Large complex correlated Wishart matrices: Fluctuations and asymptotic independence at the edges

Joint work with W. Hachem and J. Najim.

Adrien Hardy

Royal Institute of Technology KTH, Stockholm

Random matrices and their application, Hong Kong, January 7, 2015
Plan

1. Introduction and statement of the results
2. More precisions
3. Beyond universality
1) The matrix model

Complex correlated Wishart matrix:

\[M_{N \times N} = X_{N \times n} \Sigma_{n \times n} X_{n \times N}^* \]

where \(X_{N \times n} \) is an \(N \times n \) matrix with independent \(\mathcal{N}(0, 1) \) entries, \(\Sigma_{n \times n} \) is an \(n \times n \) symmetric positive definite matrix.

Let \(x_1 \leq \cdots \leq x_N \) be the eigenvalues of \(M_{N \times N} \) (main characters), and \(\lambda_1 \leq \cdots \leq \lambda_n \) be the eigenvalues of \(\Sigma_{n \times n} \) (parameters).
1) The matrix model

Complex correlated Wishart matrix:

\[\mathbf{M}_N = \frac{1}{N} \mathbf{X}_N \Sigma_N \mathbf{X}_N^* \]

where

- \(\mathbf{X}_N \) is an \(N \times n \) matrix with independent \(\mathcal{N}_\mathbb{C}(0, 1) \) entries
- \(\Sigma_N \) is an \(n \times n \) symmetric positive definite matrix
1) The matrix model

Complex correlated Wishart matrix:

\[M_N = \frac{1}{N} X_N \Sigma_N X_N^* \]

where

- \(X_N \) is an \(N \times n \) matrix with independent \(\mathcal{N}(0, 1) \) entries
- \(\Sigma_N \) is an \(n \times n \) symmetric positive definite matrix

Let \(x_1 \leq \cdots \leq x_N \) be the eigenvalues of \(M_N \) (main characters),
1) The matrix model

Complex correlated Wishart matrix:

\[\mathbf{M}_N = \frac{1}{N} \mathbf{X}_N \mathbf{\Sigma}_N \mathbf{X}_N^* \]

where

- \(\mathbf{X}_N \) is an \(N \times n \) matrix with independent \(\mathcal{N}_C(0, 1) \) entries
- \(\mathbf{\Sigma}_N \) is an \(n \times n \) symmetric positive definite matrix

Let \(x_1 \leq \cdots \leq x_N \) be the eigenvalues of \(\mathbf{M}_N \) (main characters), and \(\lambda_1 \leq \cdots \leq \lambda_n \) be the eigenvalues of \(\mathbf{\Sigma}_N \) (parameters).
1) Global behavior

Asymptotic regime:

\[N, n \to \infty, \quad \frac{n}{N} \to \gamma \in (0, \infty), \]

\[\nu_N := \frac{1}{n} \sum_{j=1}^{n} \delta_{\lambda_j} \xrightarrow{N \to \infty} \nu \quad \text{with compact support}. \]
1) Global behavior

Asymptotic regime:

\[N, n \to \infty, \quad \frac{n}{N} \to \gamma \in (0, \infty), \]

\[\nu_N := \frac{1}{n} \sum_{j=1}^{n} \delta_{\lambda_j} \xrightarrow{N \to \infty} \nu \quad \text{with compact support.} \]

Global behavior (Marčenko-Pastur,67):

There exists \(\mu(\nu, \gamma) \) only depending on \(\nu, \gamma \) such that

\[\frac{1}{N} \sum_{j=1}^{N} \delta_{x_j} \xrightarrow{N \to \infty} \mu(\nu, \gamma) \quad \text{a.s.} \]

[The Stieltjes transform of \(\mu(\nu, \gamma) \) satisfies a fixed-point equation]
Remark (to keep in mind for later):

At fixed finite N,

a good approximation for the distribution of x_1, \ldots, x_N

is the deterministic equivalent $\mu(\nu_N, \frac{n}{N})$.
1) Global behavior

Examples: \(\nu = \frac{1}{3}(\delta_1 + \delta_3 + \delta_7) \) and \(\gamma = \frac{1}{10} \)
1) Local behavior

Question: Fluctuations of the extremal eigenvalues at each edge?

