< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Spectrum of large deformed classical Hermitian matrices and free probability theory

M. Capitaine

I M T Univ Toulouse 3, Equipe de Statistique et Probabilités, CNRS

December 5, 2014

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Aim of this talk:

To show how free probability theory sheds light on spectral properties of deformed matricial models and provides A UNIFIED UNDERSTANDING of various phenomena

Notations

 $B = B^* \in \mathcal{M}_N(\mathbb{C})$ Eigenvalues of B: $\lambda_1(B) \ge \lambda_2(B) \ge \cdots \ge \lambda_N(B)$,

The empirical distribution of these eigenvalues:

$$\mu_B := \frac{1}{N} \sum_{i=1}^N \delta_{\lambda_i(B)}$$

 μ probability measure on \mathbb{C} , $z \in \mathbb{C} \setminus \operatorname{supp}(\mu)$, $g_{\mu}(z) = \int \frac{d\mu(x)}{z-x}$

$$\begin{split} \mathcal{M}: \text{ the set of probability measures supported on the real line } \\ \mathcal{M}^+: \text{ the set of probability measures supported on } [0; +\infty[. \\ \text{Free probability theory defines:} \end{split}$$

- a binary operation on \mathcal{M} :the free additive convolution $\mu \boxplus \nu$ for μ and ν in \mathcal{M} ,
- binary operations on \mathcal{M}^+ : the free multiplicative convolution $\mu \boxtimes \nu$ and the free rectangular convolution with ratio $c \in]0; 1]$ $\mu \boxplus_c \nu$, for μ and ν in \mathcal{M}^+ ,

(cf Voiculescu, Maassen, Bercovici-Voiculescu, and Benaych-Georges)

For several matricial models where A_N and B_N are independent $N \times N$ Hermitian random matrices (for instance when $\mathcal{L}(B_N) = \mathcal{L}(U_N B_N U_N^*)$ for any deterministic unitary matrix ("unitarily invariant")), free probability provides a good understanding of the asymptotic global behaviour of the spectrum of $A_N + B_N$ and $A_N^{\frac{1}{2}} B_N A_N^{\frac{1}{2}}$ $(A_N \ge 0, B_N \ge 0)$

$$\mu_{A_N+B_N} \to_{N \to +\infty} \mu_a \boxplus \mu_b$$
$$\mu_{A_N^{\frac{1}{2}} B_N A_N^{\frac{1}{2}}} \to_{N \to +\infty} \mu_a \boxtimes \mu_b$$

where $\mu_{A_N} \rightarrow_{N \rightarrow +\infty} \mu_a$ and $\mu_{B_N} \rightarrow_{N \rightarrow +\infty} \mu_b$.

Pionnering work 90' of D. Voiculescu extended by several authors

For several matricial models where A_N and B_N are independent rectangular $n \times N$ random matrices such that $n/N \rightarrow c \in]0; 1]$, rectangular free convolution provides a good understanding of the asymptotic global behaviour of the singular values of $A_N + B_N$:

$$\frac{1}{n} \sum_{s \text{ sing. val. of } A_N + B_N} \delta_s \to \nu_a \boxplus_c \nu_b.$$
(where $\frac{1}{n} \sum_{s \text{ sing. val. of } A_N} \delta_s \to \nu_a$, $\frac{1}{n} \sum_{s \text{ sing. val. of } B_N} \delta_s \to \nu_b$)

(cf work of Benaych-Georges when B_N is invariant, in law, under multiplication, on the right and on the left, by any unitary matrix: "biunitarily invariant")

Additive free subordination property

For a probability measure
$$au$$
 on \mathbb{R} , $z \in \mathbb{C} \setminus \mathbb{R}$, $g_{ au}(z) = \int_{\mathbb{R}} \frac{d au(x)}{z-x}$.

Theorem (D.Voiculescu (93), P. Biane (98))

Let μ and ν be two probability measures on \mathbb{R} , there exists a unique analytic map $\omega_{\mu,\nu} : \mathbb{C}^+ \to \mathbb{C}^+$ such that

$$orall z \in \mathbb{C}^+, {\it g}_{\mu \boxplus
u}(z) = {\it g}_{
u}(\omega_{\mu,
u}(z)),$$

 $\forall z \in \mathbb{C}^+, \Im \omega_{\mu,\nu}(z) \geq \Im z \text{ and } \lim_{y \uparrow +\infty} \frac{\omega_{\mu,\nu}(iy)}{iy} = 1.$ $\omega_{\mu,\nu}$ is called the additive subordination map of $\mu \boxplus \nu$ with respect to ν .

Multiplicative free subordination property

$$\Psi_{\tau}(z)=\intrac{tz}{1-tz}d au(t)=rac{1}{z}g_{ au}(rac{1}{z})-1,$$

for complex values of z such that $\frac{1}{z}$ is not in the support of τ .

Theorem (Biane (98))

Let $\tau \neq \delta_0$ and $\nu \neq \delta_0$ be two probability measures on $[0; +\infty[$. There exists a unique analytic map $F_{\tau,\nu}$ defined on $\mathbb{C} \setminus [0; +\infty[$ such that

$$\forall z \in \mathbb{C} \setminus [0; +\infty[, \Psi_{\nu \boxtimes \tau}(z) = \Psi_{\nu}(F_{\tau,\nu}(z))]$$

and

$$\forall\,z\in\mathbb{C}^+,\; \mathit{F}_{\tau,\nu}(z)\in\mathbb{C}^+,\; \mathit{F}_{\tau,\nu}(\overline{z})=\overline{\mathit{F}_{\tau,\nu}(z)},\; \arg(\mathit{F}_{\tau,\nu}(z))\geq\arg(z).$$

 $F_{\tau,\nu}$ is called the multiplicative subordination map of $\tau \boxtimes \nu$ with respect to ν .

Rectangular free subordination property

 τ probability measure on \mathbb{R}^+ ; $c \in]0; 1]$.

$$M_{ au}(z) = \int_{\mathbb{R}^+} rac{t^2 z}{1-t^2 z} d au(t), \ \ H^{(c)}_{ au}(z) := z \left(c M_{ au}(z) + 1
ight) \left(M_{ au}(z) + 1
ight).$$

Theorem (Belinschi&Benaych-Georges&Guionnet (2008))

Assume that τ is \boxplus_c infinitely divisible. Then there exist two unique meromorphic functions ω_1 , ω_2 on $\mathbb{C} \setminus \mathbb{R}^+$ so that

$$\mathcal{H}^{(c)}_{ au}(\omega_1(z))=\mathcal{H}^{(c)}_{
u}(\omega_2(z))=\mathcal{H}^{(c)}_{ au\boxplus_c
u}(z),$$

 $\omega_j(\overline{z}) = \overline{\omega_j(z)} \text{ and } \lim_{x \uparrow 0} \omega_j(x) = 0, j \in \{1; 2\}.$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Standard models

• Wigner matrices

$$X_N = \frac{1}{\sqrt{N}} W_N$$

 $(W_N)_{ii}, \sqrt{2}\Re e((W_N)_{ij})_{i < j}, \sqrt{2}\Im m((W_N)_{ij})_{i < j}$ are i.i.d, with distribution μ with variance σ^2 and mean zero.

If $\mu = \mathcal{N}(\mathbf{0}, \sigma^2)$, $W_N =: W_N^G$ is a G.U.E-matrix.

• Wishart matrices

$$X_N = \frac{1}{p} B_N B_N^*$$

 B_N is a $N \times p(N)$ matrix, $(B_N)_{u,v} = Z_{u,v} + iY_{u,v} Z_{u,v}$, $Y_{u,v}$, $u = 1, \ldots, N$, $v = 1, \ldots, p(N)$ are i.i.d, with distribution μ with variance $\frac{1}{2}$ and mean zero.

If
$$\mu = \mathcal{N}(0, \frac{1}{2})$$
, X_N is a $L.U.E$ matrix.

