infty} \mathcal{L} \]

\(\mathcal{L} \): probability distribution over locally finite rooted graphs \((G, o)\).

\[\forall R \in \mathbb{N}, \quad \frac{1}{|V_n|} \sum_{o \in V_n} \mathbb{1}_{\{B_R(G_n, o) = \bullet\}} \xrightarrow{n \to \infty} \mathcal{L}(B_R(G, o) = \bullet). \]

\(\mathcal{L} \) describes the local geometry of \(G_n \) around a random node.
SOME SPARSE GRAPHS AND THEIR LOCAL LIMITS

- \(G_n = \) box of size \(n \times \cdots \times n \) in the lattice \(\mathbb{Z}^d \), \(L^d = \) Dirac at \((\mathbb{Z}^d, 0) \)
- \(G_n = \) random \(d \)-regular graph on \(n \) nodes, \(L = \) Dirac at the \(d \)-regular infinite rooted tree
- \(G_n = \) Erdős-Rényi graph with \(p_n = c/n \) on \(n \) nodes, \(L = \) law of a Galton-Watson tree with degree Poisson \(c \)
- \(G_n = \) random graph with degree distribution \(\nu \) on \(n \) nodes, \(L = \) law of a Galton-Watson tree with degree distribution \(\nu \)
- \(G_n = \) uniform random tree on \(n \) nodes, \(L = \) Infinite Skeleton Tree (Grimmett, 1980)
- \(G_n = \) preferential attachment graph on \(n \) nodes, \(L = \) Polya-point graph (Berger-Borgs-Chayes-Sabery, 2009)
SOME SPARSE GRAPHS AND THEIR LOCAL LIMITS

- \(G_n = \) box of size \(n \times \ldots \times n \) in the lattice \(\mathbb{Z}^d \)
SOME SPARSE GRAPHS AND THEIR LOCAL LIMITS

- \(G_n = \) box of size \(n \times \ldots \times n \) in the lattice \(\mathbb{Z}^d \)
- \(\mathcal{L} = \) dirac at \((\mathbb{Z}^d, 0) \)
SOME SPARSE GRAPHS AND THEIR LOCAL LIMITS

- $G_n = \text{box of size } n \times \ldots \times n \text{ in the lattice } \mathbb{Z}^d$
- $\mathcal{L} = \text{dirac at } (\mathbb{Z}^d, 0)$
- $G_n = \text{random } d-\text{regular graph on } n \text{ nodes}$
SOME SPARSE GRAPHS AND THEIR LOCAL LIMITS

- \(G_n = \) box of size \(n \times \ldots \times n \) in the lattice \(\mathbb{Z}^d \)
 \(\mathcal{L} = \) dirac at \((\mathbb{Z}^d, 0) \)

- \(G_n = \) random \(d \)-regular graph on \(n \) nodes
 \(\mathcal{L} = \) dirac at the \(d \)-regular infinite rooted tree

- \(G_n = \) Erdős-Rényi graph with \(p_n = c \) on \(n \) nodes
 \(\mathcal{L} = \) law of a Galton-Watson tree with degree Poisson(\(c \))

- \(G_n = \) random graph with degree distribution \(\nu \) on \(n \) nodes
 \(\mathcal{L} = \) law of a Galton-Watson tree with degree distribution \(\nu \)

- \(G_n = \) uniform random tree on \(n \) nodes
 \(\mathcal{L} = \) Infinite Skeleton Tree (Grimmett, 1980)

- \(G_n = \) preferential attachment graph on \(n \) nodes
 \(\mathcal{L} = \) Polya-point graph (Berger-Borgs-Chayes-Sabery, 2009)
SOME SPARSE GRAPHS AND THEIR LOCAL LIMITS

- $G_n =$ box of size $n \times \ldots \times n$ in the lattice \mathbb{Z}^d
 $\mathcal{L} =$ dirac at $(\mathbb{Z}^d, 0)$

- $G_n =$ random $d-$regular graph on n nodes
 $\mathcal{L} =$ dirac at the $d-$regular infinite rooted tree

- $G_n =$ Erdős-Rényi graph with $p_n = \frac{c}{n}$ on n nodes
 $\mathcal{L} =$ law of a Galton-Watson tree with degree Poisson(c)

- $G_n =$ random graph with degree distribution ν on n nodes
 $\mathcal{L} =$ law of a Galton-Watson tree with degree distribution ν

- $G_n =$ uniform random tree on n nodes
 $\mathcal{L} =$ Infinite Skeleton Tree (Grimmett, 1980)

