Order Determination of Large Dimensional Dynamic Factor Model

Z. D. Bai

baizd@nenu.edu.cn

School of Math. & Stat.

Joint work with
Baisuo Jin, Chen Wang, Krishnan K. Nair and Matthew Harding

2015 Hong Kong Workshop on Random Matrix

Jan. 09, 2015
Outline

1. Introduction
2. Limiting Spectral Distribution
3. Strong Limit of Extreme Eigenvalues
4. Application
Background

Consider the framework of a large dimensional dynamic k-factor model with lag q

$$R_t = \sum_{i=0}^{q} \Lambda_i F_{t-i} + e_t, \quad t = 1, \ldots, T$$

- Λ_i: $n \times k$ non-random matrices with full rank
- F_t: $k \times 1$ iid standard complex random vector
- e_t: $n \times 1$ iid complex, mean zero, variance σ^2, independent of F_t
- a **information-plus-noise** type model
 (Dozier & Silverstein, 2007a, b; Bai & Silverstein, 2012)
- $n, T \to \infty$, with $\frac{n}{T} \to c > 0$
- k, q small and fixed but unknown
Under this high dimensional setting, an important statistical problem is to estimate k and q (Bai & Ng, 2002; Harding, 2012).
For fixed τ, define

$$\Phi_n(\tau) = \frac{1}{2T} \sum_{j=1}^{T} (R_j R_{j+\tau}^* + R_{j+\tau} R_j^*)$$

$$= \frac{1}{2T} \left\{ \Lambda \left(F_0 F'_{\tau} + F_{\tau} F_0' \right) \Lambda' \right\} +$$

$$\frac{1}{2T} \left\{ \left(E_0 F'_{\tau} \Lambda' + \Lambda F_{\tau} E_0' \right) + \left(E_{\tau} F_0' \Lambda' + \Lambda F_0 E_{\tau}' \right) \right\} +$$

$$\frac{1}{2T} \left(E_0 E'_{\tau} + E_{\tau} E_0' \right),$$
For fixed τ, define

$$\Phi_n(\tau) = \frac{1}{2T} \sum_{j=1}^{T} (R_j R^*_j + R_{j+\tau} R^*_j)$$

$$= \frac{1}{2T} \left\{ \Lambda \left(F_0 F'_\tau + F_\tau F'_0 \right) \Lambda' \right\} + \frac{1}{2T} \left\{ \left(E_0 F'_\tau \Lambda' + \Lambda F_\tau E'_0 \right) + \left(E_\tau F'_0 \Lambda' + \Lambda F_0 E'_\tau \right) \right\} + \frac{1}{2T} \left(E_0 E'_\tau + E_\tau E'_0 \right),$$

$$M_n(\tau) = \frac{1}{2T} \sum_{j=1}^{T} (e_j e^*_j + e_{j+\tau} e^*_j)$$

$$= \frac{1}{2T} \left(E_0 E'_\tau + E_\tau E'_0 \right).$$
Notations

Here,

\[\Lambda = (\Lambda_0, \Lambda_1, \cdots, \Lambda_q)_{n \times k(q+1)}, \]

\[F_\tau = \begin{pmatrix}
F_{T+\tau} & F_{T+\tau-1} & \cdots & F_{\tau+1} \\
F_{T+\tau-1} & F_{T+\tau-2} & \cdots & F_{\tau} \\
\vdots & \vdots & \vdots & \vdots \\
F_{T+\tau-q} & F_{T+\tau-1-q} & \cdots & F_{\tau+1-q}
\end{pmatrix}_{k(q+1) \times T}, \]

\[E_\tau = (e_{T+\tau}, e_{T+\tau-1}, \cdots, e_{\tau+1})_{n \times T}. \]
Case $\tau = 0$

Fact 1:

$$M_n(0) = \frac{1}{T} \sum_{j=1}^{T} e_j e_j^*$$
Case $\tau = 0$

Fact 1:

$$M_n(0) = \frac{1}{T} \sum_{j=1}^{T} e_j e_j^*$$

- a standard sample covariance matrix
Case $\tau = 0$

Fact 1:

$$M_n(0) = \frac{1}{T} \sum_{j=1}^{T} e_j e_j^*$$

- a standard sample covariance matrix
- the LSD is MP law (Marčenko and Pastur, 1967) with density

$$f_c(x) = \frac{1}{2\pi cx} \sqrt{(b_c - x)(x - a_c)}, x \in [a_c, b_c]$$

and a point mass $1 - 1/c$ at the origin if $c > 1$.