а

Convergence of the spectral measure

Theorem (Wigner (50'))

$$\mu_{\frac{W_N}{\sqrt{N}}} := \frac{1}{N} \sum_{i=1}^N \delta_{\lambda_i(\frac{W_N}{\sqrt{N}})} \to \mu_{sc} \quad a.s \text{ when } N \to +\infty$$

$$\frac{d\mu_{sc}}{dx}(x) = \frac{1}{2\pi\sigma^2}\sqrt{4\sigma^2 - x^2}\,\mathbf{1}_{[-2\sigma,2\sigma]}(x)$$

Theorem (Marchenko-Pastur (1967))

If
$$c_N := rac{N}{p}
ightarrow c > 0$$
 when $N
ightarrow \infty$,

 $\mu_{\frac{B_NB_N^*}{p}} o \mu_{MP}$ a.s when $N o +\infty$

$$\frac{d\mu_{MP}}{dx}(x) = \frac{1}{2\pi cx} \sqrt{(b-x)(x-a)} \, \mathbb{1}_{[a,b]}(x)$$
$$= (1-\sqrt{c})^2, \ b = (1+\sqrt{c})^2. \ \text{and} \ \mu_c(0) = 1 - \frac{1}{c} \ \text{if} \ c > 1.$$

200

No outlier

Theorem (Bai-Yin 1988)

If
$$\int x^4 d\mu(x) < +\infty$$
, then

$$\lambda_1(\frac{W_N}{\sqrt{N}}) \to 2\sigma \text{ and } \lambda_N(\frac{W_N}{\sqrt{N}}) \to -2\sigma \text{ a.s when } N \to +\infty.$$

Theorem (Geman 1980, Bai-Yin-Krishnaiah 1988, Bai-Silverstein-Yin 1988)

If $\int x^4 d\mu(x) < +\infty$,

$$\lambda_1(rac{B_NB_N^*}{p}) o (1+\sqrt{c})^2$$
 a.s when $N o +\infty.$

$$\lambda_{\min(N,p)}(rac{B_NB_N^*}{p}) o (1-\sqrt{c})^2$$
 a.s when $N o +\infty$.

Standard matricial models

Deformed models

Deformed models

- A_N is a deterministic matrix such that $\sup_N ||A_N|| < \infty$.
 - Deformed Wigner matrices W_N is a Wigner matrix and A_N is an Hermitian matrix such that $\mu_{A_N} \rightarrow_{N \rightarrow +\infty} \nu$ weakly.

$$M_N = \frac{W_N}{\sqrt{N}} + A_N$$

• Sample covariance matrices A_N is a non negative definite matrix such that $\mu_{A_N} \rightarrow_{N \rightarrow +\infty} \nu$ weakly.

$$M_N = A_N^{\frac{1}{2}} \frac{B_N B_N^*}{p} A_N^{\frac{1}{2}}.$$

• Information-Plus-Noise type matrices, $N \le p(N)$, A_N is such that $\mu_{A_NA_N^*} \rightarrow_{N \to +\infty} \nu$ weakly.

$$M_N = \left(\frac{B_N}{\sqrt{p}} + A_N\right) \left(\frac{B_N}{\sqrt{p}} + A_N\right)^*.$$

Convergence of spectral measures

- Deformed Wigner matrices $\mu_{M_N} \rightarrow_{N \rightarrow +\infty} \mu_{dW}$ weakly. Pastur (72), Anderson&Guionnet&Zeitouni (2010)
- Sample covariance matrices μ_{M_N} →_{N→+∞} μ_{Scm} weakly. Marchenko&Pastur (67) Grenander&Silverstein(77), Wachter (78), Krishnaiah&Y.Q.Yin (83), Y.Q.Yin (86), Bai&Silverstein (95), Silverstein (95).
- Information-Plus-Noise type matrices $\mu_{M_N} \rightarrow_{N \rightarrow +\infty} \mu_{Ipn}$ weakly. Dozier&Silverstein (2007), Hachem&Loubaton&Najim (2007), Xie (2012)

Convergence of spectral measures

• Deformed Wigner matrices $\mu_{M_N} \rightarrow_{N \rightarrow +\infty} \mu_{dW}$ weakly.

$$orall z\in \mathbb{C}^+, \ \ g_{\mu_{dW}}(z)=\int rac{1}{z-\sigma^2 g_{\mu_{dW}}(z)-t}d
u(t).$$

• Sample covariance matrices $\mu_{M_N} \rightarrow_{N \rightarrow +\infty} \mu_{Scm}$ weakly.

$$orall z\in \mathbb{C}^+, \ \ g_{\mu_{\mathit{Scm}}}(z)=\int rac{1}{z-t(1-c+czg_{\mu_{\mathit{Scm}}}(z))}d
u(t).$$

• Information-Plus-Noise type matrices $\mu_{M_N} \rightarrow_{N \rightarrow +\infty} \mu_{Ipn}$ weakly.

$$orall z \in \mathbb{C}^+, \;\; g_{\mu_{lpn}}(z) = \int rac{1}{(1-cg_{\mu_{lpn}}(z))z - rac{t}{1-cg_{\mu_{lpn}}(z)} - (1-c)} d
u(t).$$

 μ_{dW} , μ_{Scm} , μ_{Ipn} are **deterministic**, in general non explicit. They are **universal** (do not depend on the distribution of the entries of W_N or B_N) and only depend on A_N through the limiting spectral measure ν . ◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Free probabilistic interpretation

• Deformed Wigner matrices

$$\mu_{M_N} \rightarrow_{N \rightarrow +\infty} \mu_{dW}$$
 weakly, $\mu_{dW} = \mu_{sc} \boxplus \nu$

• Sample covariance matrices

$$\mu_{M_N} \rightarrow_{N \rightarrow +\infty} \mu_{Scm}$$
 weakly, $\mu_{Scm} = \mu_{MP} \boxtimes \nu$

Information-Plus-Noise type matrices

$$\mu_{M_N} \rightarrow_{N \rightarrow +\infty} \mu_{Ipn}$$
 weakly, $\mu_{Ipn} = (\sqrt{\mu_{MP}} \boxplus_c \sqrt{\nu})^2$

Equations satisfied by the limiting Stieltjes transforms \iff Free Subordination properties

• Deformed Wigner matrices

$$orall z \in \mathbb{C}^+, \ g_{\mu_{sc}\boxplus
u}(z) = \int rac{1}{z - \sigma^2 g_{\mu_{sc}\boxplus
u}(z) - t} d
u(t) = g_{
u}(\omega_{\mu_{sc},
u}(z)).$$
 $\omega_{\mu_{sc},
u}(z) = z - \sigma^2 g_{\mu_{sc}\boxplus
u}(z).$

• Sample covariance matrices

$$\forall z \in \mathbb{C}^+, \quad g_{\mu_{MP} \boxtimes \nu}(z) = \int \frac{1}{z - t(1 - c + czg_{\mu_{MP} \boxtimes \nu}(z))} d\nu(t).$$

$$\rightarrow \quad \Psi_{\mu_{MP} \boxtimes \nu}\left(\frac{1}{z}\right) = \Psi_{\nu}(F_{\mu_{MP},\nu}\left(\frac{1}{z}\right))$$

$$\Psi_{\tau}(z) = \int \frac{tz}{1 - tz} d\tau(t) = \frac{1}{z}g_{\tau}(\frac{1}{z}) - 1,$$

$$F_{\mu_{MP},\nu}(z) = z - cz + cg_{\mu_{MP} \boxtimes \nu}(\frac{1}{z}).$$

Equations satisfied by the limiting Stieltjes transforms \iff Free Subordination properties

• Information-Plus-Noise type matrices

$$\mu_{\mathit{Ipn}} = (\sqrt{\mu_{\mathit{MP}}} \boxtimes_c \sqrt{
u})^2$$

$$\begin{aligned} \forall z \in \mathbb{C}^+, \ \ g_{\mu_{lpn}}(z) &= \int \frac{1}{(1 - cg_{\mu_{lpn}}(z))z - \frac{t}{1 - cg_{\mu_{lpn}}(z)} - (1 - c)} d\nu(t). \\ &\to \ \ H^{(c)}_{\sqrt{\mu_{lpn}}}\left(\frac{1}{z}\right) = H^{(c)}_{\sqrt{\nu}}\left(\Omega_{\mu_{MP},\nu}\left(\frac{1}{z}\right)\right) \\ & H^{(c)}_{\sqrt{\tau}}(z) = \frac{c}{z}g_{\tau}(\frac{1}{z})^2 + (1 - c)g_{\tau}(\frac{1}{z}), \\ \Omega_{\mu_{MP},\nu}(z) &= \frac{1}{\frac{1}{z}(1 - cg_{\mu_{lpn}}(\frac{1}{z}))^2 - (1 - c)(1 - cg_{\mu_{lpn}}(\frac{1}{z}))} \end{aligned}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

Deformed models

Deep Studies of the limiting spectral measures

Support, density, behaviour of the density near its zeroes....