- $G_n =$ preferential attachment graph on n nodes
 $\mathcal{L} =$ Polya-point graph (Berger-Borgs-Chayes-Sabery, 2009)
SOME SPARSE GRAPHS AND THEIR LOCAL LIMITS

- $G_n = \text{box of size } n \times \ldots \times n \text{ in the lattice } \mathbb{Z}^d$
 $\mathcal{L} = \text{dirac at } (\mathbb{Z}^d, 0)$

- $G_n = \text{random } d-\text{regular graph on } n \text{ nodes}$
 $\mathcal{L} = \text{dirac at the } d-\text{regular infinite rooted tree}$

- $G_n = \text{Erdős-Rényi graph with } p_n = \frac{c}{n} \text{ on } n \text{ nodes}$
 $\mathcal{L} = \text{law of a Galton-Watson tree with degree Poisson}(c)$
SOME SPARSE GRAPHS AND THEIR LOCAL LIMITS

- G_n = box of size $n \times \ldots \times n$ in the lattice \mathbb{Z}^d
 $\mathcal{L} = \text{dirac at } (\mathbb{Z}^d, 0)$

- G_n = random d-regular graph on n nodes
 $\mathcal{L} = \text{dirac at the } d$-regular infinite rooted tree

- G_n = Erdős-Rényi graph with $p_n = \frac{c}{n}$ on n nodes
 $\mathcal{L} = \text{law of a Galton-Watson tree with degree Poisson}(c)$

- G_n = random graph with degree distribution ν on n nodes
SOME SPARSE GRAPHS AND THEIR LOCAL LIMITS

- $G_n = \text{box of size } n \times \ldots \times n \text{ in the lattice } \mathbb{Z}^d$
 $\mathcal{L} = \text{dirac at } (\mathbb{Z}^d, 0)$

- $G_n = \text{random } d-\text{regular graph on } n \text{ nodes}$
 $\mathcal{L} = \text{dirac at the } d-\text{regular infinite rooted tree}$

- $G_n = \text{Erdős-Rényi graph with } p_n = \frac{c}{n} \text{ on } n \text{ nodes}$
 $\mathcal{L} = \text{law of a Galton-Watson tree with degree Poisson}(c)$

- $G_n = \text{random graph with degree distribution } \nu \text{ on } n \text{ nodes}$
 $\mathcal{L} = \text{law of a Galton-Watson tree with degree distribution } \nu$
SOME SPARSE GRAPHS AND THEIR LOCAL LIMITS

- $G_n = \text{box of size } n \times \ldots \times n \text{ in the lattice } \mathbb{Z}^d$
- $\mathcal{L} = \text{dirac at } (\mathbb{Z}^d, 0)$

- $G_n = \text{random } d\text{-regular graph on } n \text{ nodes}$
- $\mathcal{L} = \text{dirac at the } d\text{-regular infinite rooted tree}$

- $G_n = \text{Erdős-Rényi graph with } p_n = \frac{c}{n} \text{ on } n \text{ nodes}$
- $\mathcal{L} = \text{law of a Galton-Watson tree with degree Poisson}(c)$

- $G_n = \text{random graph with degree distribution } \nu \text{ on } n \text{ nodes}$
- $\mathcal{L} = \text{law of a Galton-Watson tree with degree distribution } \nu$

- $G_n = \text{uniform random tree on } n \text{ nodes}$
SOME SPARSE GRAPHS AND THEIR LOCAL LIMITS

- $G_n = \text{box of size } n \times \ldots \times n \text{ in the lattice } \mathbb{Z}^d$
 $\mathcal{L} = \text{dirac at } (\mathbb{Z}^d, 0)$

- $G_n = \text{random } d\text{-regular graph on } n \text{ nodes}$
 $\mathcal{L} = \text{dirac at the } d\text{-regular infinite rooted tree}$

- $G_n = \text{Erdős-Rényi graph with } p_n = \frac{c}{n} \text{ on } n \text{ nodes}$
 $\mathcal{L} = \text{law of a Galton-Watson tree with degree Poisson}(c)$

- $G_n = \text{random graph with degree distribution } \nu \text{ on } n \text{ nodes}$
 $\mathcal{L} = \text{law of a Galton-Watson tree with degree distribution } \nu$

- $G_n = \text{uniform random tree on } n \text{ nodes}$
 $\mathcal{L} = \text{Infinite Skeleton Tree} \ (\text{Grimmett, 1980})$
SOME SPARSE GRAPHS AND THEIR LOCAL LIMITS