Here $c = \lim_{n \to \infty} \frac{n}{T}$, $a_c = (1 - \sqrt{c})^2$ and $b_c = (1 + \sqrt{c})^2$.
Case $\tau = 0$

Fact 1:

$$M_n(0) = \frac{1}{T} \sum_{j=1}^{T} e_je_j^*$$

- a standard sample covariance matrix
- the LSD is MP law (Marčenko and Pastur, 1967) with density
 $$f_c(x) = \frac{1}{2\pi cx} \sqrt{(b_c - x)(x - a_c)}, \ x \in [a_c, b_c]$$
 and a point mass $1 - 1/c$ at the origin if $c > 1$.

Here $c = \lim_{n \to \infty} \frac{n}{T}$, $a_c = (1 - \sqrt{c})^2$ and $b_c = (1 + \sqrt{c})^2$.

![Graph of a standard sample covariance matrix](image)
Case $\tau = 0$

Fact 2:

Recall $\Lambda = (\Lambda_0, \Lambda_1, \cdots, \Lambda_q)_{n \times k(q+1)}$
Case $\tau = 0$

Fact 2:

Recall $\Lambda = (\Lambda_0, \Lambda_1, \ldots, \Lambda_q)_{n \times k(q+1)}$

$$\Rightarrow \text{Cov}R_t = \sigma^2 I + \Lambda\Lambda^* \sim \begin{pmatrix} \sigma^2 I + \Lambda^*\Lambda & 0 \\ 0 & \sigma^2 I \end{pmatrix}$$
Case $\tau = 0$

Fact 2:

Recall $\Lambda = (\Lambda_0, \Lambda_1, \cdots, \Lambda_q)_{n \times k(q+1)}$

$\Rightarrow \text{Cov} \mathbf{R}_t = \sigma^2 \mathbf{I} + \Lambda \Lambda^* \sim \begin{pmatrix} \sigma^2 \mathbf{I} + \Lambda^* \Lambda & 0 \\ 0 & \sigma^2 \mathbf{I} \end{pmatrix}$

- a spiked population model (Johnstone, 2001; Baik & Silverstein, 2006; Bai & Yao, 2008) with population eigenvalue $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_{k(q+1)} > \sigma^2 = \cdots = \sigma^2$.

when $\Lambda^* \Lambda$ is "not small", sample eigenvalue $\hat{\lambda}_1 \geq \hat{\lambda}_2 \geq \cdots \geq \hat{\lambda}_{k(q+1)}$ $> \sigma^2$ $> \hat{\lambda}_k(q+1) + 1 \cdots > \hat{\lambda}_n$.

\Rightarrow Can estimate $k(q+1)$ by counting the number of eigenvalues $> \sigma^2$.

Z. D. Bai (NENU)
Order Determination of DFM
Jan. 09, 2015
8 / 32
Case \(\tau = 0 \)

Fact 2:

Recall \(\Lambda = (\Lambda_0, \Lambda_1, \cdots, \Lambda_q)_{n \times k(q+1)} \)

\[\Rightarrow \text{Cov} R_t = \sigma^2 I + \Lambda \Lambda^* \sim \begin{pmatrix} \sigma^2 I + \Lambda^* \Lambda & 0 \\ 0 & \sigma^2 I \end{pmatrix} \]

- a **spiked population model** (Johnstone, 2001; Baik & Silverstein, 2006; Bai & Yao, 2008) with population eigenvalue \(\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_{k(q+1)} > \sigma^2 = \cdots = \sigma^2 \).

- when \(\Lambda^* \Lambda \) is “not small”, sample eigenvalue \(\hat{\lambda}_1 \geq \hat{\lambda}_2 \geq \cdots \geq \hat{\lambda}_{k(q+1)} > (\sigma^2 b_c) \geq \hat{\lambda}_{k(q+1)+1} \cdots \geq \hat{\lambda}_n \).
Case $\tau = 0$

Fact 2:

Recall $\Lambda = (\Lambda_0, \Lambda_1, \cdots, \Lambda_q)_{n \times k(q+1)}$

$$\Rightarrow \text{Cov} \mathbf{R}_t = \sigma^2 \mathbf{I} + \Lambda \Lambda^* \sim \begin{pmatrix} \sigma^2 \mathbf{I} + \Lambda^* \Lambda & 0 \\ 0 & \sigma^2 \mathbf{I} \end{pmatrix}$$

- a spiked population model (Johnstone, 2001; Baik & Silverstein, 2006; Bai & Yao, 2008) with population eigenvalue $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_{k(q+1)} > \sigma^2 = \cdots = \sigma^2$.