More precisely,

- Can we identify the *extremal eigenvalues*?
- Law of the *fluctuations*?
- Given several extremal eigenvalues, *asymptotic independence* of the fluctuations?
1) Local behavior, $\Sigma_N = I_N$

Example: The non-correlated case $\Sigma_N = I_N \implies \nu = \delta_1$
1) Local behavior, $\Sigma_N = I_N$

Example: The non-correlated case $\Sigma_N = I_N \implies \nu = \delta_1$

- Limiting support (ignoring the Dirac mass at zero):

 \[\text{Supp } \mu(\delta_1, \gamma) = [a, b], \quad \begin{cases}
 a &= (1 - \sqrt{\gamma})^2 \\
 b &= (1 + \sqrt{\gamma})^2
\end{cases} \]
1) Local behavior, $\Sigma_N = I_N$

Example: The non-correlated case $\Sigma_N = I_N \implies \nu = \delta_1$

- Limiting support (ignoring the Dirac mass at zero):
 \[
 \text{Supp } \mu(\delta_1, \gamma) = [a, b], \\
 \begin{cases}
 a = (1 - \sqrt{\gamma})^2 \\
 b = (1 + \sqrt{\gamma})^2
 \end{cases}
 \]

- (Geman, 80/Bai-Yin, 93)
 \[
 x_{\min} \xrightarrow{a.s.} a, \quad x_{\max} \xrightarrow{a.s.} b
 \]
 \[
 N \to \infty \\
 N \to \infty
 \]
1) Local behavior, $\Sigma_N = I_N$

Fluctuations:
1) Local behavior, $\Sigma_N = I_N$

Fluctuations:
Consider the support of the deterministic equivalent

$$\text{Supp } \mu(\delta_1, \frac{n}{\bar{N}}) = [a_N, b_N],$$

$$\begin{cases} a_N &= (1 - \sqrt{\frac{n}{\bar{N}}})^2 \\ b_N &= (1 + \sqrt{\frac{n}{\bar{N}}})^2. \end{cases}$$
1) Local behavior, $\Sigma_N = I_N$

Fluctuations:
Consider the support of the deterministic equivalent

$$\text{Supp } \mu(\delta_1, \frac{n}{N}) = [a_N, b_N],$$

\[
\begin{align*}
 a_N &= (1 - \sqrt{\frac{n}{N}})^2 \\
 b_N &= (1 + \sqrt{\frac{n}{N}})^2.
\end{align*}
\]

Then, for some bounded sequence (σ_N) **[varying from line to line]**,

- (Johansson, 00),

$$N^{2/3} \sigma_N (x_{\text{max}} - b_N) \xrightarrow{L} \frac{\mathcal{L}}{N \to \infty} \text{Tracy-Widom}$$

Adrien Hardy, KTH
Large complex correlated Wishart matrices
1) Local behavior, $\Sigma_N = I_N$

Fluctuations:
Consider the support of the deterministic equivalent

$$\text{Supp } \mu(\delta_1, \frac{n}{N}) = [a_N, b_N],$$

$$\begin{cases} a_N &= (1 - \sqrt{\frac{n}{N}})^2 \\ b_N &= (1 + \sqrt{\frac{n}{N}})^2. \end{cases}$$

Then, for some bounded sequence (σ_N) [varying from line to line],

- (Johansson, 00),

$$N^{2/3} \sigma_N (x_{\text{max}} - b_N) \xrightarrow{\mathcal{L}} \frac{\mathcal{L}}{N \to \infty} \text{Tracy-Widom}$$

- (Borodin-Forrester, 03),

If $\gamma \neq 1$,

$$N^{2/3} \sigma_N (a_N - x_{\text{min}}) \xrightarrow{\mathcal{L}} \frac{\mathcal{L}}{N \to \infty} \text{Tracy-Widom}$$
Assume now $n = N + \alpha$ with $\alpha \in \mathbb{N}$ fixed.

Thus $\frac{n}{N} \to \gamma = 1$, $\chi_{\min} \xrightarrow{N \to \infty} \alpha = 0$ (hard edge)
Assume now \(n = N + \alpha \) with \(\alpha \in \mathbb{N} \) fixed.

