Macdonald processes

Alexei Borodin

Probability

Representation Theory

Lecture 3

Quantum Integrable Systems

Integrable Systems

Probabilistic objectives
We wish to establish law of large numbers and fluctuations behaviour for a (growing) variety of integrable probabilistic models that have an additional algebraic structure, like

- Random matrix ensembles with rotational symmetry
- Exclusion processes in (1+1)d: TASEP, ASEP, PushASEP, q-versions, etc.
- Special directed random polymers in $(1+1) d$
- Special tiling (or dimer) models in 2d
- Random growth of discretized interfaces in $(2+1)$ d

Universality principles suggest that same fluctuations hold in broad universality classes (Wigner matrices, KPZ, general dimers)

Example 1: Semi-discrete Brownian polymer

$$
\begin{aligned}
& F_{t}^{N}=\log \int e_{0<s_{1}<\ldots<s_{N-1}<t} e_{1}^{B_{1}\left(0, s_{1}\right)+B_{2}\left(s_{1}, s_{2}\right)+\ldots+B_{N}\left(s_{N-1}, t\right)} d s_{1} \ldots d s_{N-1} \\
& B_{1}, \ldots, B_{N} \text { are independent Brownian motions } \\
& B_{k}(\alpha, \beta):=B_{k}(\beta)-B_{k}(\alpha)=\int_{\alpha}^{B} B_{k}(x) d x
\end{aligned}
$$

Theorem [B-Corwin '11, B-Corwin-Ferrari '12] For any $æ>0$

$$
\lim _{N \rightarrow \infty} \mathbb{P}\left\{\frac{F_{x N}^{N}-f_{x} \cdot N}{g_{x} \cdot N^{1 / 3}} \leqslant r\right\}=F_{G U E}(r) \quad \begin{gathered}
\text { Tracy-widom limit distribution } \\
\text { for the largest eigenvalue of large } \\
\text { Hermitian random matrices }
\end{gathered}
$$

- f_{x} conjectured in [O'Connell-Yor '01], proved in [Moriarty-O'Connell '07]
- [Spohn '12] matched the result with (1+1)d KPZ scaling conjecture

Example 2: Corners of random matrices

Theorem As $z \mapsto L^{-1} z, L \rightarrow \infty$, Fluctuations \Rightarrow
Gaussian (massless) Free Field on $\|-\|$

$$
(x, y)=\left(2 \operatorname{Re}(z),|z|^{2}\right)
$$

liquid region $\}$

- GUE: Implicit in [B-Ferrari, 2008], related to AKPZ in $(2+1) d$
- GUE/GOE type Wigner matrices: [B, 2010]
- General beta, classical weights : [B-Gorin, 2013]

Two characteristic properties

Integrable probabilistic models typically share two key features:

- There is a large family of observables whose averages are explicit and asymptotically tractable;
- There is a natural Markov evolution that acts nicely.

Representation theory is helpful in identifying both. Let us illustrate on lozenge tilings.

From probability to representation theory

Lozenge tilings are...

nonintersecting Bernoulli paths

interlacing particle configurations

dimers on hexagonal lattice

stepped surfaces
But they are also labels for Gelfand-Tsetlin bases of irreps of $U(N)$ or $G L(N, \mathbb{C})$.

Finite-dim representations of unitary groups (H. Weyl, 1925-26)
A representation of $U(N)$ is a group homomorphism $T: U(N) \rightarrow G L(V)$.
It is irreducible if V has no invariant subspaces.
Every (finite-dimensional) representation is a direct sum of irreps.
Fact: T is uniquely determined by the (diagonalizable) action of the abelian subgroup H of diagonal matrices.

$$
\begin{aligned}
& V=\bigoplus_{i=1}^{\operatorname{din} V} \mathbb{C} v_{i}, \quad T\left(\left[\begin{array}{lll}
z_{1} & & \\
& \ddots & \\
& & z_{N}
\end{array}\right]\right)=\left[\begin{array}{lll}
t_{1}\left(z_{1}, \ldots z_{N}\right) & & \\
& & t_{\text {dim }}\left(z_{1}, \ldots, z_{N}\right)
\end{array}\right] \\
& \\
& \\
& t_{j}: S^{1} \times \ldots \times S^{1} \rightarrow \mathbb{C}^{\times}, \quad t_{j}\left(z_{1}, \ldots, z_{N}\right)=z_{1}^{k_{1}} \ldots z_{N}, \\
& \\
& \\
&
\end{aligned}
$$

Finite-dim representations of unitary groups (H. Weyl, 1925-26)
Theorem Irreducible representations are parametrized by their highest weights $\lambda=\left(\lambda_{1} \geqslant \ldots \geqslant \lambda_{N}\right) \in \mathbb{Z}^{N}$. The corresponding generating function of all weights has the form

$$
\sum_{\text {wrights of } T_{\lambda}} z_{1}^{k_{1}} \cdots z_{N}^{k_{N}}=\operatorname{Trace}\left(T_{\lambda}\left(\left[\begin{array}{lll}
z_{1} & \\
& z_{N}
\end{array}\right]\right)\right)=\frac{\operatorname{det}\left[z_{i}^{\lambda_{j}+N-j}\right]_{i, j=1}^{N}}{\operatorname{det}\left[z_{i}^{N-j}\right]_{i, j=1}^{N}} .
$$

These are the characters of the corresponding representations, also known as the Schur polynomials.