- when $\Lambda^* \Lambda$ is "not small", sample eigenvalue $\hat{\lambda}_1 \geq \hat{\lambda}_2 \geq \cdots \geq \hat{\lambda}_{k(q+1)} > (\sigma^2 b_c) \geq \hat{\lambda}_{k(q+1)+1} \cdots \geq \hat{\lambda}_n$.

$$\Rightarrow \text{Can estimate } k(q + 1) \text{ by counting the number of eigenvalues } > \sigma^2 b_c.$$
So, what remains ...

is to estimate k and q separately.
So, what remains ...

is to estimate k and q separately.

To do so, we need to investigate the case for at least one $\tau \geq 1$.
Outline

1. Introduction
2. Limiting Spectral Distribution
3. Strong Limit of Extreme Eigenvalues
4. Application
Main Result

Theorem 1 (Jin et al. (2014))

Assume:

- (a) $\tau \geq 1$ is a fixed integer.
- (b) $e_k = (\varepsilon_{1k}, \cdots, \varepsilon_{nk})'$, $k = 1, 2, \ldots, T + \tau$, are n dimensional vectors of independent standard complex components with $\sup_{1 \leq i \leq n, 1 \leq t \leq T+\tau} E|\varepsilon_{it}|^{2+\delta} \leq M < \infty$ for some $\delta \in (0, 2]$, and for any $\eta > 0$,

$$\frac{1}{\eta^{2+\delta}nT} \sum_{i=1}^{n} \sum_{t=1}^{T+\tau} E(|\varepsilon_{it}|^{2+\delta} I(|\varepsilon_{it}| \geq \eta T^{1/(2+\delta)})) = o(1). \quad (1)$$

- (c) $n/(T + \tau) \to c > 0$ as $n, T \to \infty$.
- (d) $M_n = \sum_{k=1}^{T} (\gamma_k \gamma_{k+\tau} + \gamma_{k+\tau} \gamma_k^*)$, where $\gamma_k = \frac{1}{\sqrt{2T}}e_k$.

Z. D. Bai (NENU)
Theorem 1 (Jin et al. (2014)) (cont’d)

Then as \(n, T \to \infty \), \(F_{Mn}^D \Rightarrow F_\tau \) a.s. and \(F_\tau \) has a density function

\[
\phi_c(x) = \frac{1}{2c\pi} \sqrt{\frac{y_0^2}{1+y_0} - \left(\frac{1-c}{x} + \frac{1}{\sqrt{1+y_0}}\right)^2}, \quad |x| \leq d_c,
\]

where

\[
d_c = \begin{cases}
\frac{(1-c)\sqrt{1+y_1}}{y_1-1}, & c \neq 1, \\
2, & c = 1,
\end{cases}
\]

\(y_0 \) is the largest real root of the equation:

\[
y^3 - \frac{(1-c)^2-x^2}{x^2} y^2 - \frac{4}{x^2} y - \frac{4}{x^2} = 0;
\]

and \(y_1 \) is the only real root of the equation:

\[
((1-c)^2 - 1)y^3 + y^2 + y - 1 = 0
\]

such that \(y_1 > 1 \) if \(c < 1 \) and \(y_1 \in (0,1) \) if \(c > 1 \).

Further, if \(c > 1 \), then \(F_\tau \) has a point mass \(1 - 1/c \) at the origin.
Main Result

Figure 1: $\phi_c(x)$ with $c = 0.2$ (black), 0.5 (blue) and 0.7 (red).

Figure 2: $\phi_c(x)$ with $c = 1.5$ (black), 2 (blue) and 2.5 (red). The area under each curve is $1/c$.
1. Introduction

2. Limiting Spectral Distribution

3. Strong Limit of Extreme Eigenvalues

4. Application
Motivation

Once the LSD of $M_n(\tau)$ is derived, it is observed that the number of eigenvalues of $\Phi_n(\tau)$ that lie outside the support of the LSD of $M_n(\tau)$ at lags $1 \leq \tau \leq q$ is different from that at lags $\tau > q$. Thus, the estimates of k and q can be separated by counting the number of eigenvalues of $\Phi_n(\tau)$ that lie outside the support of the LSD of $M_n(\tau)$ from $\tau = 0, 1, 2, \cdots, q, q + 1, \cdots$.
Motivation

Once the LSD of $M_n(\tau)$ is derived, it is observed that the number of eigenvalues of $\Phi_n(\tau)$ that lie outside the support of the LSD of $M_n(\tau)$ at lags $1 \leq \tau \leq q$ is different from that at lags $\tau > q$. Thus, the estimates of k and q can be separated by counting the number of eigenvalues of $\Phi_n(\tau)$ that lie outside the support of the LSD of $M_n(\tau)$ from $\tau = 0, 1, 2, \cdots, q, q + 1, \cdots$.