Thus \(\frac{n}{N} \to \gamma = 1 \), \(x_{\min} \overset{\text{a.s.}}{\to} \alpha = 0 \) (hard edge)

(Forrester, 93),

\[
N^2 \sigma_N x_{\min} \overset{\mathcal{L}}{\to} \text{Bessel}(\alpha)
\]
1) Local behavior, $\Sigma_N = l_N + \text{finite rank}$

Finite rank perturbation (Baik-Ben Arous-Péché,05):

$$\Sigma_N = \text{diag}(1 + \varepsilon, \ldots, 1 + \varepsilon, 1, \ldots, 1), \quad k \text{ fixed.}$$
1) Local behavior, $\Sigma_N = l_N + \text{finite rank}$

Finite rank perturbation (Baik-Ben Arous-Péché, 05):

$$\Sigma_N = \text{diag}(1 + \varepsilon, \ldots, 1 + \varepsilon, 1, \ldots, 1), \quad k \text{ fixed.}$$

Fact: $\nu_N \rightarrow \delta_1 \quad \implies \quad \text{same global behavior.}$
1) Local behavior, $\Sigma_N = I_N + \text{finite rank}$

Finite rank perturbation (Baik-Ben Arous-Péché, 05):

$$\Sigma_N = \text{diag}(1 + \varepsilon, \ldots, 1 + \varepsilon, 1, \ldots, 1), \quad k \text{ fixed}.$$

Fact: $\nu_N \to \delta_1 \implies$ same global behavior.

But,

- If $\varepsilon < \varepsilon_c$,
 $$x_{\text{max}} \xrightarrow{N \to \infty} b, \quad \text{Tracy-Widom fluctuations}$$
1) Local behavior, $\Sigma_N = I_N + \text{finite rank}$

Finite rank perturbation (Baik-Ben Arous-Péché,05):

$$\Sigma_N = \text{diag}(1 + \varepsilon, \ldots , 1 + \varepsilon, 1, \ldots , 1), \quad k \text{ fixed}. $$

Fact: $\nu_N \rightarrow \delta_1 \implies \text{same global behavior.}$

But,

- If $\varepsilon < \varepsilon_c$,
 $$x_{\max} \xrightarrow{a.s. \ N \rightarrow \infty} b, \quad \text{Tracy-Widom fluctuations}$$

- If $\varepsilon = \varepsilon_c$,
 $$x_{\max} \xrightarrow{a.s. \ N \rightarrow \infty} b, \quad k\text{-deformed Tracy-Widom}$$
1) Local behavior, $\Sigma_N = l_N + \text{finite rank}$

Finite rank perturbation (Baik-Ben Arous-Péché,05):

$$\Sigma_N = \text{diag}(1 + \varepsilon, \ldots, 1 + \varepsilon, 1, \ldots, 1), \quad k \text{ fixed.}$$

Fact: $\nu_N \to \delta_1 \implies$ same global behavior.

But,

- **If** $\varepsilon < \varepsilon_c$,
 $$x_{\max} \xrightarrow{a.s. N \to \infty} b, \quad \text{Tracy-Widom fluctuations}$$

- **If** $\varepsilon = \varepsilon_c$,
 $$x_{\max} \xrightarrow{a.s. N \to \infty} b, \quad k\text{-deformed Tracy-Widom}$$

- **If** $\varepsilon > \varepsilon_c$,
 $$x_{\max} \xrightarrow{a.s. N \to \infty} b_{\text{jump}} > b, \quad \text{GUE}(k) \text{ behavior}$$
1) Local behavior, $\Sigma_N = l_N + \text{finite rank}$

Conclusion: Local behaviors are sensitive to the convergence

$$\nu_N = \frac{1}{n} \sum_{j=1}^{n} \delta \lambda_j \xrightarrow{N \to \infty} \nu$$

Adrien Hardy, KTH
Large complex correlated Wishart matrices
1) Local behavior, General Σ_N

General Σ_N, with eigenvalues $\lambda_1 \leq \cdots \leq \lambda_n$
1) Local behavior, General Σ_N

General Σ_N, with eigenvalues $\lambda_1 \leq \cdots \leq \lambda_n$

- Assume

\[
\nu_N = \frac{1}{n} \sum_{j=1}^{n} \delta_{\lambda_j} \xrightarrow{N \to \infty} \nu \quad \text{with compact support}
\]
1) Local behavior, General Σ_N

General Σ_N, with eigenvalues $\lambda_1 \leq \cdots \leq \lambda_n$

- Assume

\[
\nu_N = \frac{1}{n} \sum_{j=1}^{n} \delta_{\lambda_j} \xrightarrow{N \to \infty} \nu \quad \text{with compact support}
\]

and

\[
0 < \liminf_{N \to \infty} \lambda_1, \quad \limsup_{N \to \infty} \lambda_n < +\infty
\]
1) Local behavior, General Σ_N

