Yang Mills, unitary Brownian bridge and potential theory under constraint

Mylène Maïda

Université Lille 1, Laboratoire Paul Painlevé

Hong Kong - January, 2015
Outline of the talk
Outline of the talk

▶ A very brief introduction to the physical context
Outline of the talk

▶ A very brief introduction to the physical context
▶ Unitary Brownian motion/bridge
Outline of the talk

- A very brief introduction to the physical context
- Unitary Brownian motion/bridge
- Unitary Brownian motion : asymptotics
Outline of the talk

- A very brief introduction to the physical context
- Unitary Brownian motion/bridge
- Unitary Brownian motion: asymptotics
- Unitary Brownian bridge: shape of the dominant representation
Outline of the talk

- A very brief introduction to the physical context
- Unitary Brownian motion/bridge
- Unitary Brownian motion : asymptotics
- Unitary Brownian bridge : shape of the dominant representation
- Some concluding remarks
What is Yang-Mills theory about? How is it related to unitary Brownian motion/bridge?
What is Yang-Mills theory about? How is it related to unitary Brownian motion/bridge?

A quantum particle in a classical electromagnetic field can be described by its wave function $\psi(x, t)$, which is defined up to a phase.
What is Yang-Mills theory about? How is it related to unitary Brownian motion/bridge?

A quantum particle in a classical electromagnetic field can be described by its wave function $\psi(x, t)$, which is defined up to a phase.
What is Yang-Mills theory about? How is it related to unitary Brownian motion/bridge?

A quantum particle in a classical electromagnetic field can be described by its wave function $\psi(x, t)$, which is defined up to a phase.
What is Yang-Mills theory about? How is it related to unitary Brownian motion/bridge?

A quantum particle in a classical electromagnetic field can be described by its wave function $\psi(x, t)$, which is defined up to a phase.
Yang and Mills (1954) : introduction of non abelian gauge theories
Yang and Mills (1954) : introduction of non abelian gauge theories

The “physical Yang-Mills measure” is a probability distribution on the space of connexions on a fiber bundle
Yang and Mills (1954) : introduction of non abelian gauge theories

The “physical Yang-Mills measure” is a probability distribution on the space of connexions on a fiber bundle

Two mathematical constructions (Sengupta, Lévy ∼ 2000) : a connexion on a surface M maps each loop to an element of G. One can define a probability distribution on the space of functions from $L_0(M)$ to G.

"Large N limit" : master field (Singer 1995, Lévy 2011)

Yang and Mills (1954) : introduction of non abelian gauge theories

The “physical Yang-Mills measure” is a probability distribution on the space of connexions on a fiber bundle.

Two mathematical constructions (Sengupta, Lévy ~ 2000) : a connexion on a surface M maps each loop to an element of G. One can define a probability distribution on the space of functions from $L_0(M)$ to G.

For $M = \mathbb{R}^2$ and a sequence of simple loops of area t, the corresponding random process will be a Brownian motion on G;
Yang and Mills (1954) : introduction of non abelian gauge theories

The “physical Yang-Mills measure” is a probability distribution on the space of connexions on a fiber bundle

Two mathematical constructions (Sengupta, Lévy ∼ 2000) : a connexion on a surface M maps each loop to an element of G. One can define a probability distribution on the space of functions from $L_0(M)$ to G.

For $M = \mathbb{R}^2$ and a sequence of simple loops of area t, the corresponding random process will be a Brownian motion on G; if M is a sphere, we get a Brownian bridge.
Yang and Mills (1954) : introduction of non abelian gauge theories

The “physical Yang-Mills measure” is a probability distribution on the space of connexions on a fiber bundle

Two mathematical constructions (Sengupta, Lévy ∼ 2000) : a connexion on a surface M maps each loop to an element of G. One can define a probability distribution on the space of functions from $L_0(M)$ to G.

For $M = \mathbb{R}^2$ and a sequence of simple loops of area t, the corresponding random process will be a Brownian motion on G; if M is a sphere, we get a Brownian bridge.