It is worth noting that for this method to work, we require that with probability 1, there is no eigenvalues outside the the support of the LSD of $M_n(\tau)$ so that if an eigenvalue of $\Phi_n(\tau)$ goes out of the support of the LSD of $M_n(\tau)$, it must come from the information part.
Motivation

Once the LSD of $M_n(\tau)$ is derived, it is observed that the number of eigenvalues of $\Phi_n(\tau)$ that lie outside the support of the LSD of $M_n(\tau)$ at lags $1 \leq \tau \leq q$ is different from that at lags $\tau > q$. Thus, the estimates of k and q can be separated by counting the number of eigenvalues of $\Phi_n(\tau)$ that lie outside the support of the LSD of $M_n(\tau)$ from $\tau = 0, 1, 2, \ldots, q, q + 1, \ldots$.

It is worth noting that for this method to work, we require that with probability 1, there is no eigenvalues outside the the support of the LSD of $M_n(\tau)$ so that if an eigenvalue of $\Phi_n(\tau)$ goes out of the support of the LSD of $M_n(\tau)$, it must come from the information part.

This motivates us to establish the limits of the largest and smallest eigenvalues of $M_n(\tau)$, after showing that with probability 1 no eigenvalues exist outside the support of the LSD of $M_n(\tau)$.
Theorem 2
Assume:

(a) $\tau \geq 1$ is a fixed integer.

(b) $e_k = (\varepsilon_{1k}, \cdots, \varepsilon_{nk})'$, $k = 1, 2, \ldots, T + \tau$, are n-vectors of independent standard complex components with $\sup_{i,t} E|\varepsilon_{it}|^4 \leq M$ for some $M > 0$.

(c) There exist $K > 0$ and a random variable X with finite fourth order moment such that, for any $x > 0$, for all n, T
\[
\frac{1}{nT} \sum_{i=1}^{n} \sum_{t=1}^{T+\tau} P(|\varepsilon_{it}| > x) \leq KP(|X| > x).
\]

(d) $c_n \equiv n/T \to c > 0$ as $n \to \infty$.

(e) $M_n = \sum_{k=1}^{T} (\gamma_k \gamma_{k+\tau}^* + \gamma_{k+\tau} \gamma_k^*)$, where $\gamma_k = \frac{1}{\sqrt{2T}} e_k$.

(f) The interval $[a, b]$ lies outside the support of F_{τ}.

Then $P(\text{no eigenvalues of } M_n \text{ appear in } [a, b] \text{ for all large } n) = 1$.
Main Results

Theorem 3

Assuming conditions (a)–(e) in Theorem 2 hold, we have

$$\lim_{n \to \infty} \lambda_{\min}(M_n) = -d_c \text{ a.s. and } \lim_{n \to \infty} \lambda_{\max}(M_n) = d_c \text{ a.s.}$$

Here, $-d_c$ and d_c are the left and right boundary points of the support of the LSD of M_n, as defined in Theorem 1.
Figure 3: $\phi_c(x)$ and plot of sample eigenvalues with $\tau = 1, c = 0.2$ ($n = 200, T = 1000$).

Figure 4: $\phi_c(x)$ and plot of sample eigenvalues with $\tau = 1, c = 2.5$ ($n = 2500, T = 1000$).
Outline

1. Introduction
2. Limiting Spectral Distribution
3. Strong Limit of Extreme Eigenvalues
4. Application
Recall that $k(\tau + 1)$ can be estimated by counting the number of spiked eigenvalues of $\Phi_n(0)$.

For $\tau \geq 1$, we have

$$\Phi_n(\tau) = \frac{1}{2} T \left\{ \Lambda(F_0 F_\tau + F_\tau F_0)^\Lambda \right\} + \frac{1}{2} T \left\{ (E_0 F_\tau \Lambda' + \Lambda F_\tau E_\tau') + (E_\tau F_0 \Lambda' + \Lambda F_0 E_\tau') \right\} + M_n,$$
Recall that $k(q + 1)$ can be estimated by counting the number of spiked eigenvalues of $\Phi_n(0)$.
Recall that $k(q + 1)$ can be estimated by counting the number of spiked eigenvalues of $\Phi_n(0)$.