General Σ_N, with eigenvalues $\lambda_1 \leq \cdots \leq \lambda_n$

- Assume

$$\nu_N = \frac{1}{n} \sum_{j=1}^{n} \delta_{\lambda_j} \xrightarrow{\nu N \to \infty} \nu$$
with compact support

and

$$0 < \liminf_{N \to \infty} \lambda_1, \quad \limsup_{N \to \infty} \lambda_n < +\infty$$

- **Fact:** The limiting support $\text{Supp} \mu(\nu, \gamma)$ is compact, but not necessarily connected.
1) Local behavior, General Σ_N

General Σ_N, with eigenvalues $\lambda_1 \leq \cdots \leq \lambda_n$

- Assume

$$
\nu_N = \frac{1}{n} \sum_{j=1}^{n} \delta_{\lambda_j} \xrightarrow{N \to \infty} \nu \quad \text{with compact support}
$$

and

$$
0 < \liminf_{N \to \infty} \lambda_1, \quad \limsup_{N \to \infty} \lambda_n < +\infty
$$

- **Fact**: The limiting support $\text{Supp} \mu(\nu, \gamma)$ is **compact**, but not necessarily connected.

- For an edge b of $\text{Supp} \mu(\nu, \gamma)$, we introduce a **regularity condition**.
Theorem (Right edges)

Consider a regular right edge \(b \). *Then,*
1) Local behavior, General Σ_N

Theorem (Right edges)

Consider a **regular** right edge b. Then,

- **(Existence of the extremal eigenvalue)**

There exists a deterministic sequence $(\Phi(N))$ such that

$$\lim_{N \to \infty} x_{\Phi(N)} \xrightarrow{a.s.} b, \quad \liminf_{N \to \infty} x_{\Phi(N)+1} > b \quad \text{a.s.}$$

- **(Tracy-Widom fluctuations)**

There exists a right edge b_N of $\mu(\nu_N, n_N)$ such that

$$\frac{x_{\Phi(N)} - b_N}{\sigma_N} \xrightarrow{L} \text{Tracy-Widom},$$

for some explicit bounded sequence (σ_N).

Adrien Hardy, KTH
Large complex correlated Wishart matrices
Theorem (Right edges)

Consider a **regular** right edge b. Then,

- **(Existence of the extremal eigenvalue)**

 There exists a deterministic sequence $(\Phi(N))$ such that

 $$\lim_{N \to \infty} x_{\Phi(N)} \rightarrow b, \quad \lim_{N \to \infty} \inf x_{\Phi(N)+1} > b \quad a.s.$$

- **(Tracy-Widom fluctuations)**

 There exists a right edge b_N of $\mu(\nu_N, n_N)$ such that $b_N \rightarrow b$ and

 $$N^{2/3} \sigma_N (x_{\Phi(N)} - b_N) \xrightarrow{\mathcal{L}} Tracy-Widom,$$

 for some explicit bounded sequence (σ_N).

Adrien Hardy, KTH

Large complex correlated Wishart matrices
When \(b \) is the rightmost edge and there is no outliers, the Tracy-Widom fluctuations have already been obtained (El Karoui, 07) when \(\gamma \leq 1 \), and then extended to general \(\gamma \in (0, \infty) \) (Onatski, 08)
Consider a positive regular left edge α. Then,

Theorem (Left soft edges)

There exists a deterministic sequence $(\Phi(N))$ such that $x_{\Phi(N)} \rightarrow \alpha$, $\lim_{N \rightarrow \infty} x_{\Phi(N)} - 1 < \alpha$.

(Tracy-Widom fluctuations)

There exists a left edge α_N of $\mu(\nu_N, n_N)$ such that $\alpha_N \rightarrow \alpha$ and $N^{2/3} \sigma_N (\alpha_N - x_{\Phi(N)}) \overset{L}{\rightarrow} \text{Tracy-Widom}$, for some explicit bounded sequence (σ_N).

