▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

Steep Dimers on Rail Yard Graphs

Cédric Boutillier (UPMC)

joint work with J. Bouttier (CEA), G. Chapuy (LIAFA), S. Corteel (LIAFA), S. Ramassamy (Brown)

États de la recherche matrices aléatoires – 3 décembre 2014

Rail Yard Graphs

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Dimer models

planar graph G

dimer configuration: perfect matching

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Several techniques to study these models

- Kasteleyn theory:
 - ${\ensuremath{\, \bullet }}$ partition function: determinant of the Kasteleyn matrix K
 - correlations: minors of K^{-1}
- Non intersecting paths
 - Lindström-Gessel-Viennot
 - orthogonal polynomials

Plane partitions

Plane partitions

Dimers on the hexagonal lattice: tilings with rhombi

3D interpretation: piles of cubes in the corner of a room.

Partition function: McMahon's formula

$$\sum_{\pi} q^{|\pi|} = \prod_{j=1}^{\infty} \frac{1}{(1-q^j)^j}$$

Rail Yard Graphs

Conclusion

Plane partitions

Plane partitions: limit shape and correlations

Limit shape: Cerf–Kenyon (2001) Correlations: Okounkov–Reshetikhin (2003)

Rail Yard Graphs

Plane partitions

Idea: cut the plane partition in vertical slices:

Motivations	and	examples		
0000000000				

Rail Yard Graphs

Plane partitions

Idea: cut the plane partition in vertical slices:

interlacing partitions: $\mu\prec\lambda$

$$\lambda_1 \geq \mu_1 \geq \lambda_2 \geq \mu_2 \geq \cdots$$

Plane partitions

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

Transfer matrices with nice algebraic properties Correlations:

 $\mathbb{P}(\text{particles at positions}\ (t_1,h_1),\ldots(t_n,h_n)) = \text{det}K\big((t_i,h_i),(t_j,h_j)\big)$

where

$$K\bigl((t,h),(t',h')\bigr) = \bigl[z^hw^{-h'}\bigr] \frac{\Phi(z,t)}{\Phi(w,t')} \frac{\sqrt{zw}}{z-w}$$

▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 匡 … のへで

Aztec diamond

Aztec diamond

dimers on the square lattice: dominos

Aztec diamond of size n = 3:

Motivations	and	examples		
000000000				

Aztec diamond

Aztec diamond

dimers on the square lattice: dominos

Aztec diamond of size n = 3:

Motivations	and	examples		
000000000				

Aztec diamond

Aztec diamond

dimers on the square lattice: dominos

Aztec diamond of size n = 3:

Rail Yard Graphs

Conclusion

Aztec diamond

Aztec diamond

dimers on the square lattice: dominos

Aztec diamond of size n = 3:

Rail Yard Graphs

Conclusion

Aztec diamond

Aztec diamond

dimers on the square lattice: dominos

Aztec diamond of size n = 3:

Rail Yard Graphs

Conclusion

Aztec diamond

Aztec diamond

dimers on the square lattice: dominos

Aztec diamond of size n = 3:

Aztec diamond

Aztec diamond: partition function

- Number of tilings of size $n: 2^{\frac{n(n+1)}{2}}$
- $\bullet\,$ Refined partition function: if N(T) miniminal number of flips to reach T from the horizontal configuration

$$Z(q) = \sum_{T} q^{N(T)} = \prod_{j=1}^{n} (1 + q^{2j-1})^{n-j+1}$$

(Elkies Kuperberg Larsen Propp)

Stanley

$$Z(q_i)\sum_T \prod q_i^{\#\text{flips on diag i}} = \prod_{1 \leq i \leq j \leq n} (1+q_{2i-1}\cdots q_{2j-1})$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Aztec diamond

Aztec diamond: limit shape

- encode tiling with non intersecting paths
- position of the highest path, Krawtchouk ensemble (Johansson)
- derivation of the arctic circle theorem (Jockusch Propp Shore)
- fluctuations aroung the limit shape: Airy process (Johansson)

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Aztec diamond

Aztec diamond: correlations

- Correlations between dominos is given by determinants of submatrices of K^{-1} (inverse Kasteleyn matrix)
- In general difficult to compute exactly
- explicit expression for the inverse Kasteleyn matrix (Chhita, Young 2013). No constructive proof.