- Deformed Wigner matrices $\mu_{dW} = \mu_{sc} \boxplus \nu$ P. Biane (1997)
- Sample covariance matrices $\mu_{Scm} = \mu_{MP} \boxtimes \nu$ Choi&Silverstein (1995)
- Information-Plus-Noise type matrices $\mu_{Ipn} = (\sqrt{\mu_{MP}} \boxplus_c \sqrt{\nu})^2$ Dozier&Silverstein (2007)

Characterization of the complement of the supports

(P.Biane 1997):

$$\mathcal{O}:=\{u\in\mathbb{R}\setminus ext{support}\
u,\intrac{1}{(u-x)^2}d
u(x)<rac{1}{\sigma^2}\}$$

$$\mathbb{R} \setminus \text{support } \mu_{sc} \boxplus \nu = h_{\mu_{sc},\nu} (\mathcal{O}).$$
$$h_{\mu_{sc},\nu} : z \mapsto z + \sigma^2 g_{\nu}(z).$$
$$\mathbb{R} \setminus \text{support } \mu_{sc} \boxplus \nu \xrightarrow[h]{}_{\mu_{sc},\nu} \mathcal{O},$$

The additive subordination map $\omega_{\mu_{sc},\nu}(z) = z - \sigma^2 g_{\mu_{sc} \boxplus \nu}(z)$ $h_{\mu_{sc},\nu}$ globally strictly increasing on \mathcal{O} . Standard matricial models

Deformed models

• Deformed Wigner

$$\mathbb{R} \setminus \text{support } \mu_{sc} \boxplus \nu \xrightarrow[\phi_1]{} \mathcal{O}_1 \subset \mathbb{R} \setminus \text{support } \nu,$$
$$\theta \in \mathcal{O}_1, \quad \phi_1(\theta) = \theta + \sigma^2 g_{\nu}(\theta).$$

•Sample covariance matrices

$$\mathbb{R} \setminus \{ \text{support } \mu_{MP} \boxtimes \nu \cup \{ 0 \} \} \xrightarrow{x \mapsto \frac{1}{F_{\mu_{MP}, \nu}(1/x)}} \mathcal{O}_2 \subset \mathbb{R} \setminus \text{support } \nu, \\ \theta \in \mathcal{O}_2 \quad \phi_2(\theta) = \theta + c\theta \int \frac{t}{\theta - t} d\nu(t).$$

•Information-Plus-Noise type model

$$\mathbb{R} \setminus (\sqrt{\mu_{MP}} \boxtimes_{c} \sqrt{\nu})^{2} \xrightarrow{x \mapsto \frac{1}{\Omega_{\mu_{MP},\nu}(1/x)}} \mathcal{O}_{3} \subset \mathbb{R} \setminus \text{support } \nu,$$

$$\phi_{3}$$

$$\theta \in \mathcal{O}_{3}, \quad \phi_{3}(\theta) = \theta(1 + cg_{\nu}(\theta))^{2} + (1 - c)(1 + cg_{\nu}(\theta))$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Spiked models, localization of outliers

Spiked models, localization of outliers

Spiked models, localization of outliers

Seminal works on spiked models

Spiked finite rank deformation :
$$M_N = \frac{1}{\sqrt{N}}GUE(\sigma^2) + A_N$$

$$A_N = \text{diag} \left(\underbrace{0, \dots, 0}_{N-r \text{ times}}, \underbrace{\theta_1, \dots, \theta_1}_{k_1 \text{ times}}, \dots, \underbrace{\theta_J, \dots, \theta_J}_{k_J \text{ times}}\right)$$

r: fixed, independent of N.

 A_N : a deterministic Hermitian matrix of fixed finite rank r with r non-null eigenvalues (spikes) $\theta_1 > \cdots > \theta_r$ independent of N, the k_i independent of N.

Spiked models, localization of outliers

Seminal works on spiked models

Spiked finite rank deformation :
$$M_N = \frac{1}{\sqrt{N}}GUE(\sigma^2) + A_N$$

$$A_N = \text{diag} \left(\underbrace{0, \dots, 0}_{N-r \text{ times}}, \underbrace{\theta_1, \dots, \theta_1}_{k_1 \text{ times}}, \dots, \underbrace{\theta_J, \dots, \theta_J}_{k_J \text{ times}} \right)$$

r: fixed, independent of N.

 A_N : a deterministic Hermitian matrix of fixed finite rank r with r non-null eigenvalues (spikes) $\theta_1 > \cdots > \theta_r$ independent of N, the k_i independent of N.

 \implies Convergence of the spectral measure $\mu_{M_N} := \frac{1}{N} \sum_{i=1}^{N} \delta_{\lambda_i(M_N)}$ towards the semi-circular distribution μ_{sc} .

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Spiked models, localization of outliers

Theorem (Péché 2006)

• If
$$\theta_1 \leq \sigma$$
, $\lambda_1(M_N) \rightarrow 2\sigma$

• If
$$\theta_1 > \sigma$$
, $\lambda_1(M_N) \to \rho_{\theta_1}$ with $\rho_{\theta_1} := \theta_1 + \frac{\sigma^2}{\theta_1}$.

Spiked models, localization of outliers

Theorem (Péché 2006)

• If
$$\theta_1 \leq \sigma$$
, $\lambda_1(M_N) \rightarrow 2\sigma$

• If
$$\theta_1 > \sigma$$
, $\lambda_1(M_N) \to \rho_{\theta_1}$ with $\rho_{\theta_1} := \theta_1 + \frac{\sigma^2}{\theta_1}$

Actually if for some *i*, $|\theta_i| > \sigma$ then exactly k_i eigenvalues of M_N converge towards $\rho_{\theta_i} := \theta_i + \frac{\sigma^2}{\theta_i} \in] - \infty; -2\sigma[\cup]2\sigma; +\infty[.$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

When A_N has finite rank, analog B.B.P phase transition phenomena proved for

$A_N + B_N$	$(I_N + A_N)^{1/2} B_N (I_N + A_N)^{1/2}$ $I_N + A_N > 0$	$(A_N+B_N)(A_N+B_N)$
$B_N = GUE$ Péché (2006)		
B _N = Wigner Féral&Péché (2007) C.&Donati-Martin&Féral (2009) Pizzo&Renfrew&Soshnikov (2013), Knowles&Yin (2014)	$B_N = L.U.E$ Baik&Ben Arous&Péché (2005) $B_N = Wishart$ Baik&Silverstein (2006)	<i>B_N</i> Ginibre matrix Loubaton&Vallet (2011)

When A_N has finite rank, analog B.B.P phase transition phenomena proved for

$A_N + B_N$	$(I_N + A_N)^{1/2} B_N (I_N + A_N)^{1/2}$ $I_N + A_N > 0$	$(A_N+B_N)(A_N+B_N)$
$B_N = GUE$ Péché (2006)		
$B_N = $ Wigner	$B_N = L.U.E$ Baik&Ben Arous&Péché (2005)	<i>B_N</i> Ginibre matrix Loubaton&Vallet (2011)
Féral&Péché (2007) C.&Donati-Martin&Féral (2009) Pizzo&Renfrew&Soshnikov (2013), Knowles&Yin (2014)	<i>B_N =</i> Wishart Baik&Silverstein (2006)	
By unitarily invariant	B_N unitarily invariant	B _N biunitarily invaria
$\mu_{B_N} \rightarrow_{N \rightarrow +\infty} \mu$ without outlier Benaych-Georges&Rao(2010)	$\mu_{B_N} \rightarrow_{N \rightarrow +\infty} \mu$ $B_N \ge 0$ without outlier Benavch-Georges&Rao(2010)	$\mu_{B_N B_N^*} \rightarrow_{N \rightarrow +\infty} \mu$ without outlier Benaych-Georges&Rac (2010) = 2000

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Spiked models, localization of outliers

Free subordination properties shed light on these phenomena and provide a UNIFIED UNDERSTANDING, allowing to extend them to non-finite rank deformations.