“Large N limit” : master field (Singer 1995, Lévy 2011)
Yang and Mills (1954) : introduction of non abelian gauge theories

The “physical Yang-Mills measure” is a probability distribution on the space of connexions on a fiber bundle

Two mathematical constructions (Sengupta, Lévy ∼ 2000) : a connexion on a surface \(M \) maps each loop to an element of \(G \). One can define a probability distribution on the space of functions from \(L_0(M) \) to \(G \).

For \(M = \mathbb{R}^2 \) and a sequence of simple loops of area \(t \), the corresponding random process will be a Brownian motion on \(G \); if \(M \) is a sphere, we get a Brownian bridge.

“Large \(N \) limit” : master field (Singer 1995, Lévy 2011)

A lot of results concerning Yang-Mills on a cylinder or a sphere (Douglas-Kazakov, Gross-Matytsin (circa 1995)), in particular

Some properties of large \(N \) two-dimensional Yang-Mills theory
Unitary Brownian motion

One can define a Brownian motion on the unit circle $U := \{ z \in \mathbb{C} / |z| = 1 \}$, as follows:

$$U_1(t) = e^{iB(t)}$$

where B is a standard Brownian motion on \mathbb{R}.

Otherwise stated, U_1 is a solution of the following very simple SDE:

$$dU_1(t) = idB(t)U_1(t) - \frac{1}{2}U_1(t)dt.$$

For $N \geq 1$, this can be generalized as follows:

$$dU_N(t) = dK_N(t)U_N(t) - \frac{1}{2}U_N(t)dt,$$

with K_N a Brownian motion on \mathbb{C} equipped with (X, Y) where $X Y^* = N \text{Tr}(X^* Y)$.

Unitary Brownian motion

One can define a Brownian motion on the unit circle $\mathbb{U} := \{z \in \mathbb{C} / |z| = 1\}$, as follows: $U_1(t) = e^{iB(t)}$, where B is a standard Brownian motion on \mathbb{R}.

For $N \geq 1$, this can be generalized as follows: $dU_N(t) = dK_N(t)U_N(t) - \frac{1}{2}U_N(t)dt$, with K_N a Brownian motion on \mathbb{U} equipped with $(X, Y)_{\mathbb{U}} = N \text{Tr}(X^{*}Y)$.
One can define a Brownian motion on the unit circle \(\mathbb{U} := \{ z \in \mathbb{C} / |z| = 1 \} \), as follows : \(U_1(t) = e^{iB(t)} \), where \(B \) is a standard Brownian motion on \(\mathbb{R} \).

Otherwise stated, \(U_1 \) is a solution of the following very simple SDE :\[dU_1(t) = idB(t)U_1(t) - \frac{1}{2} U_1(t)dt. \]
Unitary Brownian motion

One can define a Brownian motion on the unit circle
$$\mathbb{U} := \{ z \in \mathbb{C} / |z| = 1 \},$$
as follows : $U_1(t) = e^{iB(t)}$, where B is a standard Brownian motion on \mathbb{R}.

Otherwise stated, U_1 is a solution of the following very simple SDE :
$$dU_1(t) = idB(t)U_1(t) - \frac{1}{2}U_1(t)dt.$$

For $N \geq 1$, this can be generalized as follows :
$$dU_N(t) = dK_N(t)U_N(t) - \frac{1}{2}U_N(t)dt,$$

with K_N a Brownian motion on $\mathfrak{u}(N)$ equipped with
$$(X, Y)_{\mathfrak{u}(N)} = N Tr(X^*Y).$$
Probability distribution of $U_N(t)$
Probability distribution of $U_N(t)$

We recall that $U_1(t) = e^{iB(t)}$, where B is a standard Brownian motion on \mathbb{R}.
Probability distribution of $U_N(t)$

We recall that $U_1(t) = e^{iB(t)}$, where B is a standard Brownian motion on \mathbb{R}.

$$Q_{1,t}(e^{i\theta}) = \sqrt{\frac{2\pi}{t}} \sum_{k \in \mathbb{Z}} e^{-\frac{(\theta+2k\pi)^2}{2t}}$$
Probability distribution of $U_N(t)$