- $G_n = \text{box of size } n \times \ldots \times n \text{ in the lattice } \mathbb{Z}^d$
 $\mathcal{L} = \text{dirac at } (\mathbb{Z}^d, 0)$

- $G_n = \text{random } d-\text{regular graph on } n \text{ nodes}$
 $\mathcal{L} = \text{dirac at the } d-\text{regular infinite rooted tree}$

- $G_n = \text{Erdős-Rényi graph with } p_n = \frac{c}{n} \text{ on } n \text{ nodes}$
 $\mathcal{L} = \text{law of a Galton-Watson tree with degree Poisson}(c)$

- $G_n = \text{random graph with degree distribution } \nu \text{ on } n \text{ nodes}$
 $\mathcal{L} = \text{law of a Galton-Watson tree with degree distribution } \nu$

- $G_n = \text{uniform random tree on } n \text{ nodes}$
 $\mathcal{L} = \text{Infinite Skeleton Tree} \text{ (Grimmett, 1980)}$

- $G_n = \text{preferential attachment graph on } n \text{ nodes}$
SOME SPARSE GRAPHS AND THEIR LOCAL LIMITS

- $G_n = \text{box of size } n \times \ldots \times n \text{ in the lattice } \mathbb{Z}^d$
 $\mathcal{L} = \text{dirac at } (\mathbb{Z}^d, 0)$

- $G_n = \text{random } d-\text{regular graph on } n \text{ nodes}$
 $\mathcal{L} = \text{dirac at the } d-\text{regular infinite rooted tree}$

- $G_n = \text{Erdős-Rényi graph with } p_n = \frac{c}{n} \text{ on } n \text{ nodes}$
 $\mathcal{L} = \text{law of a Galton-Watson tree with degree Poisson}(c)$

- $G_n = \text{random graph with degree distribution } \nu \text{ on } n \text{ nodes}$
 $\mathcal{L} = \text{law of a Galton-Watson tree with degree distribution } \nu$

- $G_n = \text{uniform random tree on } n \text{ nodes}$
 $\mathcal{L} = \text{Infinite Skeleton Tree} \text{ (Grimmett, 1980)}$

- $G_n = \text{preferential attachment graph on } n \text{ nodes}$
 $\mathcal{L} = \text{Polya-point graph} \text{ (Berger-Borgs-Chayes-Sabery, 2009)}$
Can we give a sense to $\mu_G = \frac{1}{|V|} \sum \delta_{\lambda_i}$ when G is replaced by L?

If $G = (V, E)$ is a finite graph, we have for $z \in \mathbb{C} \setminus \mathbb{R}$

$$\int_{\mathbb{R}} 1 \lambda - z \mu_G(d\lambda) = \frac{1}{|V|} \sum_{o \in V} (A_G - z) - 1_{oo}.$$

If L is the law of a random rooted graph (G, o), define μ_L by

$$\int_{\mathbb{R}} 1 \lambda - z \mu_L(d\lambda) = \mathbb{E}\left[\langle e_o | (A_G - z) - 1 \rangle e_o \right].$$

Fact: $G_n \loc \rightarrow_{n \to \infty} L \Rightarrow \mu_{G_n} \rightarrow_{n \to \infty} \mu_L$.
Can we give a sense to \(\mu_G = \frac{1}{|V|} \sum_i \delta_{\lambda_i} \) when \(G \) is replaced by \(\mathcal{L} \)?
SPECTRAL CONVERGENCE REVISITED

Can we give a sense to $\mu_G = \frac{1}{|V|} \sum_i \delta_{\lambda_i}$ when G is replaced by \mathcal{L}?

If $G = (V, E)$ is a finite graph, we have for $z \in \mathbb{C} \setminus \mathbb{R}$

$$\int_{\mathbb{R}} \frac{1}{\lambda - z} \mu_G(d\lambda) = \frac{1}{|V|} \sum_{o \in V} (A_G - z)^{-1}_{oo}.$$
SPECTRAL CONVERGENCE REVISITED

Can we give a sense to $\mu_G = \frac{1}{|V|} \sum \delta_{\lambda_i}$ when G is replaced by L?