Spiked models, localization of outliers

 A_N Hermitian deterministic. $\mu_{A_N} \to_{N \to +\infty} \nu$ compactly supported. The eigenvalues of A_N :

• N - r (r fixed) eigenvalues $\beta_i(N)$ such that

 $\max_{i=1}^{N-r} \operatorname{dist}(\beta_i(N), \operatorname{supp}(\nu)) \to_{N \to \infty} 0$

• a finite number J of fixed (independent of N) eigenvalues (SPIKES) $\theta_1 > \ldots > \theta_J$, $\forall i = 1, \ldots, J$, $\theta_i \notin \operatorname{supp}(\nu)$, each θ_j having a fixed multiplicity k_j , $\sum_i k_j = r$.

free probability theory

Standard matricial models

Deformed models

(ロ)、(型)、(E)、(E)、 E) のQの

Spiked models, localization of outliers

Naive intuition for general additive deformed models:

$$g_{\mu\boxplus
u}(z) = g_{
u}(\omega_{\mu,
u}(z))$$

(ロ)、(型)、(E)、(E)、 E) のQの

Spiked models, localization of outliers

Naive intuition for general additive deformed models:

Standard matricial models

Spiked models, localization of outliers

Naive intuition for general additive deformed models:

$$g_{\mu\boxplus\nu}(z) = g_{\nu}(\omega_{\mu,\nu}(z))$$
$$M_{N} = B_{N} + A_{N}; \quad \mu_{B_{N}} \to \mu; \mu_{A_{N}} \to \nu, \mu_{M_{N}} \to \mu \boxplus \nu.$$
$$g_{\mu_{M_{N}}}(z) \approx g_{\mu_{A_{N}}}(\omega_{\mu,\nu}(z))$$
If $\rho \notin \text{support } \mu \boxplus \nu \text{ is a solution of } \omega_{\mu,\nu}(\rho) = \theta_{i} \text{ for some}$

 $i \in \{1, ..., J\},\ \rho \notin \text{support } \mu \boxplus \nu \text{ BUT } g_{\mu_{M_N}}(\rho) \approx g_{\mu_{A_N}}(\omega_{\mu,\nu}(\rho)) \text{ explodes!}$

lf

Standard matricial models

())

Spiked models, localization of outliers

Naive intuition for general additive deformed models:

$$g_{\mu\boxplus\nu}(z) = g_{\nu}(\omega_{\mu,\nu}(z))$$

$$M_{N} = B_{N} + A_{N}; \quad \mu_{B_{N}} \to \mu; \mu_{A_{N}} \to \nu, \mu_{M_{N}} \to \mu \boxplus \nu.$$

$$g_{\mu_{M_{N}}}(z) \approx g_{\mu_{A_{N}}}(\omega_{\mu,\nu}(z))$$
If $\rho \notin \text{support } \mu \boxplus \nu \text{ is a solution of } \omega_{\mu,\nu}(\rho) = \theta_{i} \text{ for some } i \in \{1, \dots, J\},$

$$\rho \notin \text{support } \mu \boxplus \nu \text{ BUT } g_{\mu_{M_{N}}}(\rho) \approx g_{\mu_{A_{N}}}(\omega_{\mu,\nu}(\rho)) \text{ explodes!}$$

Conjecture:

 \implies The spikes θ_i 's of the perturbation A_N that may generate outliers in the spectrum of M_N belong to $\omega_{\mu,\nu}(\mathbb{R} \setminus \text{support } \mu \boxplus \nu)$

Standard matricial models

Spiked models, localization of outliers

Naive intuition for general additive deformed models:

$$g_{\mu\boxplus\nu}(z) = g_{\nu}(\omega_{\mu,\nu}(z))$$

$$M_{N} = B_{N} + A_{N}; \quad \mu_{B_{N}} \to \mu; \mu_{A_{N}} \to \nu, \mu_{M_{N}} \to \mu \boxplus \nu.$$

$$g_{\mu_{M_{N}}}(z) \approx g_{\mu_{A_{N}}}(\omega_{\mu,\nu}(z))$$
If $\rho \notin \text{support } \mu \boxplus \nu$ is a solution of $\omega_{\mu,\nu}(\rho) = \theta_{i}$ for some $i \in \{1, \dots, J\},$

 $\rho \notin \text{support } \mu \boxplus \nu \text{ BUT } g_{\mu_{M_N}}(\rho) \approx g_{\mu_{A_N}}(\omega_{\mu,\nu}(\rho)) \text{ explodes!}$

Conjecture:

 $\implies \text{The spikes } \theta_i \text{'s of the perturbation } A_N \text{ that may generate outliers} \\ \text{in the spectrum of } M_N \text{ belong to } \omega_{\mu,\nu}(\mathbb{R} \setminus \text{support } \mu \boxplus \nu) \\ \implies \text{for large } N, \text{ the } \theta_i \text{'s such that the equation} \end{cases}$

$$\omega_{\mu,\nu}(\rho) = \theta_i$$

has solutions ρ outside support $\mu \boxplus \nu$ generate eigenvalues of M_N in a neighborhood of each of these ρ ...
Spiked models, localization of outliers

The particular case of spiked Deformed Wigner model

P.Biane 1997:

 $\omega_{\mu_{sc},\nu}(\mathbb{R}\backslash \mathrm{support}\ \mu_{sc}\boxplus\nu) = \{u \in \mathbb{R}\backslash \mathrm{support}\ \nu, \int \frac{1}{(u-x)^2} d\nu(x) < \frac{1}{\sigma^2}\}$

$$\mathbb{R} \setminus \text{support } \mu_{sc} \boxplus \nu \xrightarrow[]{\omega_{\mu_{sc},\nu}}^{\omega_{\mu_{sc},\nu}} \mathcal{O}, \quad h_{\mu_{sc},\nu} : z \mapsto z + \sigma^2 g_{\nu}(z).$$

Spiked models, localization of outliers

The particular case of spiked Deformed Wigner model

P.Biane 1997:

 $\omega_{\mu_{sc},\nu}(\mathbb{R}\backslash \mathrm{support}\ \mu_{sc}\boxplus\nu) = \{u \in \mathbb{R}\backslash \mathrm{support}\ \nu, \int \frac{1}{(u-x)^2} d\nu(x) < \frac{1}{\sigma^2}\}$

$$\mathbb{R} \setminus \text{support } \mu_{sc} \boxplus \nu \xrightarrow[]{\omega_{\mu_{sc},\nu}}^{\omega_{\mu_{sc},\nu}} \mathcal{O}, \quad h_{\mu_{sc},\nu} : z \mapsto z + \sigma^2 g_{\nu}(z).$$

Previous conjecture becomes:

 $\implies \text{If } \int \frac{1}{(\theta_i - x)^2} d\nu(x) < \frac{1}{\sigma^2}, \ \theta_i \text{ generates outliers in a neighborhood} \\ \text{of } \rho = \theta_i + \sigma^2 g_{\nu}(\theta_i) \in \mathbb{R} \setminus \text{support } \mu_{sc} \boxplus \nu.$

Spiked models, localization of outliers

The particular case of spiked Deformed Wigner model

P.Biane 1997:

$$\omega_{\mu_{sc},\nu}(\mathbb{R}\backslash \mathrm{support}\ \mu_{sc}\boxplus\nu) = \{u \in \mathbb{R}\backslash \mathrm{support}\ \nu, \int \frac{1}{(u-x)^2} d\nu(x) < \frac{1}{\sigma^2}\}$$

$$\mathbb{R} \setminus \text{support } \mu_{sc} \boxplus \nu \xrightarrow[h_{\omega\mu_{sc},\nu}]{\omega_{\mu_{sc},\nu}} \mathcal{O}, \quad h_{\mu_{sc},\nu} : z \mapsto z + \sigma^2 g_{\nu}(z).$$

Previous conjecture becomes:

 $\implies \text{If } \int \frac{1}{(\theta_i - x)^2} d\nu(x) < \frac{1}{\sigma^2}, \ \theta_i \text{ generates outliers in a neighborhood} \\ \text{of } \rho = \theta_i + \sigma^2 g_{\nu}(\theta_i) \in \mathbb{R} \setminus \text{support } \mu_{sc} \boxplus \nu.$

Remark

When A_N has finite rank, $\nu = \delta_0$, this condition corresponds to $|\theta_i| > \sigma$ and then $\rho = \theta_i + \frac{\sigma^2}{\theta_i}$.