Branching and lozenges
Reducing the symmetry group from $U(N)$ to $U(N-1)$ may lead to a split of an irrep into a direct sum of those for the smaller group. This is encoded by Schur polynomials:

$$
S_{\lambda}\left(z_{1}, \ldots, z_{N-1}, 1\right)=\sum_{\mu\langle\lambda} S_{\mu}\left(z_{1}, \ldots, z_{N-1}\right)
$$

where μ interlaces $\lambda: \lambda_{N} \leqslant \mu_{N-1} \leqslant \lambda_{N-1} \leqslant \ldots \leqslant \lambda_{2} \leqslant \mu_{2} \leqslant \lambda_{1}$,
or pictorially:

Gelfand-Tsetlin basis
Reducing the symmetry all the way down the tower

$$
U(N) \supset U(N-1) \supset \ldots \supset U(2) \supset U(1)
$$

yields a basis in T_{λ} labelled by lozenge tilings of specific domains:

An example:

[Gelfand-Tsetlin, 1950] used this basis to explicitly write down the action of generators.

Back to probability
Consider the uniform measure on tilings. How to describe its projection to a horizontal section of the polygon?
Equivalently, how to decompose a known irrep of $U(N)$ on irreps of $U(k) \subset U(N)$?

This is a problem of noncommutative harmonic analysis. In terms of characters (Schur polynomials):

$$
y\left(z_{1}, \ldots, z_{k}\right)=\sum_{\mu=\left(\mu_{1}, \ldots, \mu_{k}\right)} \operatorname{Prob}\{\mu\} \frac{S_{\mu}\left(z_{1}, \ldots, z_{k}\right)}{S_{\mu}(1, \ldots, 1)}, \quad \chi\left(z_{1}, \ldots, z_{k}\right)=\frac{S_{\lambda}(\overbrace{z_{1}, \ldots, z_{k}, 1, \ldots, 1})}{S_{\lambda}(1, \ldots, 1)} .
$$

Classical harmonic analysis
The (abelian) group \mathbb{R} acts on $L^{2}(\mathbb{R})$ by shifting the argument.
The irreps are all 1 -dim of the form $p \mapsto$ multiplication by $e^{-i p x}$.
For

$$
\chi(x)=\int_{-\infty}^{+\infty} e^{-i p x} m(d p)
$$

there are (at least) two ways to extract information about m.
Inverse Fourier transform: $\frac{m(d p)}{d p}=\frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{i p x} f(x) d x \quad$ (hard)
Differential operators:

$$
\int_{-\infty}^{\infty} p^{n} m(d p)=\left.\left(i \frac{d}{d x}\right)^{n} \psi(x)\right|_{x=0} \text { (simple) }
$$

The observables
If

$$
\mathcal{X}\left(z_{1}, \ldots, z_{k}\right)=\sum_{\mu=\left(\mu_{1}, \ldots \geq \mu_{k}\right)} \operatorname{Prob}\{\mu\} \frac{S_{\mu}\left(z_{1}, \ldots, z_{k}\right)}{S_{\mu}(1, \ldots, 1)}
$$

and $D S_{\mu}=d_{\mu} S_{\mu}$, then $\left.D \psi\right|_{z_{1}=\ldots=z_{k}=1}=\sum_{\mu} d_{\mu} \operatorname{Prob}\{\mu\}=\mathbb{E} d_{\mu}$.
The Casimir-Laplace operator (generates circular Dyson BM)

$$
C_{2}=\frac{1}{\prod_{i<j}\left(z_{i}-z_{j}\right)} \cdot \sum_{i=1}^{k}\left(z_{i} \frac{\partial}{\partial z_{i}}\right)^{2} \circ \prod_{i<j}\left(z_{i}-z_{j}\right)
$$

As $S_{\mu}(z)=\operatorname{det}\left[z_{i}^{\mu_{j}+k-j}\right] / \prod_{i<j}\left(z_{i}-z_{j}\right), \uparrow \quad C_{2} S_{\mu}=\sum_{i-1}^{k}\left(\mu_{i}+k-i\right)^{2} \cdot s_{\mu} \cdot d^{2}$
A q-analog: Replace $\left(z \frac{\partial}{\partial z}\right)^{2}$ by $\left(T_{q} f\right)(z)=f(q z)$. Then $C^{(q)} S_{\mu}=\sum_{i=1}^{k} q^{\mu_{i}+k-i} \cdot S_{\mu}$.

Correlation functions
First correlation function:

$$
\begin{aligned}
\rho_{1}(m, k) & =\operatorname{Prob}\left\{m \in\left\{\mu_{j}+k-j\right\}_{j=1}^{k}\right\}= \\
& =\text { coif. of } q^{m} \text { in } \mathbb{E}\left(\sum q^{\mu_{j}+k-j}\right) \\
& =\text { coeff. of } q^{m} \text { in }\left.C^{(q)} \chi\right|_{z_{1}=\ldots=z_{k}=1} .
\end{aligned}
$$

Higher correlation functions require products $C^{\left(q_{1}\right)} \ldots C^{\left(q_{n}\right)}$.
If χ factorizes, $\chi\left(z_{1}, \ldots z_{k}\right)=\varphi\left(z_{1}\right) \cdots \varphi\left(z_{k}\right)$,

$$
\text { coeff. of } q^{m} \text { in }\left.C^{(q)} \chi\right|_{z_{j} \equiv 1}=\frac{1}{(2 \pi i)^{k}} \oint_{\text {around } 0} \frac{d v}{v} \oint_{\text {around } 1} d w \frac{\varphi(v)(v-1)^{k} v^{-m}}{\varphi(w)(w-1)^{k} w^{-m}} \frac{1}{v-w} \text {. }
$$

For the n-point correlation function the integral is $2 n$-fold.