For $\tau \geq 1$, we have

$$
\Phi_n(\tau) = \frac{1}{2T} \left\{ \Lambda \left(F_0 F_{\tau}' + F_{\tau} F_0' \right) \Lambda' \right\} + \\
\frac{1}{2T} \left\{ \left(E_0 F_{\tau}' \Lambda' + \Lambda F_{\tau} E_0' \right) + \left(E_{\tau} F_0' \Lambda' + \Lambda F_0 E_{\tau}' \right) \right\} + M_n,
$$
Estimation of k and q

Define $B_1 = \Lambda Q$ and $B = (B_1 \ldots B_2)$ is an $n \times n$ orthogonal matrix, where $Q = (\Lambda' \Lambda)^{-1/2}$.

Then, $B_1' \Phi_n(\tau) B_1 = (B_1' \Phi_n(\tau) B_1 B_1' \Phi_n(\tau) B_1 B_1' \Phi_n(\tau) B_2 B_2' \Phi_n(\tau) B_2 B_2' \Phi_n(\tau) B_1 B_1' \Phi_n(\tau) B_1 B_1' \Phi_n(\tau) B_2 B_2' \Phi_n(\tau) B_2 B_2')$.

Note that $B_2 \Lambda = 0$, we have

$B_1' \Phi_n(\tau) B_1 \sim Q \tau Q + B_1' M_n B_1 B_1' \Phi_n(\tau) B_2 B_2' \Phi_n(\tau) B_1 B_1' \Phi_n(\tau) B_1 B_1' \Phi_n(\tau) B_2 B_2' \Phi_n(\tau) B_2 B_2'$. Where $(A \tau)_{k(q+1) \times k(q+1)}$ is the matrix with 1's on upper and lower $k\tau$ diagonals and 0's elsewhere.
Estimation of k and q

Define $B_1 = \Lambda Q$ and $B = (B_1 : B_2)$ is an $n \times n$ orthogonal matrix, where $Q = (\Lambda' \Lambda)^{-1/2}$.
Estimation of \(k \) and \(q \)

Define \(B_1 = \Lambda Q \) and \(B = (B_1 : B_2) \) is an \(n \times n \) orthogonal matrix, where \(Q = (\Lambda' \Lambda)^{-1/2} \).

Then, \(B' \Phi_n(\tau) B = \begin{pmatrix} B'_1 \Phi_n(\tau) B_1 & B'_1 \Phi_n(\tau) B_2 \\ B'_2 \Phi_n(\tau) B_1 & B'_2 \Phi_n(\tau) B_2 \end{pmatrix} \).
Estimation of k and q

Define $B_1 = \Lambda Q$ and $B = (B_1 \ldots B_2)$ is an $n \times n$ orthogonal matrix, where $Q = (\Lambda' \Lambda)^{-1/2}$.

Then, $B' \Phi_n(\tau) B = \begin{pmatrix} B_1' \Phi_n(\tau) B_1 & B_1' \Phi_n(\tau) B_2 \\ B_2' \Phi_n(\tau) B_1 & B_2' \Phi_n(\tau) B_2 \end{pmatrix}$.

Note that $B_2 \Lambda = 0$, we have

$$B_1' \Phi_n(\tau) B_1 \sim QA_\tau Q + B_1' M_n B_1$$

$$B_1' \Phi_n(\tau) B_2 = B_1' M_n B_2 + \frac{1}{2T} \frac{Q(F_0 E_\tau^* + F_\tau E_0^*) B_2}{2T}$$

$$B_2' \Phi_n(\tau) B_1 = B_2' M_n B_1 + \frac{1}{2T} B_2' (E_0 F_\tau^* + E_\tau F_0^*) Q$$

$$B_2' \Phi_n(\tau) B_2 = B_2' M_n B_2.$$
Estimation of \(k \) and \(q \)

If \(\ell \) is a root of \(\Phi_n(\tau) \) but not a root of \(B'_2 M_n B_2 \), then

\[
0 = \begin{vmatrix}
B'_1 \Phi_n(\tau) B_1 - \ell I & B'_1 \Phi_n(\tau) B_2 \\
B'_2 \Phi_n(\tau) B_1 & B'_2 \Phi_n(\tau) B_2 - \ell I
\end{vmatrix}
\]

Since \(|B'_2 \Phi_n(\tau) B_2 - \ell I| = |B'_2 M_n B_2 - \ell I| \neq 0 \), we have

\[
\begin{vmatrix}
B'_1 \Phi_n(\tau) B_1 - \ell I - B'_1 \Phi_n(\tau) B_2 (B'_2 M_n B_2 - \ell I)^{-1} B'_2 \Phi_n(\tau) B_1
\end{vmatrix} = 0
\]

After certain simplification, the equation above can be shown equivalent to

\[
|A_\tau - \left(\ell + \frac{cm(\ell)}{1 - c^2 m^2(\ell) + \sqrt{1 - c^2 m^2(\ell)}} \right) Q^{-2} - \frac{cm(\ell)}{2\sqrt{1 - c^2 m^2(\ell)}} I_{k \times (q+1)} |
\]
Estimation of k and q

The above equation is the key relation between signals and the observed spikes.
Estimation of k and q

The above equation is the key relation between signals and the observed spikes.