If $G = (V, E)$ is a finite graph, we have for $z \in \mathbb{C} \setminus \mathbb{R}$

$$\int_{\mathbb{R}} \frac{1}{\lambda - z} \mu_G(d\lambda) = \frac{1}{|V|} \sum_{o \in V} (A_G - z)^{-1}_{oo}.$$

If L is the law of a random rooted graph (G, o), define μ_L by

$$\int_{\mathbb{R}} \frac{1}{\lambda - z} \mu_L(d\lambda) = \mathbb{E} \left[\langle e_o \vert (A_G - z)^{-1} e_o \rangle \right].$$
SPECTRAL CONVERGENCE REVISITED

Can we give a sense to \(\mu_G = \frac{1}{|V|} \sum_i \delta_{\lambda_i} \) when \(G \) is replaced by \(\mathcal{L} \)?

If \(G = (V, E) \) is a finite graph, we have for \(z \in \mathbb{C} \setminus \mathbb{R} \)

\[
\int \frac{1}{\lambda - z} \mu_G(d\lambda) = \frac{1}{|V|} \sum_{o \in V} (A_G - z)_{oo}^{-1}.
\]

If \(\mathcal{L} \) is the law of a random rooted graph \((G, o) \), define \(\mu_{\mathcal{L}} \) by

\[
\int \frac{1}{\lambda - z} \mu_{\mathcal{L}}(d\lambda) = \mathbb{E} \left[\langle e_o | (A_G - z)^{-1} e_o \rangle \right].
\]

Fact:

\[
G_n \xrightarrow{\text{loc.}} \mathcal{L} \quad \implies \quad \mu_{G_n} \xrightarrow{n \to \infty} \mu_{\mathcal{L}}
\]
RECURSION IN THE CASE OF TREES

\[T = 1 \ 2 \ \cdots \ d \]

\[T = \bigg(A T - z \bigg) - 1 = -z + \sum_{d} (A_{Ti} - z) - 1 \]

− Explicit resolution for infinite regular trees
− Recursive distributional equation for Galton-Watson trees
− In principle, this equation contains everything about \(\mu \)

Example: computation of \(\mu_L (\{0\}) \) (Bordenave-Lelarge-S. '11)
RECURSION IN THE CASE OF TREES

\[
T = T_1 T_2 T_d
\]

\[
(A_T - z)^{-1}_{oo} = \frac{-1}{z + \sum_{i=1}^{d}(A_{T_i} - z)^{-1}_{ii}}
\]
RECURSION IN THE CASE OF TREES

\(T = T_1 \cup T_2 \cup T_d \)

\[(A_T - z)^{-1}_{oo} = \frac{-1}{z + \sum_{i=1}^d (A_{T_i} - z)_{ii}^{-1}} \]

- Explicit resolution for infinite regular trees
RECURSION IN THE CASE OF TREES

\[T = 1 \quad 2 \quad d \]

\[(A_T - z)^{-1} = \frac{-1}{z + \sum_{i=1}^{d} (A_{T_i} - z)^{-1}} \]

- Explicit resolution for infinite regular trees
- Recursive distributional equation for Galton-Watson trees
RECURSION IN THE CASE OF TREES

\[T = T_1 T_2 T_d \]

\[
(A_T - z)^{-1} = \frac{-1}{z + \sum_{i=1}^{d} (A_{T_i} - z)^{-1}}
\]

- Explicit resolution for infinite regular trees
- Recursive distributional equation for Galton-Watson trees
- In principle, this equation contains everything about \(\mu_L \)
RECURSION IN THE CASE OF TREES

\[(A_T - z)^{-1} = \frac{-1}{z + \sum_{i=1}^{d}(A_{T_i} - z)^{-1}} \]

- Explicit resolution for infinite regular trees
- Recursive distributional equation for Galton-Watson trees
- In principle, this equation contains everything about \(\mu_L \)
- Example: computation of \(\mu_L(\{0\}) \) (Bordenave-Lelarge-S. ’11)
Let's keep things simple: L is a GW-tree with degree Poisson(c).

$$
\mu_L = \mu_{pp} + \mu_{sc} + \mu_{ac}
$$

Open problem: determine the support of each type of spectrum.

Theorem (Bordenave-Sen-Virag'13): $\mu_{pp}(R) < 1$ as soon as $c > 1$.

We will focus on the pure-point part, i.e. the atoms of μ_L. This specific question was raised by Ben Arous (open problem 14, AMS workshop on random matrices, 2010).

Remark: every finite tree has positive probability under L.