Asymptotics
For 'infinitely tall polygons' (corresponding to characters of $U(\infty)$, example on next slide), χ indeed factorizes, and steepest descent yields limit shapes, bulk (discrete sine), edge (GUE, Airy, Pearcey), and global (free field) fluctuations [B-Kuan 'O7], [B-Ferrari 'O8].

For ordinary polygons in our class, the factorization is only approximate, yet same formulas can be used
 to prove similar results [Petrov '12], [Gorin-Panova '13].

More general limit shapes were obtained by [KenyonOkounkov '05], who also conjectured the rest.

Markov evolution
We focus on $\chi\left(z_{1}, \ldots z_{k}\right)=\prod_{i=1}^{k} e^{t\left(z_{i}-1\right)}, t \geqslant 0$. This corresponds to a limit of hexagons:

On a fixed horizontal slice, the coordinates of vertical lozenges are distributed as

$$
\operatorname{Prob}\left\{\left(x_{1}, \ldots, x_{k}\right) \in \mathbb{Z}_{30}^{k}\right\}=\text { cost. } \prod_{i<j}\left(x_{i}-x_{j}\right)^{2} \prod_{i=1}^{k} \frac{t^{x_{i}}}{x_{i}!} .
$$

This is time t distribution of the Markov chain with generator
which can also be viewed as k conditioned Id Poisson processes.

The Gibbs property
Uniformly distributed tilings obviously enjoy the Gibbs property: Given a boundary condition, the distribution in any subdomain is also uniform.

Apply to bottom k rows:

$$
\begin{aligned}
& \operatorname{Prob}\{y \mid x\}=\frac{\text { \# of height }(k-1) \text { tilings with top row } y}{\text { \# of height k tilings with top row } x} \\
& =(k-1)!\frac{\prod_{i=i j s k-1}\left(y_{i}-y_{j}\right)}{\prod_{i \in i<j \leq k}\left(x_{i}-x_{j}\right)}=\Lambda_{k-1}^{k}(x>y)
\end{aligned}
$$

These stochastic links intertwine 'perpendicular' Markov chains along $(k-1)$ st and k-th rows with generators $L_{\text {Poisson }}^{(k-1)}$ and $L_{\text {Poisson }}^{(k)}$

Two-dimensional Markov evolution: Axiomatics
Inspired by two ad hoc constructions (RSK and [O'Connell 'O3+]; 'stitching' of intertwined Markov chains [Diaconis-Fill '90], [B-Ferrari '08]), we look for Markov chains on tilings that satisfy:

1. For each $k \geqslant 1$, the evolution of the bottom k rows $\left(\lambda^{(1)}<\lambda^{(2)}<\ldots<\lambda^{(k)}\right)$ is independent of the higher rows.
2. For each $k \geqslant 1$, the evolution preserves the Gibbs property on the bottom k rows:

$$
m\left(\lambda^{(k)}\right) \Lambda_{k-1}^{k}\left(\lambda^{(k)} \backslash \lambda^{(k-1)}\right) \cdots \Lambda_{1}^{2}\left(\lambda^{(2)} \backslash \lambda^{(1)}\right) \stackrel{\text { timet }}{\sim} \widetilde{m}\left(\lambda^{(k)}\right) \Lambda_{k-1}^{k}\left(\lambda^{(k)} \backslash \lambda^{(k-1)}\right) \cdots \Lambda_{1}^{2}\left(\lambda^{(2)} \backslash \lambda^{(1)}\right)
$$

III. For each $k \geqslant 1$, the map $m \mapsto \tilde{m}$ is the time t evolution of the Markov chain with generator $L_{\text {Poisson }}^{(k)}$.

Nearest neighbor interaction

- Each particle jumps to the right by 1 independently, with exp. distributed waiting time; rate $w_{j}^{(k)}\left(x^{(k-1)}, \lambda^{(k)}\right)$ for j-th particle on level k.
- A move of any particle may instantaneously trigger moves of its top-left (pulling) and top-right (pushing) neighbors.

'No-nonsense': (a) If a particle is blocked from the bottom, its jump rate is O, and when pushed it donates the move to its right neighbor;
 (b) If a particle is blocked from the top, $r_{j}=1$.

Classification of nearest neighbor dynamics
Theorem [B-Petrov '13] A nearest neighbor Markov evolution satisfies I-III (independence of bottom rows, preservation of Gibbs, horizontal sections
 $(\mathrm{j}+1)$ st particle on level k is not blocked from the bottom,

$$
r_{j+1}^{(k)}+l_{j}^{(k)}+w_{j+1}^{(k)}=1
$$

no Vandermondes!
with nonexisting parameters at edges set to 0 .
There are many solutions, all act the same on the Gibbs measures!