Adrien Hardy, KTH

Large complex correlated Wishart matrices
Consider a positive regular left edge α. Then,

Existence of the extremal eigenvalue

There exists a deterministic sequence $(\Phi(N))$ such that

$$
x_{\Phi(N)} \xrightarrow{a.s.} \alpha, \quad \liminf_{N \to \infty} x_{\Phi(N)} - 1 < \alpha \quad a.s.
$$
Consider a **positive regular** left edge a. Then,

1. **(Existence of the extremal eigenvalue)**
 There exists a deterministic sequence $(\Phi(N))$ such that

 $$\lim_{N \to \infty} x_{\Phi(N)} = a, \quad \lim_{N \to \infty} x_{\Phi(N)} - 1 < a \quad \text{a.s.}$$

2. **(Tracy-Widom fluctuations)**
 There exists a left edge a_N of $\mu(\nu_N, \frac{n}{N})$ such that $a_N \to a$ and

 $$N^{2/3} \sigma_N (a_N - x_{\Phi(N)}) \xrightarrow{\mathcal{L}} \text{Tracy-Widom},$$

 for some explicit bounded sequence (σ_N).
Theorem (Asymptotic independence)

Given two finite families of positive **regular** left edges \((a_i)_{i \in I}\) and **regular** right edges \((b_j)_{j \in J}\), the associated fluctuations are asymptotically independent.
Theorem (Asymptotic independence)

Given two finite families of positive regular left edges \((a_i)_{i \in I} \) and regular right edges \((b_j)_{j \in J} \), the associated fluctuations are asymptotically independent.

Theorem (Hard edge)

Assume \(n = N + \alpha \) with \(\alpha \in \mathbb{Z} \) fixed. Then

\[
N^2 \sigma_N x_{\min} \xrightarrow{\mathcal{L}} \frac{\mathcal{L}}{N \to \infty} \text{Bessel}(\alpha),
\]

for some explicit bounded sequence \((\sigma_N) \).

Adrien Hardy, KTH

Large complex correlated Wishart matrices
Corollary (Study of the Condition number)

We obtain convergence and fluctuations for

$$\kappa_N = \frac{x_{\text{max}}}{x_{\text{min}}}$$

in different regimes.
Beyond the Gaussian case?
Beyond the Gaussian case?

Recall

\[M_N = \frac{1}{N} X_N \Sigma_N X_N^* \]

where

- \(X_N \) is an \(N \times n \) matrix with independent \(\mathcal{N}_\mathbb{C}(0, 1) \) entries
- \(\Sigma_N \) is an \(n \times n \) symmetric positive definite matrix
Beyond the Gaussian case?

Recall

\[M_N = \frac{1}{N} X_N \Sigma_N X_N^* \]

where

- \(X_N \) is an \(N \times n \) matrix with independent \(\mathcal{N}_\mathbb{C}(0,1) \) entries
- \(\Sigma_N \) is an \(n \times n \) symmetric positive definite matrix

Local law (Knowles-Yin,14): One can drop the Gaussian assumption and still have independent Tracy-Widom fluctuations.
2) More precisions
2) Regularity condition

Characterization of $\text{Supp } \mu_{(\nu, \gamma)}$ (Silverstein-Choi, 95):

The Cauchy transform $m(z) = \int \mu_{(\nu, \gamma)}(d\nu, d\gamma) z - x$, $z \in \mathbb{H}$, has an inverse given by $g(m) = \frac{1}{m} + \frac{\gamma}{m} \int x^{-1 - mx} \nu(dx)$ and which analytically extends to $\text{Dom } = \{m \in \mathbb{R} : m \neq 0, \frac{1}{m} \in \text{Supp } \nu\}$ (and takes real values there).
Characterization of $\text{Supp } \mu_{(\nu, \gamma)}$ (Silverstein-Choi, 95):

The Cauchy transform

$$m(z) = \int \frac{\mu_{(\nu, \gamma)}(dx)}{z - x}, \quad z \in \mathbb{H},$$
2) Regularity condition

Characterization of $\text{Supp} \mu(\nu,\gamma)$ (Silverstein-Choi,95):

The Cauchy transform

$$m(z) = \int \frac{\mu(\nu,\gamma)(dx)}{z-x}, \quad z \in \mathbb{H},$$

has an inverse given by

$$g(m) = \frac{1}{m} + \gamma \int \frac{x}{1 - mx} \nu(dx)$$
2) Regularity condition

Characterization of $\text{Supp } \mu(\nu,\gamma)$ (Silverstein-Choi,95):