\forall tree eigenvalues are atoms of μ_L (e.g. 0, 1, $\sqrt{3}$, $2 \cos \frac{2\pi}{5}$,...)
Let’s keep things simple: \(\mathcal{L} = \text{GW-tree with degree Poisson}(c) \).
SPECTRA OF GRAPH LIMITS: LITTLE IS KNOWN

Let’s keep things simple: $\mathcal{L} = \text{GW-tree with degree Poisson}(c)$.

$$\mu_{\mathcal{L}} = \mu_{pp} + \mu_{sc} + \mu_{ac}$$
SPECTRA OF GRAPH LIMITS: LITTLE IS KNOWN

Let’s keep things simple: \(\mathcal{L} \) = GW-tree with degree Poisson(c).

\[\mu_{\mathcal{L}} = \mu_{pp} + \mu_{sc} + \mu_{ac} \]

Open problem: determine the support of each type of spectrum.
Let’s keep things simple: \(\mathcal{L} = \text{GW-tree with degree Poisson}(c) \).

\[\mu_L = \mu_{pp} + \mu_{sc} + \mu_{ac} \]

Open problem: determine the support of each type of spectrum.

Theorem (Bordenave-Sen-Virag’13): \(\mu_{pp}(\mathbb{R}) < 1 \) as soon as \(c > 1 \)
SPECTRA OF GRAPH LIMITS: LITTLE IS KNOWN

Let’s keep things simple: $\mathcal{L} = \text{GW-tree with degree Poisson}(c)$.

$$\mu_\mathcal{L} = \mu_{pp} + \mu_{sc} + \mu_{ac}$$

Open problem: determine the support of each type of spectrum.

Theorem (Bordenave-Sen-Virag’13): $\mu_{pp}(\mathbb{R}) < 1$ as soon as $c > 1$

We will focus on the pure-point part, i.e. the atoms of $\mu_\mathcal{L}$. This specific question was raised by Ben Arous (open problem 14, AMS workshop on random matrices, 2010).
SPECTRA OF GRAPH LIMITS: LITTLE IS KNOWN

Let’s keep things simple: $\mathcal{L} = \text{GW-tree with degree Poisson}(c)$.

$$\mu_{\mathcal{L}} = \mu_{pp} + \mu_{sc} + \mu_{ac}$$

Open problem: determine the support of each type of spectrum.

Theorem (Bordenave-Sen-Virag’13): $\mu_{pp}(\mathbb{R}) < 1$ as soon as $c > 1$

We will focus on the pure-point part, i.e. the atoms of $\mu_{\mathcal{L}}$. This specific question was raised by Ben Arous (open problem 14, AMS workshop on random matrices, 2010).

Remark: every finite tree has positive probability under \mathcal{L}.
Let’s keep things simple: $\mathcal{L} = \text{GW-tree with degree Poisson}(c)$.

$$\mu_{\mathcal{L}} = \mu_{pp} + \mu_{sc} + \mu_{ac}$$

Open problem: determine the support of each type of spectrum.

Theorem (Bordenave-Sen-Virag’13): $\mu_{pp}(\mathbb{R}) < 1$ as soon as $c > 1$

We will focus on the pure-point part, i.e. the atoms of $\mu_{\mathcal{L}}$. This specific question was raised by Ben Arous (open problem 14, AMS workshop on random matrices, 2010).

Remark: every finite tree has positive probability under \mathcal{L}.

\triangleright all tree eigenvalues are atoms of $\mu_{\mathcal{L}}$ (e.g. $0, 1, \sqrt{3}, 2 \cos \frac{2\pi}{5}, \ldots$)
A theorem (Lück'02, Veselić'05, Abért-Thom-Virág'11). Fix $\lambda \in \mathbb{R}$.

\[\sup_{A \in A} \left| \mu_A(\lambda - \varepsilon, \lambda + \varepsilon) - \mu_A(\{\lambda\}) \right| \xrightarrow{\varepsilon \to 0} 0. \]

Corollary. If $G_n \xrightarrow{\text{loc}} L \xrightarrow{n \to \infty}$, then not only $\mu_{G_n} \xrightarrow{n \to \infty} \mu_L$ but also $\forall \lambda \in \mathbb{R}, \mu_{G_n}(\{\lambda\}) \xrightarrow{n \to \infty} \mu_L(\{\lambda\})$.