- $l_{j} \equiv 1, r_{j} \equiv 0, w_{j}=\left\{\begin{array}{l}1, j=1 \\ 0, j>1\end{array}\right.$ gives row RSK
- $l_{j} \equiv 0, r_{j} \equiv 1, w_{j}=\left\{\begin{array}{l}1, j \text { maximal } \\ 0, \text { otherwise }\end{array}\right.$ gives column RSK
- $l_{j}=r_{j} \equiv 0, w_{j} \equiv 1$ gives push-block dynamics

Many other possibilities, e.g.

The push-block dynamics [B-Ferrari '08]
Each particle jumps to the right with rate 1. It is blocked by lower particles and it (short-range) pushes higher particles.

In 3d, this can be viewed as adding directed columns

The push-block dynamics [B-Ferrari 'O8]
Each particle jumps to the right with rate 1. It is blocked by lower particles and it (short-range) pushes higher particles.

- Left-most particles form TASEP
- Right-most particles form PushTASEP

Previously studied asymptotics thus yields detailed information on large time behavior of these $(2+1) d$ AKPZ and $(1+1)$ AKPZ models.

Macdonald polynomials $P_{\lambda}\left(x_{1}, \ldots, x_{N}\right) \in \mathbb{Q}(q, t)\left[x_{1}, \ldots, x_{N}\right]^{S(N)}$ labelled by partitions $\lambda=\left(\lambda_{1} \geqslant \lambda_{2} \geqslant \ldots \geqslant \lambda_{N} \geqslant 0\right)$ form a basis in symmetric polynomials in N variables over $\mathbb{Q}(q, t)$. They diagonalize

$$
D_{1}=\sum_{i=1}^{N}\left(\prod_{a<b}\left(x_{a}-x_{b}\right)^{-1} T_{t, x_{i}} \prod_{a<b}\left(x_{a}-x_{b}\right)\right) T_{q, x_{i}}=\sum_{i=1}^{N} \prod_{j \neq i} \frac{t x_{i}-x_{j}}{x_{i}-x_{j}} T_{q, x_{i}}
$$

with (generically) pairwise different eigenvalues

$$
\left(T_{q} f\right)(z)=f(q z)
$$

$$
D_{1} P_{\lambda}=\left(q^{\lambda_{1}} t^{N-1}+q^{\lambda_{2}} t^{N-2}+\ldots+q^{\lambda_{N}}\right) P_{\lambda}
$$

Macdonald polynomials have many remarkable properties that include orthogonality, simple reproducing kernel (Cauchy identity), Pieri and branching rules, index/variable duality, simple higher order Macdonald difference operators that commute with D_{1}, etc.

Single level distributions
As in the chur case, one can define probability measures via

$$
\prod_{i=1}^{N} e^{\gamma\left(x_{i}-1\right)}=\sum_{\mu=\left(\mu_{1} \geqslant \ldots, j \mu_{N} \geqslant 0\right)} \operatorname{Prob}_{\gamma}\{\mu\} \cdot \frac{P_{\mu}\left(x_{1}, \ldots, x_{N}\right)}{P_{\mu}(1, \ldots, 1)}
$$

These are time γ distributions of the Markov chain with jump rates

$$
L_{\text {Poisson }}^{(N)}(\mu \rightarrow \nu)=\sum_{\nu} \varphi_{\nu / \mu} \cdot \frac{P_{\nu}(1, \ldots, 1)}{P_{\mu}(1, \ldots, 1)} \ll \text { replace Vandermondes }
$$

with $\varphi_{\nu / \mu}$ given by the Peri rule (they are O or 1 for Schur)

$$
\left(x_{1}+\ldots+x_{N}\right) P_{\mu}\left(x_{1}, \ldots, x_{N}\right)=\sum_{\nu} \varphi_{\nu / \mu} P_{\nu}\left(x_{1}, \ldots, x_{N}\right) . \quad \text { For } t=0, \varphi_{\mu+e_{j} / \mu}=1-q^{\mu_{j-1}-\mu_{j}}
$$

This is a (q, t)-analog of the Dyson Brownian Motion.
Representation theoretic object: Quantum Random Walk.

The (q, t)-Gibbs property
We define stochastic links Λ_{N-1}^{N} between N-tuples and $(N-1)$-tuples of integers using the branching rule

$$
\frac{P_{\lambda}\left(x_{1}, \ldots, x_{N-1}, 1\right)}{P_{\lambda}(1, \ldots, 1)}=\sum_{\mu<\lambda} \Lambda_{N-1}^{N}(\lambda \downarrow \mu) \cdot \frac{P_{\mu}\left(x_{1}, \ldots, x_{N-1}\right)}{P_{\mu}(1, \ldots, 1)}
$$

Def. Random interlacing arrays $\lambda^{(1)}\left\langle\lambda^{(2)}\left\langle\ldots<\lambda^{(N)}\right.\right.$ have the Macdonald-Gibbs property iff

$$
\operatorname{Prob}\left\{\left(\lambda^{(1)}, \ldots, \lambda^{(N-1)}\right) \mid \lambda^{(N)}\right\}=\Lambda_{N-1}^{N}\left(\lambda^{(N)} \backslash \lambda^{(N-1)}\right) \Lambda_{N-2}^{N-1}\left(\lambda^{(N-1)} \Delta \lambda^{(N-2)}\right) \ldots \Lambda_{1}^{2}\left(\lambda^{(2)} \backslash \lambda^{(1)}\right) .
$$