Generally, it is not easy to identify the point-wise transaction rule between the signals (eigenvalues of Q^2) and spikes (solutions of the equation in ℓ).
Estimation of k and q

The above equation is the key relation between signals and the observed spikes.

Generally, it is not easy to identify the point-wise transaction rule between the signals (eigenvalues of Q^2) and spikes (solutions of the equation in ℓ).

However, if the matrices A_τ and Q^2 are commutative, the transition phenomenon becomes clear, that is, there is a common orthogonal matrix O to simultaneously diagonalize the two matrices, i.e., we have $A_\tau = OD_\tau O'$ and $Q^2 = OD_\lambda O'$, where $D_\tau = \text{diag}[a_1, \cdots, a_{k(q+1)}]$ and $D_\lambda = \text{diag}[\lambda_1, \cdots, \lambda_{k(q+1)}]$.
Estimation of k and q

The above equation is the key relation between signals and the observed spikes.

Generally, it is not easy to identify the point-wise transaction rule between the signals (eigenvalues of Q^2) and spikes (solutions of the equation in ℓ).

However, if the matrices A_τ and Q^2 are commutative, the transition phenomenon becomes clear, that is, there is a common orthogonal matrix O to simultaneously diagonalize the two matrices, i.e., we have $A_\tau = OD_\tau O'$ and $Q^2 = OD_\lambda O'$, where $D_\tau = \text{diag}[a_1, \cdots, a_{k(q+1)}]$ and $D_\lambda = \text{diag}[\lambda_1, \cdots, \lambda_{k(q+1)}]$.

Then, the equation becomes

$$a_j - \left(\ell + \frac{cm(\ell)}{1-c^2m^2(\ell)+\sqrt{1-c^2m^2(\ell)}} \right) \lambda_j^{-1} - \frac{cm(\ell)}{2\sqrt{1-c^2m^2(\ell)}} = 0,$$

$$j = 1, 2 \cdots, k(q+1).$$
Estimation of k and q

Case 1. If $a_j \geq 0$ and $g(d(c)) > a_j$, then the equation $a_j = g(\ell)$ doesn’t have a solution in the interval $(d(c), \infty)$ because $g(\ell)$ is increasing and continuous, where

$$
g(\ell) = \left(\ell + \frac{cm(\ell)}{1 - c^2 m^2(\ell) + \sqrt{1 - c^2 m^2(\ell)}}\right)\lambda_j^{-1} + \frac{cm(\ell)}{2 \sqrt{1 - c^2 m^2(\ell)}}.
$$

On the interval $(-\infty, -d(c))$ it does not have solution either because $g(\ell) < g(-d(c)) = -g(d(c)) < 0$. Thus, the equation $a_j = g(\ell)$ does not have any solution.
Estimation of k and q

Case 1. If $a_j \geq 0$ and $g(d(c)) > a_j$, then the equation $a_j = g(\ell)$ doesn’t have a solution in the interval $(d(c), \infty)$ because $g(\ell)$ is increasing and continuous, where

$$g(\ell) = \left(\ell + \frac{cm(\ell)}{1 - c^2 m^2(\ell) + \sqrt{1 - c^2 m^2(\ell)}}\right)\lambda_j^{-1} + \frac{cm(\ell)}{2\sqrt{1 - c^2 m^2(\ell)}}.$$

On the interval $(-\infty, -d(c))$ it does not have solution either because $g(\ell) < g(-d(c)) = -g(d(c)) < 0$. Thus, the equation $a_j = g(\ell)$ does not have any solution.

Case 2. If $a_j \geq 0$ and $a_j \geq g(d(c)) > 0$, then the equation $a_j = g(\ell)$ has a solution in the interval $(d(c), \infty)$, and on the interval $(-\infty, -d(c))$ it does not have solution either because $a_j \geq 0$ and $g(\ell) \leq g(-d(c)) < 0$. Thus, the equation $a_j = g(\ell)$ has only one solution.
Case 3. If $a_j \geq 0$ and $a_j > -g(d(c)) \geq 0$, then the equation $a_j = g(\ell)$ has a solution in the interval $(d(c), \infty)$, and on the interval $(-\infty, -d(c))$ it does not have any solution because $a_j > g(-d(c)) \geq g(\ell)$ when $\ell < -d(c)$.