In particular, $\mu_L(\{\lambda\}) = 0$ unless λ is a totally real algebraic integer (= root of some real-rooted monic integer polynomial).
SPECTRUM OF INTEGER MATRICES

\[A = \{ \text{symmetric integer matrices with spectral norm } \leq \Delta \} . \]
SPECTRUM OF INTEGER MATRICES

\[A = \{ \text{symmetric integer matrices with spectral norm } \leq \Delta \} \]

Theorem (Lück’02, Veselić’05, Abért-Thom-Virág’11). Fix \(\lambda \in \mathbb{R} \).

\[
\sup_{A \in A} \left| \mu_A ([\lambda - \varepsilon, \lambda + \varepsilon]) - \mu_A (\{ \lambda \}) \right| \xrightarrow{\varepsilon \to 0} 0.
\]

Corollary. If \(G_n^\text{loc} \xrightarrow{n \to \infty} L \), then not only \(\mu_{G_n} \xrightarrow{n \to \infty} \mu_L \) but also \(\forall \lambda \in \mathbb{R}, \mu_{G_n} (\{ \lambda \}) \xrightarrow{n \to \infty} \mu_L (\{ \lambda \}) \).

In particular, \(\mu_L (\{ \lambda \}) = 0 \) unless \(\lambda \) is a totally real algebraic integer (= root of some real-rooted monic integer polynomial).
SPECTRUM OF INTEGER MATRICES

\[A = \{ \text{symmetric integer matrices with spectral norm } \leq \Delta \} . \]

Theorem (Lück’02, Veselić’05, Abért-Thom-Virág’11). Fix \(\lambda \in \mathbb{R} \).

\[
\sup_{A \in A} \left| \mu_A ([\lambda - \varepsilon, \lambda + \varepsilon]) - \mu_A (\{\lambda\}) \right| \xrightarrow{\varepsilon \to 0} 0.
\]

Corollary. If \(G_n \xrightarrow{\text{loc.}} L \), then not only \(\mu_{G_n} \xrightarrow{n \to \infty} \mu_L \) but also
SPECTRUM OF INTEGER MATRICES

\[A = \{ \text{symmetric integer matrices with spectral norm } \leq \Delta \} . \]

Theorem (Lück’02, Veselić’05, Abért-Thom-Virág’11). Fix \(\lambda \in \mathbb{R} \).

\[\sup_{A \in A} \left| \mu_A ([\lambda - \varepsilon, \lambda + \varepsilon]) - \mu_A(\{\lambda\}) \right| \xrightarrow{\varepsilon \to 0} 0. \]

Corollary. If \(G_n \xrightarrow{\text{loc.}} L \), then not only \(\mu_{G_n} \xrightarrow{n \to \infty} \mu_L \) but also

\[\forall \lambda \in \mathbb{R}, \quad \mu_{G_n}(\{\lambda\}) \xrightarrow{n \to \infty} \mu_L(\{\lambda\}). \]
SPECTRUM OF INTEGER MATRICES

\[A = \{ \text{symmetric integer matrices with spectral norm } \leq \Delta \} \, . \]

Theorem (Lück’02, Veselić’05, Abért-Thom-Virág’11). Fix \(\lambda \in \mathbb{R} \).

\[
\sup_{A \in A} \left| \mu_A ([\lambda - \varepsilon, \lambda + \varepsilon]) - \mu_A (\{\lambda\}) \right| \xrightarrow[\varepsilon \to 0]{} 0.
\]

Corollary. If \(G_n \xrightarrow{loc.} n \to \infty L \), then not only \(\mu_{G_n} \xrightarrow{n \to \infty} \mu_L \) but also

\[
\forall \lambda \in \mathbb{R}, \quad \mu_{G_n}(\{\lambda\}) \xrightarrow{n \to \infty} \mu_L(\{\lambda\}) \, .
\]

In particular, \(\mu_L(\{\lambda\}) = 0 \) unless \(\lambda \) is a **totally real algebraic integer** (\(= \) root of some real-rooted monic integer polynomial).
We are left with the following (crude) inner and outer-bounds:

\[
\{ \text{tree eigenvalues} \} \subseteq \text{Atoms}(\mu_L) \subseteq \{ \text{totally real alg. integers} \}
\]

Theorem (S. 2013): the inner and outer-bounds coincide.

Remark: the weaker assertion that every totally real algebraic integer is an eigenvalue of some symmetric integer matrix is known as Hofmann's conjecture (1975). It was proved by Estes (1992).