$n!=1 \cdot(1+q)\left(1+q+q^{2}\right) \cdots\left(1+q+\ldots+q^{n-1}\right)$
$P_{\lambda}(1, \ldots, 1)$
$P_{i=1}^{N-1} \frac{\left.\left(\lambda_{i}-\lambda_{i+1}\right)\right|_{i}}{\left(\lambda_{i}-\mu_{i}\right)_{!},\left(\mu_{i}-\lambda_{i+1}\right)!}$.

Macdonald processes
An (ascending) Macdonald process is a distribution on $\lambda^{(1)}<\lambda^{(2)}<\lambda^{(3)}<\ldots$ that is (q, t)-Gibbs (once can also use (a_{1}, a_{2}, \ldots) instead of $(1,1, \ldots)$).
Example 1: Decompositions of $\prod_{i=1}^{N} e^{\gamma\left(x_{i}-1\right)}$ correspond to the 'Plancherel specialization' (consistency with Gibbs is nontrivial).
Example 2: $t=q^{\theta} \rightarrow 1, a_{j}=t^{j}$ for $j \geqslant 1$, principal specialization'. Single level measures converge to general $\beta=2 \theta$ Jacobi ensembles const. $\prod_{i<j}\left|y_{i}-y_{j}\right|^{\beta} \prod_{i} y_{i}^{s_{0}}\left(1-y_{i}\right)^{s_{1}} d y_{i}, \quad y_{i} \in(0,1)$.
Example 3: Plancherel specialization, $t=0$. Leads to local $2 d$ dynamics, q-TASEP, q-PushASEP, random polymers in $(1+1)$. Will be our focus.

Macdonald operators
Macdonald's q-difference operators diagonalized by P_{λ} are

$$
D^{(k)}=\sum_{I \subset\{1, \ldots, N\}} \prod_{\substack{i \in I \\ j \neq I}} \frac{t x_{i}-x_{j}}{x_{i}-x_{j}} \prod_{i \in I} T_{q, x_{i}}, \quad D^{(k)} P_{\lambda}=e_{k}\left(q^{\lambda_{1}} t^{N-1}, \ldots, q^{\lambda_{N}}\right) P_{\lambda},
$$

where $e_{k}\left(z_{1}, z_{2}, \ldots\right)=\sum_{i_{k}<\ldots i_{k}} z_{i_{1}} \cdots z_{i_{k}}$. Using $\left.D y\right|_{x_{j}=1}=\sum_{\lambda} d_{\lambda} \operatorname{Prob}\{\lambda\}=\mathbb{E} d_{\lambda}$ with these operators gives many observables with explicit averages.

Example 1: For the Jacobi ensembles $\prod_{i<j}\left|y_{i}-y_{j}\right|^{\beta} \Pi_{i} y_{i}^{s_{0}}\left(1-y_{i}\right)^{s_{i}}$ this gives averages of the powers sums $\sum_{i} y_{i}^{k}$ and of their products.
Example 2: For $t=0$ this gives averages of products of $q^{\lambda_{N}+\lambda_{N-1}+\lambda_{N-k+1}}$.

Integrals and scaling limits
For $t=0$ and Plancherel specialization (decomposition of $\prod_{i=1}^{N} e^{\gamma\left(x_{i}-1\right)}$), turning Macdonald operator D_{k} into a contour integral gives

$$
E q^{\lambda_{N^{N}+\ldots+\lambda_{N-k}^{(N)}}^{(N)}=\frac{(-1)^{\frac{k(k+1)}{2}}}{(2 \pi i)^{k} k!} \oint_{\text {around } 1} \ldots \prod_{1 \leqslant A<B \leqslant k}\left(z_{A}-z_{B}\right)^{2} \prod_{j=1}^{k} \frac{e^{(q-1) \gamma z_{j}}}{\left(1-z_{j}\right)^{N}} \frac{d z_{j}}{z_{j}^{k}} \quad \because \because \underbrace{k=3}_{N=5}}
$$

The RHS has a clear limit as $q=e^{-\varepsilon} \rightarrow 1, \gamma=$ constr $\cdot \varepsilon^{-1}, z_{j}^{\prime}$'s unchanged. This leads to a LLN $\lambda_{j}^{(N)} \sim c_{j}^{(N)} \varepsilon^{-1}$ and Gaussian fluctuations of size $\varepsilon^{-1 / 2}$.

A less obvious limit is $q=e^{-\varepsilon} \rightarrow 1, \gamma=\tau \cdot \varepsilon^{-2}, \quad z_{j}=1+\varepsilon w_{j}$ for $1 \leqslant j \leqslant k$. Then the RHS behaves as $e^{-\tau k \varepsilon^{-1}}$. $\varepsilon^{k(k-N)}$. finite integral.
This suggests the following scaling behavior:

Theorem [B-Corwin '11] As $q=e^{-\varepsilon} \rightarrow 1, \gamma=\tau \cdot \varepsilon^{-2}$, under the scaling

$$
\lambda_{j}^{(N)}=\tau \varepsilon^{-2}-(N+1-2 j) \frac{\ln \varepsilon}{\varepsilon}+T_{j}^{N} \varepsilon^{-1}
$$

the $t=0$ Macdonald process with Plancherel specialization weakly converges to a probability distribution on real arrays $\left\{T_{j}^{N}\right\}$ (the Whittaker process). Is there a probabilistic meaning behind the Whittaker process?