We recall that $U_1(t) = e^{iB(t)}$, where B is a standard Brownian motion on \mathbb{R}.

$$Q_{1,t}(e^{i\theta}) = \sqrt{\frac{2\pi}{t}} \sum_{k \in \mathbb{Z}} e^{-(\theta + 2k\pi)^2 / 2t}$$

Poisson summation formula: if $\tilde{f}(x) = \int_{\mathbb{R}} e^{iux} f(u) du$,

$$\sum_{k \in \mathbb{Z}} \tilde{f}(x + 2k\pi) = \sum_{\xi \in \mathbb{Z}} f(\xi) e^{i\xi x}.$$
Probability distribution of $U_N(t)$

We recall that $U_1(t) = e^{iB(t)}$, where B is a standard Brownian motion on \mathbb{R}.

$$Q_{1,t}(e^{i\theta}) = \sqrt{\frac{2\pi}{t}} \sum_{k \in \mathbb{Z}} e^{-\frac{(\theta + 2k\pi)^2}{2t}} = \sum_{\xi \in \mathbb{Z}} e^{-\frac{t}{2} \xi^2} e^{i\xi \theta}$$

Poisson summation formula: if $\check{f}(x) = \int_{\mathbb{R}} e^{iux} f(u) du$,

$$\sum_{k \in \mathbb{Z}} \check{f}(x + 2k\pi) = \sum_{\xi \in \mathbb{Z}} f(\xi) e^{i\xi x}.$$
Probability distribution of $U_N(t)$

We recall that $U_1(t) = e^{iB(t)}$, where B is a standard Brownian motion on \mathbb{R}.

$$Q_{1,t}(e^{i\theta}) = \sqrt{\frac{2\pi}{t}} \sum_{k \in \mathbb{Z}} e^{-(\theta + 2k\pi)^2/2t} = \sum_{\xi \in \mathbb{Z}} e^{-\frac{t}{2} \xi^2} e^{i\xi \theta}$$

Poisson summation formula: if $\hat{f}(x) = \int_{\mathbb{R}} e^{iux} f(u) du$,

$$\sum_{k \in \mathbb{Z}} \hat{f}(x + 2k\pi) = \sum_{\xi \in \mathbb{Z}} f(\xi) e^{i\xi x}.$$

In dimension N,

$$Q_{N,t}(U) = \sum_{\alpha \in \mathbb{Z}^N_\downarrow} e^{-\frac{c_2(\alpha)t}{2N}} s_{\alpha}(l_N)s_{\alpha}(U),$$
Probability distribution of $U_N(t)$

We recall that $U_1(t) = e^{iB(t)}$, where B is a standard Brownian motion on \mathbb{R}.

$$Q_{1,t}(e^{i\theta}) = \sqrt{\frac{2\pi}{t}} \sum_{k \in \mathbb{Z}} e^{-\frac{(\theta+2k\pi)^2}{2t}} = \sum_{\xi \in \mathbb{Z}} e^{-\frac{t}{2} \xi^2} e^{i\xi \theta}$$

Poisson summation formula: if $\tilde{f}(x) = \int_{\mathbb{R}} e^{iux} f(u) du$,

$$\sum_{k \in \mathbb{Z}} \tilde{f}(x + 2k\pi) = \sum_{\xi \in \mathbb{Z}} f(\xi) e^{i\xi x}.$$

In dimension N,

$$Q_{N,t}(U) = \sum_{\alpha \in \mathbb{Z}_N^\perp} e^{-\frac{c_2(\alpha)t}{2N}} s_\alpha(l_N) s_\alpha(U), \quad \text{with} \quad \Delta s_\alpha = -c_2(\alpha) s_\alpha$$
Unitary Brownian bridge
Unitary Brownian bridge

It is obtained by conditionning the Brownian motion to go back to the identity matrix at time T:
Unitary Brownian bridge