The Cauchy transform

$$m(z) = \int \frac{\mu(\nu,\gamma)(dx)}{z - x}, \quad z \in \mathbb{H},$$

has an inverse given by

$$g(m) = \frac{1}{m} + \gamma \int \frac{x}{1 - mx} \nu(dx)$$

and which analytically extends to

$$\text{Dom} = \left\{ m \in \mathbb{R} : m \neq 0, \frac{1}{m} \notin \text{Supp}(\nu) \right\}$$

(and takes real values there).
2) Regularity condition

Characterization of $\text{Supp} \, \mu(\nu, \gamma)$ (Silverstein-Choi, 95):

Consider every (maximal) intervals $I \subset \text{Dom}$ where g decreases, and delete the $g(I)$'s from \mathbb{R}, what is left is $\text{Supp} \, \mu(\nu, \gamma)$ (but zero).

Example: $\nu = \frac{7}{10} \delta_1 + \frac{3}{10} \delta_3$ and $\gamma = \frac{1}{10}$.

Adrien Hardy, KTH

Large complex correlated Wishart matrices
2) Regularity condition

Characterization of $\text{Supp} \mu(\nu, \gamma)$ (**Silverstein-Choi, 95**):

Consider every (maximal) intervals $I \subset \text{Dom}$ where g decreases, and delete the $g(I)$'s from \mathbb{R}, what is left is $\text{Supp} \mu(\nu, \gamma)$ (but zero).

Example: $\nu = \frac{7}{10} \delta_1 + \frac{3}{10} \delta_3$ and $\gamma = \frac{1}{10}$
Thus, if b is an edge of $\text{Supp} \mu_{(\nu,\gamma)}$, there exists ∂ such that

$$b = g(\partial),$$
2) Regularity condition

Thus, if \(b \) is an edge of \(\text{Supp} \mu_{(\nu,\gamma)} \), there exists \(d \) such that

\[
b = g(d),
\]

where either

- \(d \in \text{Dom} \) is a local extremum for \(g \)
- or \(d \in \partial(\text{Dom}) \)

\text{Definition}

We say \(b \) is regular if

\[
\liminf_{N \to \infty} n \min_{j=1} \| d - 1 \lambda_j \| > 0.
\]

Remark: If \(b = g(d) \) is regular, then necessarily \(d / \in \partial(Dom) \).
2) Regularity condition

Thus, if b is an edge of $\text{Supp} \mu_{(\nu,\gamma)}$, there exists ϑ such that

$$b = g(\vartheta),$$

where either

- $\vartheta \in \text{Dom}$ is a local extremum for g
- or $\vartheta \in \partial(\text{Dom})$

Definition

We say b is **regular** if

$$\liminf_{N \to \infty} \min_{j=1}^{n} \left| \vartheta - \frac{1}{\lambda_j} \right| > 0.$$

Remark: If $b = g(\vartheta)$ is **regular**, then necessarily $\vartheta \notin \partial(\text{Dom}).$
If b is a **regular** edge, then
If b is a regular edge, then

- **Exact separation** (Bai-Silverstein, 98, 99)

 \implies Existence for the associated extremal eigenvalue
2) Existence for extremal eigenvalues

If b is a regular edge, then

- **Exact separation (Bai-Silverstein, 98, 99)**
 \[\implies \text{Existence for the associated extremal eigenvalue} \]

- **Complex analysis (Montel, Rouché,...)**
 \[\implies \text{Existence of an edge } b_N \text{ of } \mu(\nu_N, \frac{n}{N}) \text{ such that } b_N \to b \]
2) Tracy-Widom fluctuations

Determinantal structure (Johansson/BBP, 05) ⇒ Repartition function ≃ Fredholm determinant, i.e.

\[P \left[\frac{N^2}{3} \sigma_N \left(x - \Phi(N) - b_N \right) \right] \leq s = \det (I - K_N)_{L^2(s, \epsilon N^2/3)} + o(1) \]

⇒ Enough to prove the convergence \(K_N \to K_{Ai} \) as \(N \to \infty \) (in an appropriate sense)

Complex integral representation for \(K_N \) (idem):

\[K_N(x, y) = \frac{1}{(2i\pi)^2} \oint \oint F_N(x, y; z, w), \]

where \(F_N \) is explicit.
2) Tracy-Widom fluctuations

- Determinantal structure (Johansson/BBP, 05)
 ⇒ Repartition function \sim Fredholm determinant, i.e.