Back to Markov dynamics
The classification problem for the nearest neighbor Markov dynamics that preserve Gibbs measures and coincides with (q, t)-DBM on each level is (as for Schur) equivalent to a linear system of equations of the form [B-Petrov '13]

$$
B_{j+1}^{(k)} r_{j+1}^{(k)}+B_{j}^{(k)} l_{j}^{(k)}+w_{j+1}^{(k)}=A_{j+1}^{(k)}
$$

For $t=0$, the quantities $A_{j}^{(k)}$ and $B_{j}^{(k)}$ are local:

$$
A_{j}^{(k)}=\frac{\left(1-q^{\left.\lambda_{j-1}^{(k-1)}-\lambda_{j}^{(k)}\right)\left(1-q^{\lambda_{j}^{(k)}-\lambda_{j+1}^{(k)}+1}\right)}\right.}{1-q_{j}^{\lambda_{j}^{(k)}-\lambda_{j}^{(k-1)}+1}}, \quad B_{j}^{(k)}=\frac{\left(1-q^{(k-1)}-\lambda_{j+1}^{(k)}\right)\left(1-q_{j-1}^{(k-1)}-\lambda_{j}^{(k-1)}\right)}{1-q^{\lambda_{j}^{(k)}-\lambda_{j}^{(k-1)}+1}} .
$$

q-TASEP, q-PushTASEP, and $2 d$ dynamics
There are many solutions. Imposing no pulling/pushing over distances >1 leads to the $2 d$ local dynamics of [B-Corwin '11]:

Simulation
Projecting to left-most particles of each row yields q-TASEP:

Imposing almost sure jump propagation $l_{j}+r_{j} \equiv 1$ and $w_{j}=\left\{\begin{array}{l}1, j=1 \\ 0, j>1\end{array}\right.$ and further projecting to right-most particles yields q-PushTASEP:

Semi-discrete Brownian directed polymers
Whittaker scaling on q-PushTASEP (and q-TASEP) yields

$$
d T_{1}^{N}=d B_{N}+e^{T_{1}^{N-1}-T_{1}^{N}} d \tau, \quad N \geq 1
$$

with independent Brownian motions B_{1}, B_{2}, \ldots (same for $\left\{-T_{N}^{N}\right\}_{N_{2}}$).
Solving gives $T_{1}^{N}=\log \int_{0<s_{1}<\cdots<s_{N-1}<\tau} e^{B_{1}\left(s_{5}\right)+\left(B_{2}\left(s_{2}\right)-B_{2}\left(s_{1}\right)\right)+\ldots+\left(B_{N}(\tau)-B_{N}\left(s_{N-1}\right)\right)} d s_{1} \cdots d s_{N-1}$.
Theorem [O'Connell '09], [B-Corwin '11] Lelerague

$$
T_{1}^{N}+\ldots+T_{k}^{N}=\log \int \cdots \int e^{E\left(\phi_{1}\right)+\ldots+E\left(p_{k}\right)} d \phi_{1} \cdots d \phi_{k}
$$

with integration over nonintersecting paths from $(1, \ldots, \mathrm{k})$ to $(\mathrm{N}-\mathrm{k}+1, \ldots, \mathrm{~N})$. The measure is symmetric with respect to the flip $\left\{T_{k}^{N} \leftrightarrow-T_{N-k+1}^{N}\right\}$.

$E(\phi)=\int_{\phi}(\mathbb{R} \times \mathbb{Z})$-white noise $=B_{j}\left(s_{1}\right)+\left(B_{j+1}\left(s_{2}\right)-B_{j+1}\left(s_{1}\right)\right)+\ldots$
q-TASEP moments
We now focus on left-most particles ($9-T A S E P$) and wish to study the asymptotics as N gets large.

Theorem [B-Corwin '11], [B-C-Sasamoto '12], [B-C-Gorin-Shakirov '13] For the q-TASEP with step initial data $\left\{x_{n}(0)=-n\right\}_{n \geq 1}$

$$
\begin{aligned}
& \mathbb{E} q^{\left(x_{N_{1}}(t)+N_{1}\right)+\ldots+\left(x_{N_{k}}^{\left.(t)+N_{k}\right)}=\right.}=\frac{(-1)^{k} q^{\frac{k(k-1)}{2}}}{(2 \pi i)^{k}} \oint \cdots \oint \prod_{A<B} \frac{z_{A}-z_{B}}{z_{A}-q_{B} z_{B}} \prod_{j=1}^{k} \frac{e^{(q-1) t z_{j}}}{\left(1-z_{j}\right)^{N_{j}}} \frac{d z_{j}}{z_{j}} \\
& \left(N_{1} \geqslant N_{2} \geqslant \ldots \geqslant N_{k}\right)
\end{aligned}
$$

Proof. Consider the Macdonald process with Plancherel specialization and apply k first order Macdonald operators in $N_{1}, N_{2}, \ldots, N_{k}$ variables.
Another proof via Quantum Integrable Systems will be given in Lecture 3.