It is obtained by conditionning the Brownian motion to go back to the identity matrix at time T:

$$
\mathbb{E}[F(W_{N,T}(t_1), \ldots, W_{N,T}(t_n))] = \int_{\mathcal{U}(N)^n} F(U_1, U_2, \ldots, U_n) Q_{N,t_1} Q_{N,t_2-t_1} (U_1^{-1} U_2) \ldots
\cdots Q_{N,t_n-t_{n-1}} (U_{n-1}^{-1} U_n) Q_{N,T-t_n} (U_n^{-1}) \frac{dU_1 \ldots dU_n}{Z_{N,T}}.
$$
Unitary Brownian bridge

It is obtained by conditionning the Brownian motion to go back to the identity matrix at time T:

$$
\mathbb{E}[F(W_N, T(t_1), \ldots, W_N, T(t_n))] = \int_{U(N)^n} F(U_1, U_2, \ldots, U_n) Q_{N, t_1}(U_1) Q_{N, t_2-t_1}(U_1^{-1} U_2) \ldots \cdot Q_{N, t_n-t_{n-1}}(U_{n-1}^{-1} U_n) Q_{N, T-t_n}(U_n^{-1}) \frac{dU_1 \ldots dU_n}{Z_{N, T}}.
$$

For any $t \in (0, T)$, the density $Q_{N, t, T}^*: \mathcal{U}(N) \rightarrow \mathbb{R}$ of the distribution of $W_{N, T}(t)$ is given by

$$
Q_{N, t, T}^*(U) = \frac{Q_{N, t}(U) Q_{N, T-t}(U^{-1})}{Z_{N, T}},
$$
Unitary Brownian bridge

It is obtained by conditioning the Brownian motion to go back to the identity matrix at time T:

$$
\mathbb{E}[F(W_N, T(t_1), \ldots, W_N, T(t_n))] = \int_{\mathcal{U}(N)^n} F(U_1, U_2, \ldots, U_n) Q_{N, t_1} (U_1) Q_{N, t_2-t_1} (U_1^{-1} U_2) \ldots \ldots Q_{N, t_n-t_{n-1}} (U_{n-1}^{-1} U_n) Q_{N, T-t_n} (U_{n-1}^{-1}) \frac{dU_1 \ldots dU_n}{Z_{N, T}}.
$$

For any $t \in (0, T)$, the density $Q_{N, t, T}: \mathcal{U}(N) \to \mathbb{R}$ of the distribution of $W_{N, T}(t)$ is given by

$$
Q_{N, t, T}^*(U) = \frac{Q_{N, t}(U) Q_{N, T-t}(U^{-1})}{Z_{N, T}},
$$

with

$$
Z_{N, T} := \int_{\mathcal{U}(N)} Q_{N, t}(U) Q_{N, T-t} (U^{-1}) dU = Q_{N, T}(I_N) = \sum_{\lambda \in \mathbb{Z}_N^T} e^{-\frac{c_2(\alpha)}{2N} T s_\alpha(I_N)^2}.
$$
Convergence of the u.B.m in large dimension (Biane, 97)
Convergence of the u.B.m in large dimension (Biane, 97)

If \(\hat{\mu}_N := \frac{1}{N} \sum_{i=1}^{N} \delta_{\lambda_i,N(t)} \), then \(\int_{\mathbb{U}} x^n d\hat{\mu}_N(x) = \frac{1}{N} \sum_{i=1}^{N} \lambda_{i,N}(t)^n = \frac{1}{N} \text{Tr}(U_N(t)^n) \).
Convergence of the u.B.m in large dimension
(Biane, 97)

If \(\hat{\mu}_N := \frac{1}{N} \sum_{i=1}^{N} \delta_{\lambda_{i,N}(t)} \), then
\[
\int_{U} x^n d\hat{\mu}_N(x) = \frac{1}{N} \sum_{i=1}^{N} \lambda_{i,N}(t)^n = \frac{1}{N} \text{Tr}(U_N(t)^n).
\]

We are seeking for

\[
c_n(t) := \lim_{N \to \infty} \mathbb{E} \left[\frac{1}{N} \text{Tr}(U_N(t)^n) \right].
\]
Convergence of the u.B.m in large dimension (Biane, 97)

If $\hat{\mu}_N := \frac{1}{N} \sum_{i=1}^{N} \delta_{\lambda_{i,N}(t)}$, then $\int_{U} x^n d\hat{\mu}_N(x) = \frac{1}{N} \sum_{i=1}^{N} \lambda_{i,N}(t)^n = \frac{1}{N} \text{Tr}(U_N(t)^n)$.