$$P\left[N^{2/3} \sigma_N (x_{\Phi(N)} - b_N) \leq s \right] = \det \left(I - K_N \right)_{L^2(s, \varepsilon N^{2/3})} + o(1)$$
2) Tracy-Widom fluctuations

- **Determinantal structure** (Johansson/BBP,05)

 \[\Rightarrow \text{Repartition function} \sim \text{Fredholm determinant}, \text{i.e.} \]

 \[
 \mathbb{P}\left[N^{2/3}\sigma_N (x_{\Phi(N)} - b_N) \leq s\right] = \det (I - K_N)_{L^2(s,\varepsilon N^{2/3})} + o(1)
 \]

 \[\Rightarrow \text{Enough to prove the convergence} \]

 \[K_N \rightarrow K_{Ai} \quad \text{as} \quad N \rightarrow \infty \]

 (in an appropriate sense)
2) Tracy-Widom fluctuations

- **Determinantal structure** (Johansson/BBP,05)
 \[\Rightarrow \text{Repartition function } \approx \text{Fredholm determinant, i.e.} \]
 \[
 \mathbb{P}\left[N^{2/3} \sigma_N \left(x_{\Phi(N)} - b_N \right) \leq s \right] = \det \left(I - K_N \right)_{L^2(s, \varepsilon N^{2/3})} + o(1)
 \]
 \[\Rightarrow \text{Enough to prove the convergence} \]
 \[K_N \rightarrow K_{Ai} \quad \text{as} \quad N \rightarrow \infty \]
 (in an appropriate sense)

- **Complex integral representation for** \(K_N \) (idem):
 \[
 K_N(x, y) = \frac{1}{(2i\pi)^2} \oint_{\Gamma} \oint_{\Theta} dz \, dw \, F_N(x, y; z, w),
 \]
 where \(F_N \) is explicit.
2) Tracy-Widom fluctuations

Asymptotic analysis as \(N \to \infty \) for

\[
K_N(x, y) = \frac{1}{(2i\pi)^2} \oint_{\Gamma} dz \oint_{\Theta} dw \ F_N(x, y; z, w)
\]

- Local analysis around \(\partial \Rightarrow \) Airy kernel
 - Saddle point of order two, almost routine computation

- The remaining of the integral is negligible
 - Clever analytic deformation of \(\Gamma \) and \(\Theta \), this is the HARD part
2) Tracy-Widom fluctuations

Asymptotic analysis as $N \to \infty$ for

$$K_N(x, y) = \frac{1}{(2i\pi)^2} \oint_{\Gamma} \oint_{\Theta} d\zeta d\omega \ F_N(x, y; \zeta, \omega)$$
Existence of the steepest descent contours?
2) Tracy-Widom fluctuations

Existence of the steepest descent contours?

Non-constructive proof using the maximum principle for subharmonic functions
2) Tracy-Widom fluctuations

“Right edge” analytic landscape:

\[\Delta_1 \Delta_2 \Delta_{-1} \Delta_{-2} \Omega_+ - \Omega_- + \leftarrow \text{radius } \eta \]

Adrien Hardy, KTH

Large complex correlated Wishart matrices
2) Tracy-Widom fluctuations

“Left edge (generic)” analytic landscape:

\[
\Omega_- - \Omega_+ + \Omega_+ c \Delta_0 - \Delta_1 - \Delta_2 - \Delta_3 - \Delta_{-1} - \Delta_{-2} - \Delta_{-3}
\]
2) Tracy-Widom fluctuations

“Left edge (singular)” analytic landscape:

\[
\begin{align*}
\Delta_1 & \quad \Delta_2 \\
\Delta_{-1} & \quad \Delta_{-2} \\
\Omega_+ & \\
\Omega_- & \\
\end{align*}
\]
The prove the asymptotic independence:
2) Asymptotic independence

The prove the asymptotic independence:

- (Bornemann,10) Asymptotic independence \iff
- Some matrix valued operator becomes asymptotically diagonal in the trace-class norm.
2) Asymptotic independence

The prove the asymptotic independence:

- **(Bornemann,10)** Asymptotic independence \iff Some matrix valued operator becomes asymptotically diagonal in the trace-class norm.

- Use **regularized** Fredholm determinant \implies “Trace-class norm” \to “Hilbert-Schmidt norm”
2) Asymptotic independence

The prove the asymptotic independence:

- **(Bornemann, 10)** Asymptotic independence \iff Some matrix valued operator becomes asymptotically diagonal in the trace-class norm.