Polymer moments via nested integrals
By (formal) limit transitions:
For $Z(N, \tau)=\int_{0<s_{1}<\ldots<s_{N-1}<\tau} e^{B_{1}\left(s_{1}\right)+\left(B_{2}\left(s_{2}\right)-B_{2}\left(s_{1}\right)\right)+\ldots+\left(B_{N}(\tau)-B_{N}\left(s_{N-1}\right)\right)} d s_{1} \cdots d s_{N-1}$

$$
\mathbb{E}\left[Z\left(N_{1}, \tau\right) \cdots Z\left(N_{k}, \tau\right)\right]=\frac{e^{\tau k / 2}}{(2 \pi i)^{k}} \oint \cdots \oint_{1 \leqslant A<B \leqslant k} \prod_{1} \geq N_{2} \geqslant \cdots \geqslant N_{2}-W_{n}-W_{B}-1 \prod_{j=1}^{k} \frac{e^{\tau w_{j}}}{W_{j}} d w_{j}
$$

($\cdots \operatorname{lym}_{w_{k}} w_{k-1} \cdots w_{1}$

$$
\begin{array}{cc}
\frac{\partial z}{\partial t}=\frac{1}{2} \frac{\partial^{2} z}{\partial x^{2}}+\dot{w} z & \text { SHE } \\
\frac{\partial \ln z}{\partial t}=\frac{1}{2} \frac{\partial^{2} \ln z}{\partial x^{2}}+\left(\frac{\ln z}{\partial x}\right)^{2}+\dot{w} & \text { KPZ }
\end{array}
$$

$$
\mathbb{E}\left[Z\left(x_{1}, t\right) \cdots Z\left(x_{k}, t\right)\right]=\int_{\substack{\alpha_{1}-i \infty}}^{\alpha_{1}+i \infty} d z_{1} \int_{\alpha_{2}-i \infty}^{\alpha_{2}+i \infty} d z_{2} \ldots \int_{\substack{\alpha_{k}-i \infty}}^{\alpha_{1}+i \leq \infty} \prod_{1 \leq A<B \leq k}^{\alpha_{1}>\alpha_{2}+1>\ldots>x_{2} \leq \ldots \leqslant x_{k}+(k-1)} \left\lvert\, ~ \frac{z_{A}-z_{B}}{z_{A}-1} \prod_{j=1}^{k} e^{\frac{t}{2} z_{j}^{2}+x_{j} z_{j}}\right.
$$

Is this sufficient for determining the distributions of Z^{\prime} s?

Intermittency
Polymer partition functions Z are intermittent. Higher moments are dominated by higher peaks and do not determine the distrib. This is measured by moment Lyapunov exponents $\gamma_{p}=\lim _{t \rightarrow \infty} \frac{\ln \mathbb{E} z^{p}(t)}{t}$. $\frac{\gamma_{p}}{p} \neq$ const means intermittency [Zeldovitch et al. '87].

By steepest descent in nested integrals one shows:
Semi-discrete: $\quad \gamma_{p}=H_{p}\left(z_{c}\right)$, where (for $\left.N=\tau\right) z_{c}$ is the crit. point of [B-Corwin'12] $H_{p}(z)=\frac{p^{2}}{2}+p z-\log \left(\frac{\Gamma(z+p)}{\Gamma(z)}\right)$ on $(0,+\infty)$.

Continuous:

$$
\gamma_{p}=\frac{p^{3}-p}{24}
$$

[Kardar '87], [Bertini-Cancrini '95]
The speed of growth of Lyapunov exp's does not predict fluctuation exponents!

Replica trick
In its simplest incarnation, ignoring intermittency, replica trick analytically continues moments off positive integers and uses

$$
\log Z=\lim _{p \rightarrow 0} \frac{z^{p}-1}{p}, \quad \lim _{t \rightarrow \infty} \frac{\ln z}{t}=\lim _{p \rightarrow 0} \lim _{t \rightarrow \infty} \frac{1}{t} \frac{e^{t \gamma_{p}}-1}{p}=\lim _{p \rightarrow 0} \frac{\gamma_{p}}{p}
$$

to predict the almost sure behavior. This gives correct LLN values:
Semi-discrete: $\lim _{p \rightarrow 0} \frac{1}{p}\left(\frac{p^{2}}{2}+p z-\log \frac{\Gamma(z+p)}{\Gamma(z)}\right)=z-(\log \Gamma(z))^{\prime}$, take value at point on $(0,+\infty)$
Proved: [O'Connell-Yor '01], [Moriarty-O'Connell '07]
Continuous: $\lim _{p \rightarrow 0} \frac{1}{p} \cdot \frac{p^{3}-p}{24}=-\frac{1}{24}$.
Proved: [Amir-Corwin-Quastel '10], [Sasamoto-Spohn '10]
More elaborate treatment of moments gives limiting fluctuations [Dotsenko '10+], [Calabrese-Le Doussal-Rosso '10+]. WHY?
q-TASEP moments and contour deformation
The distribution of $q^{x_{n}}$ for q-TASEP particles is NOT intermittent. We can find the distribution and then take the limit to polymers. But nested contours are not suited for very large moments.