We are seeking for

$$c_n(t) := \lim_{N \to \infty} \mathbb{E} \left[\frac{1}{N} \text{Tr}((U_N(t))^n) \right]$$

$$= \lim_{N \to \infty} \frac{1}{N} \sum_{\alpha \in \mathbb{Z}_N} e^{-\frac{c_2(\alpha)}{2N} t} s_\alpha(I_N) \int_{U(N)} \overline{s_\alpha(U)} \text{Tr}(U^n) dm_N(U).$$
Convergence of the u.B.m in large dimension (Biane, 97)

If \(\hat{\mu}_N := \frac{1}{N} \sum_{i=1}^N \delta_{\lambda_i,N(t)} \), then \(\int_{\mathbb{U}} x^n d\hat{\mu}_N(x) = \frac{1}{N} \sum_{i=1}^N \lambda_i,N(t)^n = \frac{1}{N} \text{Tr}(U_N(t)^n) \).

We are seeking for

\[
c_n(t) := \lim_{N \to \infty} \mathbb{E} \left[\frac{1}{N} \text{Tr}((U_N(t))^n) \right]
= \lim_{N \to \infty} \frac{1}{N} \sum_{\alpha \in \mathbb{Z}_N^+} e^{-\frac{c_2(\alpha)t}{2N}} s_{\alpha}(I_N) \int_{\mathbb{U}(N)} s_{\alpha}(U) \text{Tr}(U^n) d\mu_N(U).
\]

\[
p_n(x_1, \ldots, x_N) := \sum_{i=1}^N x_i^n = \sum_{r=0}^{n-1} (-1)^r s_{(n-r,1,1,\ldots,1,0,\ldots,0)}(x_1, \ldots, x_N).
\]
Convergence of the u.B.m in large dimension (Biane, 97)

If \(\hat{\mu}_N := \frac{1}{N} \sum_{i=1}^{N} \delta_{\lambda_i,N(t)} \), then \(\int_{\mathcal{U}} x^n d\hat{\mu}_N(x) = \frac{1}{N} \sum_{i=1}^{N} \lambda_i,N(t)^n = \frac{1}{N} \text{Tr}(U_N(t)^n) \).

We are seeking for

\[
 c_n(t) := \lim_{N \to \infty} \mathbb{E} \left[\frac{1}{N} \text{Tr}((U_N(t))^n) \right] = \lim_{N \to \infty} \frac{1}{N} \sum_{\alpha \in \mathbb{Z}_N} e^{-\frac{c_2(\alpha)t}{2N}} s_{\alpha}(I_N) \int_{\mathcal{U}(N)} s_{\alpha}(U) \text{Tr}(U^n) dm_N(U).
\]

\[
 p_n(x_1, \ldots, x_N) := \sum_{i=1}^{N} x_i^n = \sum_{r=0}^{n-1} (-1)^r s_{(n-r,1,1,\ldots,1,0,\ldots,0)}(x_1, \ldots, x_N).
\]

Ex : \(p_2 := \sum x_i^2 = \sum_{i \leq j} x_i x_j - \sum_{i < j} x_i x_j = s_2 - s_{(1,1)} \)
Convergence of the u.B.m in large dimension
(Biane, 97)

If \(\hat{\mu}_N := \frac{1}{N} \sum_{i=1}^{N} \delta_{\lambda_{i,N}(t)} \), then \(\int_{\mathbb{U}} x^n d\hat{\mu}_N(x) = \frac{1}{N} \sum_{i=1}^{N} \lambda_{i,N}(t)^n = \frac{1}{N} \text{Tr}(U_N(t)^n) \).