Aztec diamond

Pyramid partitions

Rail Yard Graphs

Conclusion

minimal tiling

◆□ > ◆□ > ◆ 三 > ◆ 三 > ● ○ ● ●

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

Pyramid partitions

• partition function (Szendrői, Kenyon, Young)

$$Z(q) = \prod_{i \ge 1} \frac{(1+q^{2i-1})^{2i-1}}{(1-q^{2i})^{2i}}$$

- limit shape (Kenyon-Okounkov):
- Iocal statistics of dominos?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Our goal:

Aztec diamond

- unified framework to study these three examples (and many more)
- transfer matrix approach to solve these models
 - encode dimer configuration as particles
 - correlations of particles \leftrightarrow (co)interlacing partitions (Schur process)
 - correlations of dimers
- explain the formula obtained by Chhita and Young
- study typical behaviour of such large structures

Elementary Rail Yard Graphs

4 elementary graphs.

Can be glued together along columns.

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Rail Yard Graphs

Rail yard graphs: sequence of glued elementary graphs.

Structure encoded by a word in L + /L - /R + /R -.

Rail Yard Graphs

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

 $\bullet\,$ If only L_\pm are used, faces of degree 6: hexagonal lattice

• If alternate L_{\pm} and $R_{\pm},$ faces of degree 4 or degree 8 with vertices of degree 2:

Rail Yard Graphs

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

 $\bullet\,$ If only L_\pm are used, faces of degree 6: hexagonal lattice

• If alternate L_\pm and $R_\pm,$ faces of degree 4 or degree 8 with vertices of degree 2: square lattice

Steep dimers on Rail Yard Graphs

boundary conditions: vacuum

- vertices with negative ordinate on the left, and positive ordinate of the right are left unmatched.
- the other vertices on the boundary are covered by a dimer.

steep configurations: on each column, finite number of diagonal dimers.

Connection to tilings

- Only L + /L-: plane partitions / skew plane partitions (Okounkov-Reshetikhin, Borodin,...)
- Alternance L ± /R±: steep domino tilings (considered by Bouttier, Chapuy, Corteel)
 ex: L+/R-/L+/R- corresponds to the Aztec diamond

From dimers to Maya diagrams and partitions

From dimers, construct particle configurations $\{\bullet, \circ\}$ (*Maya diagrams*) on columns of odd vertices:

- Put if vertex matched to the left.
- Put if vertex matched to the right.
- For graphs L+, L-: plane partitions
 - dimer configurations \leftrightarrow interlacing particles.
 - number of diagonal edges: total displacement of particules
 - given two Maya diagrams, number of compatible dimer configurations is 1 if • particles interlaced, 0 otherwise.

Transfer matrix

State of *odd* columns encoded by vectors $|\lambda\rangle$ of a Hilbert space. Transfer operators:

$$\Gamma_{L-}(x)|\lambda\rangle = \sum_{\mu\succ\lambda} x^{|\mu|-|\lambda|}|\mu\rangle, \quad \Gamma_{L+}(y)|\lambda\rangle = \sum_{\mu\prec\lambda} y^{|\lambda|-|\mu|}|\mu\rangle$$

Localisation operators: ψ_k , ψ_k^* create, annihilate particles at position k. $\psi_k \psi_k^*$ projector on diagrams with a particle at site k. **Commutation relations:** $\Gamma_{L+}(x)$, $\Gamma_{L-}(y)$, $\Psi(z) = \sum_k \psi_k z^k$ satisfy nice commutation relations:

$$\begin{split} \Gamma_{L+}(y)\Gamma_{L-}(x) &= \frac{1}{1-xy}\Gamma_{L-}(x)\Gamma_{L+}(y)\\ \Gamma_{L+}(y)\Psi(z) &= \frac{1}{1-xz}\Psi(z)\Gamma_{L+}(y) \end{split}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Partition function

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Case of plane partitions:

$$\begin{split} Z(q) &= \langle \emptyset | \underbrace{\Gamma_{L+}(q^{m-1/2}) \cdots \Gamma_{L+}(q^{1/2})}_{m} \underbrace{\Gamma_{L-}(q^{1/2}) \cdots \Gamma_{L+}(q^{n-1/2})}_{n} | \emptyset \rangle \\ &= \prod_{j=1}^{m} \prod_{k=1}^{n} \frac{1}{1 - q^{i+j-1}} \end{split}$$

Apply as many times as necessary the commutation relation $\Gamma_{L+}/\Gamma_{L-}.$

Partition function

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Graphs R+ and R-

Exchange the role of white/black, left/right.