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 = ∽9.00

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

General spiked deformed models

General spiked deformed models

Solving the problem of outliers consists in solving an equation involving the free subordination function and the spikes of the perturbation

General spiked deformed models		
$M_N = A_N + B_N$	$M_N = A_N^{1/2} B_N A_N^{1/2}$	$M_N = (A_N + B_N)(A_N + B_N)^*$
$\mu_{{\sf A}_{\sf N}}\to_{{\sf N}\to+\infty}\nu$	$\mu_{\mathcal{A}_{N}\mathcal{A}_{N}^{*}} \rightarrow_{N \rightarrow +\infty} \nu$	$\mu_{\mathcal{A}_{\mathcal{N}}\mathcal{A}_{\mathcal{N}}^{*}} \rightarrow_{\mathcal{N} \rightarrow +\infty} \nu$
$\mu_{B_N} \to_{N \to +\infty} \mu$	$\mu_{B_N B_N^*} \to_{N \to +\infty} \mu$	$\mu_{B_N B_N^*} \to_{N \to +\infty} \mu$
$ heta \in \operatorname{Spect}(A_N)$	$\theta \in \operatorname{Spect}(A_N)$	$ heta \in \operatorname{Spect}(A_N A_N^*)$
θ multiplicity k_i	θ multiplicity k_i	θ multiplicity k_i
$ heta otin \operatorname{supp}(u)$	$ heta > 0, heta otin \operatorname{supp}(u)$	$ heta > 0, heta otin \operatorname{supp}(u)$
$\mu_{M_N} \to_{N \to +\infty} \mu \boxplus \nu$	$\mu_{M_N} \to_{N \to +\infty} \mu \boxtimes \nu$	$\mu_{M_N} \to_{N \to +\infty} (\sqrt{\mu} \boxplus_c \sqrt{\nu})^2$
$g_{ au}(z) = \int_{\mathbb{R}} rac{d au(x)}{z-x}$	$\Psi_ au(z) = rac{1}{z}g_ au(rac{1}{z}) - 1$	$H_{\sqrt{ au}}^{(c)} = rac{c}{z} g_{ au}(rac{1}{z})^2 + (1-c)g_{ au}(rac{1}{z})$
$g_{\mu\boxplus u}(z)=g_ u(\omega_{\mu, u}(z))$	$\Psi_{\muoxtimes u}(z)=\Psi_ u(F_{\mu, u}(z))$	$H^{(c)}_{\sqrt{\mu\boxplus_c}\sqrt{ u}}(z)=H^{(c)}_{\sqrt{ u}}(\Omega_{\mu, u}(z))$
k_i outliers of M_N in the neighborhood of each $ ho$ s.t $\omega_{\mu,\nu}(ho) = heta$	k_i outliers of M_N	k_i outliers of M_N
	in the neighborhood	in the neighborhood
	of each ρ s.t	of each ρ s.t
	$rac{1}{F_{\mu, u}(1/ ho)}= heta$	$\frac{1}{\Omega_{\mu,\nu}(1/\rho)} = \theta$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

When A_N has full rank, such results are proved for

$A_N + B_N$	$egin{aligned} (A_N)^{1/2} B_N (A_N)^{1/2} \ A_N > 0 \end{aligned}$	$(A_N+B_N)(A_N+B_N)$
B _N = Wigner C.&D-M.&F.&F. (2011)	B _N = Wishart Rao&Silverstein (2010) Bai&Yao(2012)	B _N i.i.d matrix A _N diagonal C. (2013)
$B_N = U_N D_N U_N^*$ $U_N \text{ Haar, } D_N \text{ deterministic}$	$B_N = U_N D_N U_N^*$ U Haar, $D_N \ge 0$ deterministic	
$\mu_{D_N} \rightarrow_{N \rightarrow +\infty} \mu$ B.&B.&C.&F. (2012)	$\mu_{D_N} \rightarrow_{N \rightarrow +\infty} \mu$ B.&B.&C.&F. (2014)	

(C.&D-M.&F.&F.=C.&Donati-Martin&Féral&Février)

(B.&B.&C.&F.= Belinschi&Bercovici&C.&Février)

FOR ALL DEFORMED MODELS IN THE PREVIOUS ARRAY, if θ_i has multiplicity k_i in the spectrum of the deformation, then for each ρ which is a solution of the corresponding subordination equation (for instance in the additive case $\omega_{\mu,\nu}(\rho) = \theta_i$), almost surely, for all large N, there are exactly k_i eigenvalues of M_N in a neighborhood of ρ . Standard matricial models

Deformed models

General spiked deformed models

For matricial models in the first row of the previous array, given one spike θ there is at most one solution ρ for the corresponding equation and everything is explicit:

 Deformed Wigner $\frac{\text{ned Wigner}}{\mathbb{R} \setminus \text{support } \mu_{sc} \boxplus \nu} \xrightarrow[\phi_1]{\omega_{\mu_{sc}\nu}} \mathcal{O}_1 \subset \mathbb{R} \setminus \text{support } \nu,$ $\theta \in \mathcal{O}_{1}, \quad \rho = \varphi_{1}(\nu),$ •Sample covariance matrices $x \mapsto \frac{1}{F_{\mu_{MP},\nu}(1/x)}$ $\cdots \boxtimes \nu \cup \{0\}\} \xrightarrow{x \mapsto \frac{1}{F_{\mu_{MP},\nu}(1/x)}}$ $\mathcal{O}_2 \subset \mathbb{R} \setminus \text{support } \nu$, $\theta \in \mathcal{O}_2$ $\rho = \phi_2(\theta) = \theta + c\theta \int \frac{t}{\theta - t} d\nu(t).$ Information-Plus-Noise type model $\mathbb{R} \setminus (\sqrt{\mu_{MP}} \boxtimes_c \sqrt{\nu})^2 \stackrel{x \mapsto \frac{1}{\Omega_{\mu_{MP}}, \nu^{(1/x)}}}{\longleftarrow} \mathcal{O}_3 \subset \mathbb{R} \setminus \text{support } \nu,$ $\theta \in \mathcal{O}_3, \quad \rho = \phi_3(\theta) = \theta(1 + cg_\nu(\theta))^2 + (1 - c)(1 + cg_\nu(\theta))$

BUT

CONCERNING SOME MODELS OF THE LAST ROW OF THE PREVIOUS ARRAY (deformations of unitarily invariant matrices), the restriction to the real line of some subordination maps may be many-to-one so that for one θ_i , there may exist several distinct ρ solving the corresponding subordination equation. \implies For such models, a single spiked eigenvalue of A_N may generate several outliers of M_N .

Example: Deformed GUE

$$M_{N} = GUE(N, \frac{1}{4N}) + \operatorname{diag}(\underbrace{-1, \dots, -1}_{\frac{N-1}{2}}, \underbrace{1, \dots, 1}_{\frac{N}{2}}, 10)$$

$$\nu = \frac{1}{2}\delta_{1} + \frac{1}{2}\delta_{-1}, \ \sigma^{2} = \frac{1}{4} \text{ and } \theta = 10.$$

$$\int \frac{1}{(10-x)^{2}}d\nu(x) < 4,$$

$$g_{\mu_{sc}\boxplus\nu}(z) = g_{\nu}(\omega_{\mu_{sc},\nu}^{(1)}(z))$$

$$\omega_{\mu_{sc},\nu}^{(1)} \text{ is injective on } \mathbb{R} \setminus \text{support } \mu_{sc} \boxplus \nu$$

$$\omega_{\mu_{sc},\nu}^{(1)}(\rho) = 10 \text{ has 1 solution}$$

$$\rho = 10 + \frac{1}{4} \left(\frac{1}{2} \frac{1}{10 - 1} + \frac{1}{2} \frac{1}{10 - 1} \right) \approx 10,05.$$

N=1000

Example

$$W^{G} := GUE(N-1, \frac{1}{4(N-1)}), \ U_{N} \ \text{Haar matrix independent from} \ W^{G}$$
$$M_{N} = \begin{pmatrix} W^{G} & (0) \\ (0) & 10 \end{pmatrix} + U_{N} \text{diag}(\underbrace{-1, \dots, -1}_{\frac{N}{2}}, \underbrace{1, \dots, 1}_{\frac{N}{2}}) U_{N}^{*}$$

This is not a spiked deformed GUE model and now, the spike $\theta = 10$ is associated to the matrix approximating the semicircular distribution.!!!!!!!

$$g_{\mu_{sc}\boxplus
u}(z)=g_{
u}(\omega^{(1)}_{\mu_{sc},
u}(z))=g_{\mu_{sc}}(\omega^{(2)}_{
u,\mu_{sc}}(z))$$

 $\omega_{\mu_{sc},\nu}^{(1)}$ is injective on $\mathbb{R} \setminus \text{support } \mu_{sc} \boxplus \nu$ but $\omega_{\nu,\mu_{sc}}^{(2)}$ may be many to one. $\omega_{\nu,\mu_{sc}}^{(2)}(\rho) = 10$ has 2 solutions ρ_1 and ρ_2 .