We are seeking for

\[
\begin{align*}
c_n(t) := \lim_{N \to \infty} \mathbb{E} \left[\frac{1}{N} \text{Tr}((U_N(t))^n) \right] \\
= \lim_{N \to \infty} \frac{1}{N} \sum_{\alpha \in \mathbb{Z}_N} e^{-\frac{c_2(\alpha)t}{2N}} s_\alpha(I_N) \int_{\mathcal{U}(N)} \overline{s_\alpha(U)} \text{Tr}(U^n) dm_N(U).
\end{align*}
\]

\[
p_n(x_1, \ldots, x_N) := \sum_{i=1}^{N} x_i^n = \sum_{r=0}^{n-1} (-1)^r s_{(n-r,1,1,\ldots,1,0,\ldots,0)}(x_1, \ldots, x_N).
\]

and \(\int_{\mathcal{U}(N)} \overline{s_\alpha(U)} s_\beta(U) dm_N(U) = \delta_{\alpha,\beta} \mathbf{1}_{\ell(\alpha) \leq N} \).
For $\alpha(n, r, N) := (n - r, 1, 1, \ldots, 1, 0, \ldots, 0)$ (with $r < n \leq N$),
For \(\alpha(n, r, N) := (n - r, 1, 1, \ldots, 1, 0, \ldots, 0) \) (with \(r < n \leq N \)), one can explicitely compute

\[
c_2(\alpha(n, r, N)) = Nn + n^2 - (2r + 1)n
\]
For $\alpha(n, r, N) := (n - r, 1, 1, \ldots, 1, 0, \ldots, 0)$ (with $r < n \leq N$), one can explicitely compute

$$c_2(\alpha(n, r, N)) = Nn + n^2 - (2r + 1)n$$

and

$$s_{\alpha(n, r, N)}(I_N) = \frac{(N + n - r - 1)!}{(N - r - 1)!r!n(n - r - 1)!}$$
For $\alpha(n, r, N) := (n - r, 1, 1, \ldots, 1, 0, \ldots, 0)$ (with $r < n \leq N$), one can explicitly compute

$$c_2(\alpha(n, r, N)) = Nn + n^2 - (2r + 1)n$$

and

$$s_{\alpha(n, r, N)}(I_N) = \frac{(N + n - r - 1)!}{(N - r - 1)!r!n(n - r - 1)!}$$

to obtain

Proposition (Biane, 97)

$$c_n(t) = e^{-\frac{nt}{2}} \sum_{k=0}^{n-1} (-1)^k \frac{t^k}{k!} n^{k-1} \binom{n}{k+1} = e^{-\frac{nt}{2}} \frac{1}{n} L_{n-1}(nt).$$
For $\alpha(n, r, N) := (n - r, 1, 1, \ldots, 1, 0, \ldots, 0)$ (with $r < n \leq N$), one can explicitely compute

$$c_2(\alpha(n, r, N)) = Nn + n^2 - (2r + 1)n$$

and

$$s_{\alpha(n,r,N)}(I_N) = \frac{(N + n - r - 1)!}{(N - r - 1)!r!n(n - r - 1)!}$$

to obtain

Proposition (Biane, 97)

$$c_n(t) = e^{-\frac{nt^2}{2}} \sum_{k=0}^{n-1} (-1)^k \frac{t^k}{k!} n^{k-1} \binom{n}{k+1} = e^{-\frac{nt^2}{2}} \frac{1}{n} L_{n-1}(nt).$$