Corollary: many graph limits have the set of totally real algebraic integers as atomic support. This includes all Galton-Watson trees with \(\text{supp}(\nu) = N \), as well as the Infinite Skeleton Tree.
SUMMING UP

We are left with the following (crude) inner and outer-bounds:

\[\{ \text{tree eigenvalues} \} \subseteq \text{Atoms}(\mu_{\mathcal{L}}) \subseteq \{ \text{totally real alg. integers} \} \]
SUMMING UP

We are left with the following (crude) inner and outer-bounds:

\{\text{tree eigenvalues}\} \subseteq \text{Atoms}(\mu_L) \subseteq \{\text{totally real alg. integers}\}

Theorem (S. 2013): the inner and outer-bounds coincide.
We are left with the following (crude) inner and outer-bounds:

\[\{ \text{tree eigenvalues} \} \subseteq \text{Atoms}(\mu_L) \subseteq \{ \text{totally real alg. integers} \} \]

Theorem (S. 2013): the inner and outer-bounds coincide.

Remark: the weaker assertion that every *totally real algebraic integer is an eigenvalue of some symmetric integer matrix* is known as Hofmann's conjecture (1975). It was proved by Estes (1992).
SUMMING UP

We are left with the following (crude) inner and outer-bounds:

\[\{ \text{tree eigenvalues} \} \subseteq \text{Atoms}(\mu_L) \subseteq \{ \text{totally real alg. integers} \} \]

Theorem (S. 2013): the inner and outer-bounds coincide.

Remark: the weaker assertion that *every totally real algebraic integer is an eigenvalue of some symmetric integer matrix* is known as Hofmann’s conjecture (1975). It was proved by Estes (1992).

Corollary: many graph limits have the set of totally real algebraic integers as atomic support. This includes all *Galton-Watson trees* with \(\text{supp}(\nu) = \mathbb{N} \), as well as the *Infinite Skeleton Tree*.
PROOF IDEA: RECURSIVE FORMULATION

To a rooted tree T with root o, associate a rational function $f_T(x) := 1 - \Phi_T(x)\frac{x}{\Phi_T(x)}\Phi_T(o)(x)$ with $

\Phi_T(x) = \det(x - A_T)$.

$\lambda \neq 0$ is a tree eigenvalue $\iff 1$ can be generated from 0 by repeated applications of $(x_1, \ldots, x_d) \mapsto x_2 \sum_{i=1}^d 1 - x_i(d \in \mathbb{N})$.

$T_1 T_2 T_d
T = \begin{array}{l}
\end{array}$
PROOF IDEA: RECURSIVE FORMULATION

To a rooted tree T with root o, associate a rational function

$$f_T(x) := 1 - \Phi_T(x) x \Phi_T(o)(x)$$

with

$$\Phi_T(x) = \det(x - A_T)$$

$\Delta \lambda \neq 0$ is a tree eigenvalue $\iff 1$ can be generated from 0 by repeated applications of $(x_1, \ldots, x_d) \mapsto 1 \lambda_2 \sum_{i=1}^d 1 - x_i (d \in \mathbb{N})$.
Proof Idea: Recursive Formulation

To a rooted tree T with root o, associate a rational function

$$f_T(x) := 1 - \frac{\Phi_T(x)}{x\Phi_{T\setminus o}(x)} \quad \text{with} \quad \Phi_T(x) = \det(x - A_T).$$
To a rooted tree T with root o, associate a rational function

$$f_T(x) := 1 - \frac{\Phi_T(x)}{x\Phi_{T\backslash o}(x)}$$

with

$$\Phi_T(x) = \det(x - A_T).$$

Diagram of a rooted tree T with a root node o and children nodes 1, 2, d, T_1, T_2, \ldots, T_d. The tree is structured as a hierarchical arrangement with o at the top and 1, 2, d as its children, each branching further with T_1, T_2, \ldots, T_d. The recursive formulation is illustrated through this diagram, where each node represents a subtree that can be recursively formulated using the same rational function $f_T(x)$.
To a rooted tree T with root o, associate a rational function

$$f_T(x) := 1 - \frac{\Phi_T(x)}{x \Phi_{T \setminus o}(x)}$$

with

$$\Phi_T(x) = \det(x - A_T).$$

PROOF IDEA: RECURSIVE FORMULATION
PROOF IDEA: RECURSIVE FORMULATION

To a rooted tree T with root o, associate a rational function

$$f_T(x) := 1 - \frac{\Phi_T(x)}{x \Phi_{T \setminus o}(x)} \quad \text{with} \quad \Phi_T(x) = \det(x - A_T).$$

$\triangleright \lambda \neq 0$ is a tree eigenvalue
PROOF IDEA: RECURSIVE FORMULATION

To a rooted tree T with root o, associate a rational function

$$f_T(x) := 1 - \frac{\Phi_T(x)}{x\Phi_{T\setminus o}(x)}$$

with

$$\Phi_T(x) = \det(x - A_T).$$

\[\lambda \neq 0\] is a tree eigenvalue $\iff 1$ can be generated from 0 by repeated applications of

$$(x_1, \ldots, x_d) \mapsto \frac{1}{x^2} \sum_{i=1}^{d} \frac{1}{1 - f_{T_i}(x)}$$

($d \in \mathbb{N}$).
A SURPRISING STATEMENT

Fix a totally real algebraic integer \(\lambda \neq 0 \).