N=1000

More funny...(Belinschi&Bercovici&C.&Février (2014))

 $M_N = U_N B_N U_N^* + A_N, \ U_N$ Haar unitary, A_N, B_N deterministic diagonal

 $\mu_{B_N} \rightarrow \mu, \quad \mu_{A_N} \rightarrow \nu$

 $\theta \notin \operatorname{supp}(\nu)$, with multiplicity k in the spectrum of A_N $\alpha \notin \operatorname{supp}(\mu)$, with multiplicity l in the spectrum of B_N whereas the other eigenvalues are uniformly close to the limiting supports.

$$g_{\mu\boxplus
u}(z)=g_{
u}(\omega^{(1)}_{\mu,
u}(z))=g_{\mu}(\omega^{(2)}_{
u,\mu}(z)).$$

If there exists $ho \in \mathbb{R} \setminus \operatorname{supp}(\mu \boxplus
u)$ such that

$$\begin{cases} \omega_{\nu,\mu}^{(2)}(\rho) = \alpha \\ \omega_{\mu,\nu}^{(1)}(\rho) = \theta \end{cases}$$

then for all large N, there are k + l outliers of M_N in a neighborhood of ρ .

Eigenvectors associated to outliers

where
$$\alpha(\rho) = \begin{cases} \frac{1}{\omega'_{\mu,\nu}(\rho)} & \text{if } M_N = X_N + A_N \\ \\ \frac{\rho F_{\mu,\nu}(1/\rho)}{F'_{\mu,\nu}(1/\rho)} & \text{if } M_N = A_N^{1/2} X_N A_N^{1/2} \end{cases}$$

This result is proved

• for $X_N + A_N$ when X_N is a Wigner matrix [C. 2011] and when the distribution of X_N is unitarily invariant [Benaych-Georges&Rao (2010) Belinschi&Bercovici& C.& Février (2014)]

• for $A_N^{1/2} X_N A_N^{1/2}$ when X_N is a Wishart matrix [C. 2011] and when the distribution of X_N is unitarily invariant [Benaych-Georges&Rao (2010) Belinschi&Bercovici& C.& Février (2014)]

(for information-plus-noise type models, results of Benaych-Georges-Rao (2012) dealing with finite rank perturbations)

Eigenvectors associated to outliers

"Deterministic fundamental measure"

Deformed Wigner matrices

 W_N : a Wigner matrix , A_N : Hermitian deterministic.

$$M_N = \frac{W_N}{\sqrt{N}} + A_N$$

The deterministic measure

 $\mu_{A_N} \boxplus \mu_{sc}$

plays a central role in the study of the spectrum.

Eigenvectors associated to outliers

"Deterministic fundamental measure"

Deformed Wigner matrices

 W_N : a Wigner matrix , A_N : Hermitian deterministic.

$$M_N = \frac{W_N}{\sqrt{N}} + A_N$$

The deterministic measure

 $\mu_{A_N} \boxplus \mu_{sc}$

plays a central role in the study of the spectrum.

• "No eigenvalue outside the support of this measure"

Eigenvectors associated to outliers

"Deterministic fundamental measure"

Deformed Wigner matrices

 W_N : a Wigner matrix , A_N : Hermitian deterministic.

$$M_N = \frac{W_N}{\sqrt{N}} + A_N$$

The deterministic measure

 $\mu_{A_N} \boxplus \mu_{sc}$

plays a central role in the study of the spectrum.

- "No eigenvalue outside the support of this measure"
- "Exact separation phenomenon" involving this measure

Eigenvectors associated to outliers

"Deterministic fundamental measure"

Deformed Wigner matrices

 W_N : a Wigner matrix , A_N : Hermitian deterministic.

$$M_N = \frac{W_N}{\sqrt{N}} + A_N$$

The deterministic measure

 $\mu_{A_N} \boxplus \mu_{sc}$

plays a central role in the study of the spectrum.

- "No eigenvalue outside the support of this measure"
- "Exact separation phenomenon" involving this measure
- Universality of the fluctuations at some edges of the support of this measure

Exact separation phenomenon

Exact separation phenomenon for deformed Wigner model

 $\omega_N(z) = z - \sigma^2 g_{\mu_{sc} \boxplus \mu_{A_N}}(z) \text{ (the subordination map of } \mu_{sc} \boxplus \mu_{A_N} \text{ w.r.t } \mu_{A_N})$ Then, almost surely, for large N,

$$[a, b] \subset \mathbb{R} \setminus \text{support} \ (\mu_{sc} \boxplus \mu_{A_N}) \longleftrightarrow [\omega_N(a), \omega_N(b)]$$

gap in Spect $(M_N) \longleftrightarrow$ gap in Spect (A_N)

Exact separation phenomenon

Exact separation phenomena

involving the additive, multiplicative, rectangular subordination maps

- Deformed Wigner matrices
 C.&Donati-Martin&Féral&Février (2011)
- Sample Covariance matrices Bai&Silverstein (1999)
- Information-Plus-Noise type models Loubaton&Vallet (2011) C. (2014)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Fluctuations at edges

FLUCTUATIONS AT EDGES

Fluctuations at edges

$$M_N = GUE(N, \frac{\sigma^2}{N}) + A_N, \ A_N = \operatorname{diag}(\beta_1, \dots, \beta_{N-r}, \theta_1, \dots, \theta_J)$$

 $\mu_{A_N} \rightarrow \nu$, ν compactly supported.

- $\max_{i=1}^{N-r} \operatorname{dist}(\beta_i(N), \operatorname{supp}(\nu)) \to_{N \to \infty} 0$
- a finite number J of fixed (independent of N) eigenvalues (SPIKES) $\theta_1 > \ldots > \theta_J$, $\forall i = 1, \ldots, J$, $\theta_i \notin \operatorname{supp}(\nu)$, each θ_i having a fixed multiplicity k_i .

Fluctuations at edges

Assumption:
$$\forall u \in \text{support}(\nu)$$
, $\int \frac{d\nu(x)}{(u-x)^2} > \frac{1}{\sigma^2}$.
Example, *p* density of $\mu_{sc} \boxplus \nu$

For ϵ small enough, for all large N,

 $\exists ! d_1(N) \text{ left edge of } \mu_{A_N} \boxplus \mu_{sc} \text{ in }]d_1 - \epsilon; d_1 + \epsilon[$

 $\exists ! d_2(N) \text{ "merging point" of } \mu_{A_N} \boxplus \mu_{sc} \text{ in }]d_2 - \epsilon; d_2 + \epsilon[$

 $\exists ! d_3(N) \text{ right edge of } \mu_{A_N} \boxplus \mu_{sc} \text{ in }]d_3 - \epsilon; d_3 + \epsilon[\underline{ a_3 + \epsilon}] = 0 \text{ for } a_3 + \epsilon [\underline{ a_3 + \epsilon}$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Fluctuations at edges

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Fluctuations at edges

Standard matricial models

Fluctuations at edges

 \implies Universality of the fluctuations around the edges $d_i(N)$ of $\mu_{A_N} \boxplus \mu_{sc}$

Considering fluctuations around d_i (instead of $d_i(N)$) may imply making assumption on the rate of convergence of $g_{\mu_{A_N}}$ towards g_{ν} . Scherbina (2011)

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Remark

Previous works of Brezin&Hikami (1998), Aptekarev&Bleher&Kuijilars (2004), (2005), Adler&Cafasso&Van Moerbeke (2007), (2011) when $\mu_{A_N} = \nu$ is a finite combination of Dirac Delta masses.