$$
\begin{array}{ll}
\lambda_{1}+\ldots+\lambda_{l}=\lambda_{1}=\lambda_{1} \cdots \sum_{l} \lambda_{e}=m_{1} m_{2} m_{2}
\end{array}
$$

This formula plays a key role in spectral analysis of Quantum Integrable Systems in Lecture 3. The dets are similar to inverse squared normes of Bethe eigenstates.

$$
\begin{aligned}
& \text { Lemma } \frac{(-1)^{k} q^{\frac{k(k-1)}{2}}}{(2 \pi i)^{k}} \oint_{\text {nested }} \oint_{1 \leqslant A<B \leqslant k} \prod_{z_{A}-q z_{B}} \frac{z_{z_{A}-z_{B}}}{f\left(z_{1}\right) \cdots f\left(z_{k}\right)} \underset{z_{1} \cdots z_{k}}{z_{1}} d z_{1} \ldots d z_{k} \quad f(z)=\frac{e^{(q-1) t z}}{(1-z)^{N}} \\
& =\left.k\right|_{\lambda_{\lambda}=\left(\lambda_{1} \geq \ldots \geq \lambda_{e} \geq 0\right)} \frac{1}{m_{1}!m m_{2}!\cdots} \frac{(1-q)^{k}}{(2 \pi i)^{l}} \oint_{\text {small }} \oint_{1} \operatorname{det}\left[\frac{1}{w_{i} q^{\lambda_{i}}-w_{j}}\right]_{i_{j j}=1}^{l} \prod_{j=1}^{l} f\left(w_{j}\right) f\left(q w_{j}\right) \cdots f\left(q^{l-1} w_{j}\right) d w_{j}
\end{aligned}
$$

Laplace transforms
It is convenient now to take the generating function $\sum_{k \geq 0} \mathbb{E}\left(q^{x_{N}}\right)^{k} \frac{s^{k}}{k_{i}}$. Replace the sum over ordered cluster sizes by that over unordered unrestricted integers n_{1}, n_{2}, \ldots (removes the combinatorial factor), and use the Mellin-Barnes transform

$$
\sum_{n \geqslant 1} g\left(q^{n}\right) \zeta^{n}=\frac{1}{2 \pi i} \int_{\frac{1}{2}-i \infty}^{\frac{1}{2}+i \infty} \Gamma \underbrace{\Gamma(-s) \Gamma(1+s)}_{=\frac{\pi}{\sin \pi s}}(-3)^{s} g\left(q^{s}\right) d s
$$

The result admits direct term-wise limit to polymers:

$$
\begin{aligned}
& \mathbb{E} e^{-u z(N, \tau)}=1+\sum_{l \geqslant 0} \frac{1}{l(2 \pi i)^{2}} \oint_{\left|v_{j}\right|=1 / 4} \cdots \oint_{l} d v_{1} \cdots d v_{l} \int_{3 / 4}^{v_{4}+i} \ldots \int_{i=1}^{\infty} d s_{1} \cdots d s_{l} \\
& \Phi(z)=\frac{\tau}{2} z^{2}+z \cdot \ln u-N \ln \Gamma(z) \\
& \times \prod_{j=1}^{l} \frac{\pi}{\sin \pi s_{j}} e^{\Phi\left(s_{j}+v_{j}\right)-\Phi\left(v_{j}\right)} \cdot \operatorname{det}\left[\frac{1}{s_{i}+v_{i}-v_{j}}\right]_{i, j=1}^{l}
\end{aligned}
$$

Limit theorem
Theorem [B-Corwin '11, B-Corwin-Ferrari '12] For any $æ>0$

$$
\lim _{N \rightarrow \infty} \mathbb{P}\left\{\frac{Z(N, x N)-f_{x} N}{g_{x} \cdot N^{1 / 3}} \leqslant r\right\}=F_{G U E}(r)
$$

The proof is by steepest descent analysis of the last expression.
The Tracy-Widom GUE distribution arises as

$$
\begin{aligned}
& F_{G U E}\left(g_{x} r\right)=1+\sum_{l \geq 1} \frac{1}{l!(2 \pi)^{l}} \int_{\#} \ldots \int d a_{1} \cdots d a_{l} \int \ldots \int d b_{1} \cdots d b_{l} \\
& \times \prod_{j=1}^{l} \frac{1}{a_{j}-b_{j}} \frac{\exp \left(-\frac{g_{2}^{3}}{3} a_{j}^{3}+r a_{j}\right)}{\exp \left(-\frac{g_{x}^{3}}{3} b_{j}^{3}+r a_{j}\right)} \cdot \operatorname{det}\left[\frac{1}{b_{i}-a_{j}}\right]_{i, j=1}^{l} .
\end{aligned}
$$

Back to the replica trick

The bona fide argument on the q-level is the only currently available explanation of why the replica trick works in this case. This will be extended in Lecture 3.

$(1+1) d$ integrable KPZ systems

KPZ/SHE/continuous Brownian polymer
universal limits (Tracy-Widom distributions, Airy processes)

Aiming at accessing other integrable KPZ systems and more general initial conditions, Lecture 3 will present a different approach.