Now \circ particles are interlacing (the corresponding partitions are cointerlacing).

Two new operators $\Gamma_{R-}(x), \Gamma_{R+}(y).$

$$\Gamma_{R+}(y)\Gamma_{L-}(x)=(1+xy)\Gamma_{L-}(x)\Gamma_{R+}(y)$$

Partition function

Theorem

Let G is a rail yard graph, encoded by $\underline{a} = a_1 \cdots a_n$ and $\underline{b} = b_1 \cdots b_n$, $a_i \in \{L, R\}$, $b_i \in \{+, -\}$. Let $\underline{x} = (x_1, \dots, x_n)$ the weights per diagonal dimer on each elementary graph. The partition function of the steep dimer configurations on G is

$$Z(\underline{a},\underline{b},\underline{x}) = \prod_{\substack{1 \le i < j \le n \\ b_i = +, b_j = -}} z_{ij}; \quad z_{ij} = \begin{cases} 1 + x_i x_j, & \text{if } a_i \ne a_j \\ (1 - x_i x_j)^{-1}, & \text{if } a_i = a_j. \end{cases}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Computing particle probabilities:

$$\begin{split} \mathbb{P}(\bullet \text{ particles at } (t_1,h_1),\ldots,(t_k,h_k)) = \\ \frac{1}{Z} \times \langle \emptyset | \underbrace{\Gamma(x_1)\cdots\Gamma(x_{t_1})}_{t_1} \psi_{h_1}\psi^*_{h_1} \underbrace{\cdots}_{t_2-t_1} \psi_{h_2}\psi^*_{h_2}\cdots | \emptyset \rangle \end{split}$$

View ψ_{h_j} as some coefficient extraction from $\Psi(z_j)$ and again make use of commutation relations.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Map from dimers to particles is local
- Reconstructing the dimer configuration from the Maya diagrams not local.
- Easy case: dimers in the simple columns

Equivalent to localisation of particles.

Correlations for dimers

Dimers in double column: position not (locally) related to presence of particles. But:

Bijection between configurations inside a "slice" by *rerouting* dimers around central vertices.

э.

Correlations for dimers

Let

$$F_i(z) = \frac{\prod_{m < i/2:R+} (1+x_m z) \prod_{m > i/2:L-} (1-x_m z^{-1})}{\prod_{m < i/2:L+} (1-x_m z) \prod_{m < i/2:R-} (1+x_m z^{-1})}$$

Define the matrix $C_{\alpha\beta}$ indexed by vertices of G (rows are odd vertices/columns are even vertices)

$$C_{\alpha\beta} = \big[z^{k_{\alpha}} w^{-k_{\beta}'} \big] \frac{F_{i\alpha(z)}}{F_{i'\beta}(w)} \frac{\sqrt{zw}}{z-w}$$

Theorem

The probability that edges $(e_1,\ldots,e_n),$ with $e_i=(w_i,b_i)$ belong to the random configuration, is

 $(product of the weights) imes det C_{b_i, w_i}$

C is an inverse of the Kasteleyn matrix on $G_{C, C}$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Applications

- In the particular case of the Aztec diamond:
 - gives a constructive derivation of the formula for the inverse Kasteleyn matrix found by Chhita and Young
 - yet another derivation of the arctic circle theorem, fluctuations...

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Applications

- In the particular case of the Aztec diamond:
 - gives a constructive derivation of the formula for the inverse Kasteleyn matrix found by Chhita and Young
 - yet another derivation of the arctic circle theorem, fluctuations...
- Mixtures of hexagonal/square lattice
- Special case of interest: pyramid partitions