Similarly, we may discuss the cases when $a_j \leq 0$. Since $m(d(c)) < 0$, we have $g(d(c)) < 0$ provided that λ_j is large enough. Thus, case 1 doesn't happen in general.
Estimation of k and q

Case 3. If $a_j \geq 0$ and $a_j > -g(d(c)) \geq 0$, then the equation $a_j = g(\ell)$ has a solution in the interval $(d(c), \infty)$, and on the interval $(-\infty, -d(c))$ it does not have any solution because $a_j > g(-d(c)) \geq g(\ell)$ when $\ell < -d(c)$.

Case 4. If $-g(d(c)) \geq a_j \geq g(d(c))$, then the equation $a_j = g(\ell)$ has a solution in the interval $(d(c), \infty)$ and another solution on the interval $(-\infty, -d(c))$. Especially when $a_j = 0$, the case is true.
Estimation of k and q

Case 3. If $a_j \geq 0$ and $a_j > -g(d(c)) \geq 0$, then the equation $a_j = g(\ell)$ has a solution in the interval $(d(c), \infty)$, and on the interval $(-\infty, -d(c))$ it does not have any solution because $a_j > g(-d(c)) \geq g(\ell)$ when $\ell < -d(c)$.

Case 4. If $-g(d(c)) \geq a_j \geq g(d(c))$, then the equation $a_j = g(\ell)$ has a solution in the interval $(d(c), \infty)$ and another solution on the interval $(-\infty, -d(c))$. Especially when $a_j = 0$, the case is true.

Similarly, we may discuss the cases when $a_j \leq 0$.
Case 3. If $a_j \geq 0$ and $a_j > -g(d(c)) \geq 0$, then the equation $a_j = g(\ell)$ has a solution in the interval $(d(c), \infty)$, and on the interval $(-\infty, -d(c))$ it does not have any solution because $a_j > g(-d(c)) \geq g(\ell)$ when $\ell < -d(c)$.

Case 4. If $-g(d(c)) \geq a_j \geq g(d(c))$, then the equation $a_j = g(\ell)$ has a solution in the interval $(d(c), \infty)$ and another solution on the interval $(-\infty, -d(c))$. Especially when $a_j = 0$, the case is true.

Similarly, we may discuss the cases when $a_j \leq 0$.

Since $m(d(c)) < 0$, we have $g(d(c)) < 0$ provided that λ_j is large enough. Thus, case 1 doesn’t happen in general.
Estimation of k and q

Therefore, the number of spiked eigenvalues of $\Phi_n(\tau)$ satisfies

$$
\hat{p}(\tau) \rightarrow \begin{cases}
k(q + 1), & \tau = 0 \\
2k(q + 1) - h(\tau), & 1 \leq \tau \leq q \\
2k(q + 1), & \tau > q.
\end{cases}
$$

where $h(\tau) = 2 \cdot \# \{ j, g(d(c)) > |a_j| \} + \# \{ j, |a_j| > |g(d(c))| > 0 \}$.

Generally, the first case doesn't happen, unless λ_j is very small.

Transition threshold: $\lambda_0(c) = -\frac{2}{\sqrt{1 - c^2}}m(d(c)) + \sqrt{1 - c^2}m(d(c)) (1 - c^2)$. That is, when $\lambda_j > \lambda_0(c)$, then $g_j(d(c)) < 0.$
Estimation of k and q

- Therefore, the number of spiked eigenvalues of $\Phi_n(\tau)$ satisfies

 $$
 \hat{p}(\tau) \to \begin{cases}
 k(q+1), & \tau = 0 \\
 2k(q+1) - h(\tau), & 1 \leq \tau \leq q \\
 2k(q+1), & \tau > q.
 \end{cases}
 $$

 where $h(\tau) = 2 \cdot \# \{ j, g(d(c)) > |a_j| \} + \# \{ j, |a_j| > |g(d(c))| > 0 \}$.

- Generally, the first case doesn’t happen, unless λ_j is very small.
Estimation of k and q

Therefore, the number of spiked eigenvalues of $\Phi_n(\tau)$ satisfies

$$
\hat{p}(\tau) \rightarrow \begin{cases}
 k(q + 1), & \tau = 0 \\
 2k(q + 1) - h(\tau), & 1 \leq \tau \leq q \\
 2k(q + 1), & \tau > q.
\end{cases}
$$

where $h(\tau) = 2 \cdot \# \{ j, g(d(c)) > |a_j| \} + \# \{ j, |a_j| > |g(d(c))| > 0 \}$.

Generally, the first case doesn’t happen, unless λ_j is very small.