Fluctuations at edges

Fluctuation of outliers

$$M_N = GUE(N, \frac{\sigma^2}{N}) + A_N, A_N = \operatorname{diag}(\beta_1, \dots, \beta_{N-r}, \theta_1, \dots, \theta_J)$$

 $\mu_{A_N} \rightarrow \nu, \ \nu$ compactly supported.

- $\max_{i=1}^{N-r} \operatorname{dist}(\beta_i(N), \operatorname{supp}(\nu)) \to_{N \to \infty} 0$
- a finite number J of fixed (independent of N) eigenvalues (SPIKES) $\theta_1 > \ldots > \theta_J$, $\forall i = 1, \ldots, J$, $\theta_i \notin \operatorname{supp}(\nu)$, each θ_j having a fixed multiplicity k_j .

Let θ_i be such that $\int \frac{d\nu(x)}{(\theta_i - x)^2} < 1$ and $\rho_{\theta_i} = h_{\mu_{sc},\nu}(\theta_i)$. Then, for $\epsilon > 0$ small enough, for all large N, $\text{supp}(\mu_{sc} \boxplus \mu_{A_N})$ has a unique connected component $[L_i(N); D_i(N)]$ inside $]\rho_{\theta_i} - \epsilon; \rho_{\theta_i} + \epsilon[$. Moreover, the k_i outliers of M_N close to ρ_{θ_i} fluctuate at rate \sqrt{N} around $\frac{L_i(N) + D_i(N)}{2}$ as the eigenvalues of a $k_i \times k_i$ GUE.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Fluctuations at edges

Some remarks

Remark

Analog results at soft edges for Sample covariance matrices by Hachem&Hardy&Najim (2014), Lee&Schnelli (2014), Bao&Pan&Zhou (2014) and for outliers of Sample covariance matrices by Bai&Yao (2012)

Fluctuations at edges

Some remarks

Remark

Analog results at soft edges for Sample covariance matrices by Hachem&Hardy&Najim (2014), Lee&Schnelli (2014), Bao&Pan&Zhou (2014) and for outliers of Sample covariance matrices by Bai&Yao (2012)

Remark

According to previous studies dealing with finite rank perturbations, universality of fluctuations of outliers of deformed Wigner models is not expected in full generality.

free probability theory	Standard matricial models	Deformed models
Fluctuations at edges		
Example		

Fluctuations at edges

Example

$$\mathbb{R} \setminus \text{support } \mu_{sc} \boxplus \nu = h_{\mu_{sc},\nu}\left(\mathcal{O}\right), \ h_{\mu_{sc},\nu}: z \mapsto z + \sigma^2 g_{\nu}(z)$$

$$\mathcal{O} := \{ u \in \mathbb{R} \setminus ext{support }
u, \int rac{1}{(u-x)^2} d
u(x) < rac{1}{\sigma^2} \}$$

$${}^{c}\mathcal{O} := \text{support } \nu \cup \{ u \in \mathbb{R} \setminus \text{support } \nu, \int \frac{1}{(u-x)^{2}} d\nu(x) \ge \frac{1}{\sigma^{2}} \}$$
$$= \overline{\{ u \in \mathbb{R}, \int \frac{1}{(u-x)^{2}} d\nu(x) > \frac{1}{\sigma^{2}} \}}$$

Each connected component of ${}^c\mathcal{O}$ contains at least one connected component of $\mathrm{support}\;\nu$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Fluctuations at edges

Example

$$\mathbb{R} \setminus \text{support } \mu_{sc} \boxplus \nu = h_{\mu_{sc},\nu}(\mathcal{O}), \ h_{\mu_{sc},\nu} : z \mapsto z + \sigma^2 g_{\nu}(z)$$
$$\mathcal{O} := \{ u \in \mathbb{R} \setminus \text{support } \nu, \int \frac{1}{(u-x)^2} d\nu(x) < \frac{1}{\sigma^2} \}$$
$$^{c}\mathcal{O} := \text{support } \nu \cup \{ u \in \mathbb{R} \setminus \text{support } \nu, \int \frac{1}{(u-x)^2} d\nu(x) \ge \frac{1}{\sigma^2} \}$$
$$= \overline{\{ u \in \mathbb{R}, \int \frac{1}{(u-x)^2} d\nu(x) > \frac{1}{\sigma^2} \}}$$
$$^{c}\mathcal{O} \quad \text{support } \nu$$

 $u_1 a_1 b_1$ $a_2 b_2 = v_1$ $u_2 a_3 b_3 v_2$

Fluctuations at edges

Example

$$\mathbb{R} \setminus \text{support } \mu_{sc} \boxplus \nu = h_{\mu_{sc},\nu}(\mathcal{O}), \ h_{\mu_{sc},\nu}: z \mapsto z + \sigma^2 g_{\nu}(z)$$

$${}^{c}\mathcal{O} := \text{support } \nu \cup \{ u \in \mathbb{R} \setminus \text{support } \nu, \int \frac{1}{(u-x)^2} d\nu(x) \ge \frac{1}{\sigma^2} \}$$
$$= \overline{\{ u \in \mathbb{R}, \int \frac{1}{(u-x)^2} d\nu(x) > \frac{1}{\sigma^2} \}}$$

^c
$$\mathcal{O}$$
 support ν

$$h_{\mu_{sc},\nu}: z \mapsto z + \sigma^2 g_{\nu}(z).$$

support $\mu_{sc} \boxplus \nu$

$$\begin{array}{c|c} \hline \\ \hline \\ h_{\mu_{sc},\nu}(u_1) & h_{\mu_{sc},\nu}(v_1) & h_{\mu_{sc},\nu}(u_2)_{\Box, b} \\ h_{\mu_{sc},\nu}(v_2)_{\forall z} & \exists z & z & z \\ \hline \\ h_{\mu_{sc},\nu}(u_1) & h_{\mu_{sc},\nu}(u_2)_{\Box, b} \\ h_{\mu_{sc},\nu}(v_1) & h_{\mu_{sc},\nu}(u_2)_{\Box, b} \\ \hline \\ h_{\mu_{sc},\nu}(u_1) & h_{\mu_{sc},\nu}(v_1) & h_{\mu_{sc},\nu}(u_2)_{\Box, b} \\ \hline \\ h_{\mu_{sc},\nu}(u_1) & h_{\mu_{sc},\nu}(u_2)_{\Box, b} \\ \hline \\ h_{\mu_{sc},\nu}(u_2)_{\Box, b} & h_{\mu_{sc},\nu}(v_2)_{\Box, b} \\ \hline \\ h_{\mu_{sc},\nu}(u_2)_{\Box,\nu}(u_$$

 $\mu_{\mathit{sc}}\boxplus\nu$ is absolutely continuous. $\mathit{p}:$ density of $\mu_{\mathit{sc}}\boxplus\nu$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Fluctuations at edges

Example investigated by Lee &Schnelli (2013) :

$$d\nu(x) := Z^{-1}(1+x)^a(1-x)^b f(x) \mathbb{1}_{[-1,1]}(x) dx$$

where a < 1, b > 1, f is a strictly positive C^1 -function and Z is a normalization constant.

$$\int \frac{1}{(1-x)^2} d\nu(x) = \frac{1}{\sigma_0^2}$$

$${}^{c}\mathcal{O} = ext{support } \nu \cup \{u \in \mathbb{R} \setminus ext{support } \nu, \int \frac{1}{(u-x)^{2}} d\nu(x) \ge \frac{1}{\sigma^{2}} \}$$

 $h_{\mu_{sc},\nu} : z \mapsto z + \sigma^{2}g_{\nu}(z)$

 $\forall \sigma > \sigma_0, \ ^{c}\mathcal{O} = [u_{\sigma}; v_{\sigma}] \text{ with } \\ u_{\sigma} < -1 < 1 < v_{\sigma}, \text{ support } \mu \boxplus \nu = [h_{\mu_{sc},\nu}(u_{\sigma}); h_{\mu_{sc},\nu}(v_{\sigma})] \\ \longrightarrow p(x) \sim C(h_{\mu_{sc},\nu}(v_{\sigma}) - x)^{\frac{1}{2}}$