For any $t > 0$, we denote by ν_t the probability measure on \mathbb{U} such that, for all $n \geq 0$, $\int z^{-n} d\nu_t(z) = \int z^n d\nu_t(z) = c_n(t)$.
Unitary Brownian bridge: shape of the dominant representation
Unitary Brownian bridge: shape of the dominant representation

\[Z_{N,T} = \sum_{\alpha \in Z_N^T} e^{-\frac{c_2(\alpha)}{2N}} T s_\alpha(I_N)^2. \]
Unitary Brownian bridge: shape of the dominant representation

\[Z_{N,T} = \sum_{\alpha \in \mathbb{Z}_N} e^{-\frac{c_2(\alpha)}{2N}} T s_\alpha (I_N)^2. \]

\[\hat{\mu}_\ell := \frac{1}{N} \sum_{i=1}^{N} \delta_{\frac{\alpha_i + N - i}{N}}. \]
Unitary Brownian bridge: shape of the dominant representation

\[Z_{N,T} = \sum_{\alpha \in \mathbb{Z}^N_{\downarrow}} e^{-\frac{c_2(\alpha)}{2N} T} s_\alpha (l_N)^2. \]

From harmonic analysis, we get that

\[Z_{N,T} = C_{N,T} \sum_{\ell} e^{-N^2 I_T(\hat{\mu}_\ell)}, \]

with

\[I_T(\mu) := - \int \int \ln |x - y| d\mu(x) d\mu(y) + \int \frac{T}{2} x^2 d\mu(x) \]

and

\[\hat{\mu}_\ell := \frac{1}{N} \sum_{i=1}^{N} \delta_{\frac{\alpha_i + N - i}{N}}. \]
Proposition

For all $T > 0$,

$$\lim_{N \to \infty} \frac{1}{N^2} \ln Z_{N,T} = \frac{T}{24} + \frac{3}{2} - \inf I_T(\mu),$$

with

$$I_T(\mu) = -\int \int \ln |x - y| d\mu(x) d\mu(y) + \int \frac{T}{2} x^2 d\mu(x).$$

Tools: large deviations results.
Proposition

For all $T > 0$,

$$\lim_{N \to \infty} \frac{1}{N^2} \ln Z_{N, T} = \frac{T}{24} + \frac{3}{2} - \inf_{\frac{d\mu}{d\lambda} \leq 1} I_T(\mu),$$

with

$$I_T(\mu) = -\int\int \ln |x - y| d\mu(x)d\mu(y) + \int \frac{T}{2} x^2 d\mu(x).$$
Proposition

For all $T > 0$,\[
\lim_{N \to \infty} \frac{1}{N^2} \ln Z_{N,T} = \frac{T}{24} + \frac{3}{2} - \inf \frac{d\mu}{d\lambda} \leq 1
\]

with\[
I_T(\mu) = - \iint \ln |x - y| d\mu(x) d\mu(y) + \int \frac{T}{2} x^2 d\mu(x).
\]

Tools: large deviations results.
Third order phase transition

Proposition

For any $T > 0$, there exists a unique minimizer of the functional I_T over the set L, that we denote by μ^*_T.

▶ If $T \leq \pi/2$, the density of μ^*_T with respect to Lebesgue measure is given by $d\mu^*_T(x) = T^2/\pi \sqrt{4T - x^2} [(-2\sqrt{T})^1, 2\sqrt{T}]^*(x)$.

▶ If $T > \pi/2$, the density of μ^*_T is described in terms of elliptic functions.

Consequence: The function F is of class C^2 on $\mathbb{R}^* +$ and of class C^∞ on $\mathbb{R}^* + \{\pi/2\}$. At $\pi/2$, $F(3)$ has a discontinuity of first kind.
Third order phase transition

Proposition (...)
For any $T > 0$, there exists a unique minimizer of the functional I_T over the set \mathcal{L}, that we denote by μ^*_T.

If $T \leq \frac{\pi}{2}$, the density of μ^*_T with respect to Lebesgue measure is given by

$$d\mu^*_T(x) = \frac{T^2}{\pi} \frac{1}{\sqrt{4T - x^2}} 1_{[-2\sqrt{T}, 2\sqrt{T}]}(x),$$

If $T > \frac{\pi}{2}$, the density of μ^*_T is described in terms of elliptic functions.