Transition threshold:

$$
\lambda_0(c) = -\frac{2 \sqrt{1 - c^2 m^2(d(c))} \left(d(c) + \frac{cm(d(c))}{(1-c^2 m^2(d(c))) + \sqrt{1-c^2 m^2(d(c))}} \right)}{cm(d(c))}
$$
Estimation of k and q

- Therefore, the number of spiked eigenvalues of $\Phi_n(\tau)$ satisfies

$$
\hat{p}(\tau) \rightarrow \begin{cases}
k(q+1), & \tau = 0 \\
2k(q+1) - h(\tau), & 1 \leq \tau \leq q \\
2k(q+1), & \tau > q.
\end{cases}
$$

where $h(\tau) = 2 \cdot \# \{j, g(d(c)) > |a_j|\} + \# \{j, |a_j| > |g(d(c))| > 0\}$.

- Generally, the first case doesn’t happen, unless λ_j is very small.

- Transition threshold:

$$
\lambda_0(c) = -\frac{2 \sqrt{1 - c^2 m^2(d(c))} \left(d(c) + \frac{cm(d(c))}{(1-c^2 m^2(d(c)))+\sqrt{1-c^2 m^2(d(c))}} \right)}{cm(d(c))}
$$

- That is, when $\lambda_j > \lambda_0(c)$, then $g_j(d(c)) < 0$.
Estimation of k and q

Algorithm

- Count the number of spiked eigenvalues of $\Phi_n(0)$, $k(q+1)$.
- For $\tau = 1, 2, \cdots$, count the number of spiked eigenvalues of $\Phi_n(\tau)$ and stop at the smallest lag $q+1$, at which the number jumps to $2k(q+1)$.
- Set $\hat{k} = \frac{k(q+1)}{q+1}$ and $\hat{q} = q + 1 - 1$.
Figure 5: Sample eigenvalues plots for a factor model with no factors with $n = 450$, $T = 500$, $k = 0$, $q = 0$ and $\sigma^2_{\varepsilon} = 1$.
Simulation

Figure 6: Sample eigenvalues plots for a factor model with $n = 450$, $T = 500$, $k = 2$, $q = 0$ and $\sigma^2_\varepsilon = 1$.

\[\tau = 0 \]
\[\tau = 1 \]
\[\tau = 2 \]
\[\tau = 3 \]
Figure 7: Sample eigenvalues plots for a factor model with $n = 450$, $T = 500$, $k = 2$, $q = 1$ and $\sigma^2_\varepsilon = 1$.
Table 1: Absolute values of the largest eigenvalues of Φ_n at various lags, for $c = 0.9$, $b_c = (1 + \sqrt{c})^2 = 3.7974$, $d_c = 1.8573$.

<table>
<thead>
<tr>
<th>$\tau = 0$</th>
<th>$\tau = 1$</th>
<th>$\tau = 2$</th>
<th>$\tau = 3$</th>
<th>$\tau = 4$</th>
<th>$\tau = 5$</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.8733</td>
<td>2.7132</td>
<td>3.0196</td>
<td>3.4424</td>
<td>2.9948</td>
<td>3.2131</td>
</tr>
<tr>
<td>7.6733</td>
<td>2.2934</td>
<td>2.8472</td>
<td>3.2752</td>
<td>2.8658</td>
<td>3.0014</td>
</tr>
<tr>
<td>1.8057</td>
<td>2.0844</td>
<td>2.7571</td>
<td>3.1088</td>
<td>2.8206</td>
<td>2.9009</td>
</tr>
<tr>
<td>1.7851</td>
<td>1.9410</td>
<td>2.7238</td>
<td>2.4418</td>
<td>2.6166</td>
<td>2.7364</td>
</tr>
<tr>
<td>1.7475</td>
<td>1.7971</td>
<td>1.8099</td>
<td>2.4222</td>
<td>2.6032</td>
<td>2.5338</td>
</tr>
<tr>
<td>1.7273</td>
<td>1.7096</td>
<td>1.7313</td>
<td>2.3283</td>
<td>2.4414</td>
<td>2.1618</td>
</tr>
<tr>
<td>1.7090</td>
<td>1.7068</td>
<td>1.7232</td>
<td>2.1798</td>
<td>2.3751</td>
<td>2.1310</td>
</tr>
<tr>
<td>1.6787</td>
<td>1.6803</td>
<td>1.6998</td>
<td>2.0149</td>
<td>2.1294</td>
<td>1.9938</td>
</tr>
<tr>
<td>1.6619</td>
<td>1.6418</td>
<td>1.6874</td>
<td>1.8028</td>
<td>1.7561</td>
<td>1.7109</td>
</tr>
</tbody>
</table>
Thank you!