◆□ > ◆□ > ◆三 > ◆三 > ・三 ● のへで

Fluctuations at edges

Example investigated by Lee &Schnelli (2013) :

$$d\nu(x) := Z^{-1}(1+x)^a(1-x)^b f(x) \mathbb{1}_{[-1,1]}(x) dx$$

where a < 1, b > 1, f is a strictly positive C^1 -function and Z is a normalization constant.

$$\int \frac{1}{(1-x)^2} d\nu(x) = \frac{1}{\sigma_0^2}$$

$${}^{c}\mathcal{O} = ext{support } \nu \cup \{ u \in \mathbb{R} \setminus ext{support } \nu, \int \frac{1}{(u-x)^{2}} d\nu(x) \ge \frac{1}{\sigma^{2}} \}$$

 $h_{\mu_{sc},\nu} : z \mapsto z + \sigma^{2}g_{\nu}(z)$

$$\forall \sigma > \sigma_0, \ ^{c}\mathcal{O} = [u_{\sigma}; v_{\sigma}] \text{ with} \\ u_{\sigma} < -1 < 1 < v_{\sigma}, \ \text{ support } \mu \boxplus \nu = [h_{\mu_{sc},\nu}(u_{\sigma}); h_{\mu_{sc},\nu}(v_{\sigma})] \\ \longrightarrow p(x) \sim C(h_{\mu_{sc},\nu}(v_{\sigma}) - x)^{\frac{1}{2}}$$

 $\forall \sigma \leq \sigma_0, \ ^c\mathcal{O} = [u_{\sigma}; 1], \ u_{\sigma} < -1, \ \text{support} \ \mu \boxplus \nu = [h_{\mu_{sc},\nu}(u_{\sigma}); h_{\mu_{sc},\nu}(1)] \\ \longrightarrow p(x) \sim C(h_{\mu_{sc},\nu}(1) - x)^b$

free probability theory

Standard matricial models

Deformed models

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Fluctuations at edges

Letting the perturbation A_N be random ... Lee &Schnelli (2014)

$$\begin{aligned} \frac{W_N}{\sqrt{N}} + \operatorname{diag}(v_1, \dots, v_N), \quad v_i \text{ i.i.d} &\sim d\nu(x) = Z^{-1}(1+x)^a (1-x)^b f(x) \mathbb{1}_{[-1,1]}(x) dx \\ &\quad a < 1, b > 1, f > 0 \ \mathcal{C}^1 \text{-function.} \\ \sigma_0 \text{ defined by } \int \frac{1}{(1-x)^2} d\nu(x) &= \frac{1}{\sigma_0^2}, \quad \text{support } \mu_{sc} \boxplus \nu = [d_{\sigma}^-; d_{\sigma}^+] \\ \bullet \forall \sigma > \sigma_0, \ p(x) \sim C(d_{\sigma}^+ - x)^{\frac{1}{2}}, \\ d_{\sigma}^+(N): \text{ upper right edge of } \text{ support } \mu_{sc} \boxplus \mu_{A_N}, \\ N^{2/3}(\lambda_1(M_N) - d_{\sigma}^+(N)) \xrightarrow{\mathcal{D}} TW, \end{aligned}$$

free probability theory

Standard matricial models

Deformed models

Fluctuations at edges

Letting the perturbation A_N be random ... Lee &Schnelli (2014)

$$\begin{aligned} \frac{W_N}{\sqrt{N}} + \operatorname{diag}(v_1, \dots, v_N), \quad v_i \text{ i.i.d} &\sim d\nu(x) = Z^{-1}(1+x)^a (1-x)^b f(x) \mathbb{1}_{[-1,1]}(x) dx \\ &\quad a < 1, b > 1, f > 0 \ \mathcal{C}^1 \text{-function.} \end{aligned}$$

$$\sigma_0 \text{ defined by } \int \frac{1}{(1-x)^2} d\nu(x) &= \frac{1}{\sigma_0^2}, \quad \text{support } \mu_{sc} \boxplus \nu = [d_{\sigma}^-; d_{\sigma}^+] \\ \bullet \forall \sigma > \sigma_0, \ p(x) \sim C(d_{\sigma}^+ - x)^{\frac{1}{2}}, \\ d_{\sigma}^+(N): \text{ upper right edge of } \text{ support } \mu_{sc} \boxplus \mu_{A_N}, \end{aligned}$$

$$\begin{aligned} N^{2/3}(\lambda_1(M_N) - d_{\sigma}^+(N)) \xrightarrow{\mathcal{D}} TW, \\ \sqrt{N}(d_{\sigma}^+(N) - d_{\sigma}^+) \xrightarrow{\mathcal{D}} \mathcal{N}(0, \alpha(\sigma, \nu)) \end{aligned}$$

Standard matricial models

Deformed models

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Fluctuations at edges

Letting the perturbation A_N be random ... Lee &Schnelli (2014)

$$\begin{aligned} \frac{W_N}{\sqrt{N}} + \operatorname{diag}(v_1, \dots, v_N), \quad v_i \text{ i.i.d} \sim d\nu(x) &= Z^{-1}(1+x)^a (1-x)^b f(x) \mathbb{1}_{[-1,1]}(x) dx \\ a &< 1, b > 1, f > 0 \ \mathcal{C}^1 \text{-function.} \end{aligned}$$

$$\sigma_0 \text{ defined by } \int \frac{1}{(1-x)^2} d\nu(x) &= \frac{1}{\sigma_0^2}, \quad \text{support } \mu_{sc} \boxplus \nu = [d_{\sigma}^-; d_{\sigma}^+] \\ \bullet \forall \sigma > \sigma_0, \ p(x) \sim C(d_{\sigma}^+ - x)^{\frac{1}{2}}, \\ d_{\sigma}^+(N): \text{ upper right edge of } \text{ support } \mu_{sc} \boxplus \mu_{A_N}, \end{aligned}$$

$$\begin{aligned} N^{2/3}(\lambda_1(M_N) - d_{\sigma}^+(N)) \xrightarrow{\mathcal{D}} TW, \\ \sqrt{N}(d_{\sigma}^+(N) - d_{\sigma}^+) \xrightarrow{\mathcal{D}} \mathcal{N}(0, \alpha(\sigma, \nu)) \end{aligned}$$

Fluctuations at edges

Letting the perturbation A_N be random ... Lee &Schnelli (2014)

$$\frac{W_N}{\sqrt{N}} + \operatorname{diag}(v_1, \dots, v_N), \quad v_i \text{ i.i.d} \sim d\nu(x) = Z^{-1}(1+x)^a(1-x)^b f(x)\mathbf{1}_{[-1,1]}(x)dx$$

$$a < 1, b > 1, f > 0 \ \mathcal{C}^1 \text{-function.}$$

$$\sigma_0 \text{ defined by } \int \frac{1}{(1-x)^2} d\nu(x) = \frac{1}{\sigma_0^2}, \quad \text{support } \mu_{sc} \boxplus \nu = [d_{\sigma}^-; d_{\sigma}^+]$$

$$\bullet \forall \sigma > \sigma_0, \ p(x) \sim C(d_{\sigma}^+ - x)^{\frac{1}{2}}.$$

$$d_{\sigma}^+(N): \text{ upper right edge of } \text{ support } \mu_{sc} \boxplus \mu_{A_N},$$

$$N^{2/3}(\lambda_1(M_N) - d_{\sigma}^+(N)) \xrightarrow{\mathcal{D}} TW,$$

$$\sqrt{N}(d_{\sigma}^+(N) - d_{\sigma}^+) \xrightarrow{\mathcal{D}} \mathcal{N}(0, \alpha(\sigma, \nu))) \Longrightarrow \sqrt{N}(\lambda_1(M_N) - d_{\sigma}^+) \xrightarrow{\mathcal{D}} \mathcal{N}(0, \alpha(\sigma, \nu))).$$

$$\bullet \forall \sigma < \sigma_0, \ p(x) \sim C(d_{\sigma}^+ - x)^b$$

$$N^{\frac{1}{b+1}}(\lambda_1(M_N) - d_{\sigma}^+) \xrightarrow{\mathcal{D}} G_{b+1}(s)$$
as N goes to infinity, where $G_{b+1}(s) = (1 - \exp((\frac{s}{2})^{b+1}))\mathbf{1}_{[0;+\infty[}(s))$

(Weibull distribution with parameters b+1 and $c_{\beta} = c(\nu, \sigma)$).

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Fluctuations at edges

THANK YOU FOR YOUR ATTENTION!