Consider the smallest set \(F \subseteq \mathbb{R} \) satisfying

1. \(0 \in F \)
2. \(x, y \in F \Rightarrow x + y \in F \)
3. \(x \in F \setminus \{1\} \Rightarrow x \lambda^2 (1 - x) \in F \)

Theorem (S. 2013): \(F \) is the field generated by \(\lambda^2 \).

Corollary: \(\lambda \) is a tree eigenvalue!
A SURPRISING STATEMENT

Fix a totally real algebraic integer $\lambda \neq 0$.
A SURPRISING STATEMENT

Fix a totally real algebraic integer $\lambda \neq 0$.

Consider the smallest set $\mathcal{F} \subseteq \mathbb{R}$ satisfying

1. $0 \in \mathcal{F}$
2. $x, y \in \mathcal{F} \Rightarrow x + y \in \mathcal{F}$
3. $x \in \mathcal{F} \setminus \{1\} \Rightarrow 1 - \lambda^2 (1 - x) \in \mathcal{F}$

Theorem (S. 2013): \mathcal{F} is the field generated by λ^2.

Corollary: λ is a tree eigenvalue!
A SURPRISING STATEMENT

Fix a totally real algebraic integer $\lambda \neq 0$.
Consider the smallest set $\mathcal{F} \subseteq \mathbb{R}$ satisfying

1. $0 \in \mathcal{F}$
A SURPRISING STATEMENT

Fix a totally real algebraic integer $\lambda \neq 0$.

Consider the smallest set $\mathcal{F} \subseteq \mathbb{R}$ satisfying

1. $0 \in \mathcal{F}$
2. $x, y \in \mathcal{F} \Rightarrow x + y \in \mathcal{F}$

Theorem (S. 2013): \mathcal{F} is the field generated by λ^2.

Corollary: λ is a tree eigenvalue!
A SURPRISING STATEMENT

Fix a totally real algebraic integer \(\lambda \neq 0 \).

Consider the smallest set \(\mathcal{F} \subseteq \mathbb{R} \) satisfying

1. \(0 \in \mathcal{F} \)
2. \(x, y \in \mathcal{F} \implies x + y \in \mathcal{F} \)
3. \(x \in \mathcal{F} \setminus \{1\} \implies \frac{1}{\lambda^2(1-x)} \in \mathcal{F} \)

Theorem (S. 2013): \(\mathcal{F} \) is the field generated by \(\lambda^2 \).

Corollary: \(\lambda \) is a tree eigenvalue!
A SURPRISING STATEMENT

Fix a totally real algebraic integer $\lambda \neq 0$.

Consider the smallest set $\mathcal{F} \subseteq \mathbb{R}$ satisfying

1. $0 \in \mathcal{F}$
2. $x, y \in \mathcal{F} \implies x + y \in \mathcal{F}$
3. $x \in \mathcal{F} \setminus \{1\} \implies \frac{1}{\lambda^2(1-x)} \in \mathcal{F}$

Theorem (S. 2013): \mathcal{F} is the field generated by λ^2.

$$\mathcal{F} = \left\{ \frac{p(\lambda^2)}{q(\lambda^2)} : p, q \in \mathbb{Z}[X], q(\lambda^2) \neq 0 \right\}.$$
A SURPRISING STATEMENT

Fix a totally real algebraic integer $\lambda \neq 0$.

Consider the smallest set $\mathcal{F} \subseteq \mathbb{R}$ satisfying

1. $0 \in \mathcal{F}$
2. $x, y \in \mathcal{F} \implies x + y \in \mathcal{F}$
3. $x \in \mathcal{F} \setminus \{1\} \implies \frac{1}{\lambda^2(1-x)} \in \mathcal{F}$

Theorem (S. 2013): \mathcal{F} is the field generated by λ^2.

$$\mathcal{F} = \left\{ \frac{p(\lambda^2)}{q(\lambda^2)} : p, q \in \mathbb{Z}[X], q(\lambda^2) \neq 0 \right\}.$$

Corollary: λ is a tree eigenvalue!
Thank you for your attention!
Thank you for your attention!