Consequence: The function F is of class C^2 on \mathbb{R}^*_+ and of class C^∞ on $\mathbb{R}^*_+ \setminus \{\frac{\pi}{2}\}$. At $\frac{\pi}{2}$, $F(3)$ has a discontinuity of first kind.
Proposition (…)
For any $T > 0$, there exists a unique minimizer of the functional I_T over the set \mathcal{L}, that we denote by μ_T^*.

- If $T \leq \pi^2$, the density of μ_T^* with respect to Lebesgue measure is given by

\[
\frac{d\mu_T^*(x)}{dx} = \frac{T}{2\pi} \sqrt{\frac{4}{T} - x^2} \mathbf{1}_{\left[-\frac{2}{\sqrt{T}}, \frac{2}{\sqrt{T}}\right]}(x),
\]

- If $T > \pi^2$, the density of μ_T^* is described in terms of elliptic functions.

Consequence: The function F is of class C^2 on \mathbb{R}^*_{+} and of class C^∞ on $\mathbb{R}^*_{+}\{\pi^2\}$. At π^2, $F(3)$ has a discontinuity of first kind.
Third order phase transition

Proposition (…)

For any $T > 0$, there exists a unique minimizer of the functional I_T over the set \mathcal{L}, that we denote by μ^*_T.

- If $T \leq \pi^2$, the density of μ^*_T with respect to Lebesgue measure is given by
 \[
 \frac{d\mu^*_T(x)}{dx} = \frac{T}{2\pi} \sqrt{\frac{4}{T} - x^2} \mathbf{1}_{\left[-\frac{2}{\sqrt{T}}, \frac{2}{\sqrt{T}}\right]}(x),
 \]

- If $T > \pi^2$, the density of μ^*_T is described in terms of elliptic functions.

Consequence: The function F is of class C^2 on \mathbb{R}^* and of class C^∞ on $\mathbb{R}^* \setminus \{\pi^2\}$. At π^2, $F(3)$ has a discontinuity of first kind.
Third order phase transition

Proposition (...)

For any $T > 0$, there exists a unique minimizer of the functional I_T over the set \mathcal{L}, that we denote by μ^*_T.

- If $T \leq \pi^2$, the density of μ^*_T with respect to Lebesgue measure is given by
 \[
 \frac{d\mu^*_T(x)}{dx} = \frac{T}{2\pi} \sqrt{\frac{4}{T} - x^2} \mathbf{1}_{[-\frac{2}{\sqrt{T}}, \frac{2}{\sqrt{T}}]}(x),
 \]

- If $T > \pi^2$, the density of μ^*_T is described in terms of elliptic functions.

Consequence: The function F is of class C^2 on \mathbb{R}^*_+ and of class C^∞ on $\mathbb{R}^*_+ \setminus \{\pi^2\}$. At π^2, $F^{(3)}$ has a discontinuity of first kind.
Potential theory under constraint
Potential theory under constraint

\[U^\mu + Q \geq C \]
\[U^\mu + Q = C \text{ on the support} \]
Potential theory under constraint

\[U^\mu + Q \geq C \]

\[U^\mu + Q = C \text{ on the support} \]
Potential theory under constraint

\[U^\mu + Q \geq C \]
\[U^\mu + Q = C \text{ on the support} \]
\[U^\mu + Q \geq C \text{ outside the support} \]
\[U^\mu + Q = C \text{ on the “free” part} \]
\[U^\mu + Q \leq C \text{ where it saturates} \]
Some final remarks
Some final remarks

- Fascinating model for which everything can be computed explicitely
Some final remarks

- Fascinating model for which everything can be computed explicitely

- In a recent work of Liechty and Wang, μ^*_T appears as the equilibrium measure associated to orthogonal polynomials for a discrete gaussian measure (also linked with Unitary brownian bridge)
Some final remarks

- Fascinating model for which everything can be computed explicitly

- In a recent work of Liechty and Wang, μ^*_T appears as the equilibrium measure associated to orthogonal polynomials for a discrete gaussian measure (also linked with Unitary brownian bridge)

- For some parameters (t, T), the asymptotic spectral measure of uBb is known and related to the family μ^*_T in a way which is still to be understood in details (work in progress with T. Lévy).