- Use regularized Fredholm determinant \implies “Trace-class norm” \rightarrow “Hilbert-Schmidt norm”

- Use the steepest descent paths from the TW analysis.
2) Asymptotic independence

The prove the asymptotic independence:

- \textbf{(Bornemann,10)} Asymptotic independence \iff Some matrix valued operator becomes asymptotically diagonal in the trace-class norm.

- Use regularized Fredholm determinant \implies "Trace-class norm" \rightarrow "Hilbert-Schmidt norm"

- Use the steepest descent paths from the TW analysis.

- Use Bleher-Kuijlaars representation for $K_N(x, y)$
2) Bessel fluctuations

The prove the Bessel fluctuations at the hard edge:
The prove the Bessel fluctuations at the hard edge:

- Use the determinantal structure
2) Bessel fluctuations

The prove the Bessel fluctuations at the hard edge:

- Use the determinantal structure
- **Key:** The critical point ϑ is at infinity!
2) Bessel fluctuations

The prove the Bessel fluctuations at the hard edge:

- Use the determinantal structure
- **Key:** The critical point ϑ is at infinity!

- Appropriate complex integral representation for the Bessel kernel
2) Bessel fluctuations

The prove the Bessel fluctuations at the hard edge:

- Use the determinantal structure
- **Key:** The critical point ϑ is at infinity!
- Appropriate complex integral representation for the Bessel kernel
- Asymptotic analysis (now easy)
3) Beyond Universality

What is happening around an edge which is not regular?

(Easy case) If k of the $1/\lambda_i$'s equal d, but the rest satisfies the regularity condition, then the fluctuations are described by the k-deformed Tracy-Widom distribution of BBP.

(Mysterious case) What if $d \in \partial (\text{Dom})$?

Conjecture: Universality breaks down i.e. strongly depends on ν and the way $\nu \rightarrow \nu_N$.

Similar situations:
- Additive perturbations of Wigner matrices (Capitaine-Péché, 14)
- Random patterns on the Gelfand-Tsetlin cone (Duse-Metcalfe, 14)
What is happening around an edge b which is **not regular**?
What is happening around an edge ∂ which is not regular?

Easy case If k of the $1/\lambda_j$'s equal ∂, but the rest satisfies the regularity condition, then the fluctuations are described by the k-deformed Tracy-Widom distribution of BBP.

(Mysterious case) What if $\partial \in \partial(D)$? Conjecture: Universality breaks down i.e. strongly depends on ν and the way $\nu \to \nu_N$. Similar situations:
- Additive perturbations of Wigner matrices (Capitaine-Péché, 14)
- Random patterns on the Gelfand-Tsetlin cone (Duse-Metcalfe, 14)
3) Beyond Universality

What is happening around an edge ∂ which is not regular?

- **(Easy case)** If k of the $1/\lambda_j$’s equal ∂, but the rest satisfies the regularity condition, then the fluctuations are described by the k-deformed Tracy-Widom distribution of BBP.

- **(Mysterious case)** What if $\partial \in \partial(Dom)$?
What is happening around an edge \mathfrak{b} which is \textbf{not regular}?

- **(Easy case)** If k of the $1/\lambda_j$’s equal \mathfrak{d}, but the rest satisfies the regularity condition, then the fluctuations are described by the k-deformed Tracy-Widom distribution of BBP.

- **(Mysterious case)** What if $\mathfrak{d} \in \partial(Dom)$?

 Conjecture: \textit{Universality breaks down}

 i.e. strongly depends on ν and the way $\nu_N \to \nu$.

Adrien Hardy, KTH

Large complex correlated Wishart matrices
3) Beyond Universality

What is happening around an edge b which is not regular?

- **(Easy case)** If k of the $1/\lambda_j$’s equal d, but the rest satisfies the regularity condition, then the fluctuations are described by the k-deformed Tracy-Widom distribution of BBP.

- **(Mysterious case)** What if $d \in \partial(Dom)$?

 Conjecture: Universality breaks down

 i.e. strongly depends on ν and the way $\nu_N \to \nu$.

Similar situations:

- Additive perturbations of Wigner matrices *(Capitaine-Péché,14)*
- Random patterns on the Gelfand-Tsetlin cone *(Duse-Metcalfe,14)*
Thank you for your attention!