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1. Notation and motivation
Let 71, ..., Z, be independent random variables in

Z.
Notation: for v : Z — R,
the theoretical measure 1s

1 n
1=

and the empirical measure is

1 n
Py = - Z v(Z;).
1=1



We moreover write

vn(7) == Vn(Pp — P)y.
Consider a class I' of functions v on Z.

EPT (Empirical Process Theory) is about the study
of

vp = {vn(P, — P)y: veTl}
as process indexed by I'.

In particular, the study of probability and moment
Inequalities for

Vi, = sup |vp(7)).
vel



Statistical motivation:

We will consider empirical risk minimization
(M-estimation).

Let I' be a class of loss functions, indexed by a pa-
rameter.

Parametric:

'={w: 06}, 6CR
Nonparametric:

U'={y;: feF},
with F some collection of functions.



Empirical risk minimizer

f = arg min P LY =Y
f il Bayp, 7=y

Let F O F. The target is

0 - 0
= arg min P, = :
f B PYpy 7= g0

Best approximation in the class

* = arg min Pyy, v = v
f gmin Py, 77 =1y






Excess risk
E() = Ply =),
Approximation error
E*=E(").
Basic inequality: For €& = £(%),
E<—(Py—P)(y—7")+E".

Proof. ...



Define
n

=3 B(Z) - vz
1=1

Leto :=o(§ — "), o* = 0(7* —7").
More generally, let d be some metric on F, and

d=d(f, f"), d* = d(f*, f').



Let ¢(-) (some concave function) be the “modulus
of continuity” of the empirical process, that is, v Is
such that

VAP~ Py =)
Vo= S T ) v )

IS a “bounded” random variable.
Let G(-) (some convex function) be the margin, i.e.,

E(yp) > Gld(f, ), ¥V f € F.




Example(Classification)

Suppose that 7Z; = (X;,Y;), with Y; € Y .= {0, 1}
alabel, 7 =1,..., n. Let F be a class of functions
f: X —0,1]. We consider 0/1-loss

V(@ y) =v(f(2),y) = 1-y)f(x)+y(l-f(z)).
For a € |0, 1], write
l(a,-) = E(y(a,Y;)|X; =)

=1 =n)a+n(l—a)=a(l—2n)+n,
where n = E(Y;| X; = ).



The target is the overall minimizer

0 .
= arg min [(a,-).
f 8 in (a, )

It is clear that fU is the Bayes rule

f'=11-2n <0} +¢{l -2 =0},

with ¢ an arbitrary value in |0, 1].
We moreover have

P(vs —vp0) = PI(f — ) (1 —2n)| .



Consider the functions

Hi(v) =vPH{|1 —2n| <v}, vel0,1],
and

Gi(u) = mgx{uv — Hy{(v)}, uwel0,1]

(assuming the maximum exists).
Lemma The inequality

P(yg =) 2 Glo(yy —740))
holds with G(u) = G1(u?), u € [0,1].



Suppose that G, := G o ¢~ ! is strictly convex.
Definition The convex conjugate of G, Is

Hy(v) == sgp[uv — Gylu)].

Lemma Forall 0 < \2 < 1,

(1—08)E <0Hy Q%” ) +(1+6)E"

Proof. ...



Bernstein’s inequality
Letv, - Z2—=R,j=1,...,p
Assume that for all 7, - and m > 2,

m! _
Evj(Z;) = 0, Plyj—y""™ < - (2K)"2d(f, 1),
Then for all m <1 + log p,
P . A% m K)\Q
El/m max | n(W] Y )’ S >\n‘|‘ n
1<j<p d(fj, [*)V T T

where \” = 21%(2”

?



Moreover, for all ¢ > 0,

P

max

1<j<p d(f}, [*)

’PnWj —

X
)l > \/A%+2t+
VT

< exp|—nt].

K (X2 +2t)

-




Bousquet’s inequality. Let~v: Z — R, v € I.
Assume that for all ~, <,

Ey(Z;) =0, |y — 7| < 2K.
Let

ThenV ¢ > 0,

2K
P (Z > EZ +v2tV/1 +4KIEZ+T> < M



Hoeffding’s inequality
Suppose for 1 < 57 < p,

Evi(Z;) =0, [(vj =y )NZ)| < ¢ Vi
Let




Moreover, for all ¢ > 0,

Po(vyi —
P(max' (7 3”2)\7@4—\/2_75)
1<j<p d(v;,7%)

< exp |[—nt].




3. Empirical risk minimization over a finite class
Lety;: 2 — R, j=1,...,p begiven loss func-
tionsinaclass I' C I'. We define the model selec-
tion estimator

P,~v .= min BP,v;.
T

The target is

Pfyo = arg min P-y.
vell

The best approximation is

P~* = min P~..
T T



We define the excess risks

AN

& = P(ﬁ/_fyo)a

and
£ =Py =),
Moreover, we let



3.1 Bounded loss, standard margin condition
Lemma. Suppose

Ply; — v |m<7Km 2d*(f5, ),

and the standard margin condition
E(y;) = d°(f. f)/C.
Then for £* > X2,

m
]El/m( 5) <1+ CA%+KA%.

E* EX E*



Remark. The result with .m = 2 reads

K

ZaN

E

£

<

Corollary. When

It holds that

K)2

C\2
1+ 4/ g*”+

g*

E* > (K +C) X\,



Example: density estimation.
Define

N

K = P(’V(erf*)/Q — Vfo)a
and

/C* = P(’yf* — ”yf()).
Lemma Suppose that

fO
e 8

n 2
m [ K il Y
K o <1+C o T e

Then



3.2 Bounded loss, general margin condition

Lemma Suppose that the margin condition holds,
with strictly convex margin function G. Let H be
the convex conjugate of G. Assume that for some

. 1 .
r < 1+ logp, the function H(vr), v > 0, Is con-
cave. Assume moreover that the exponential mo-
ment condition holds for some K > 0.



Thenforall 0 < < 1, and £ > 0, we have
(1—6EE

A2 K)\2
< 20H ~n n 1+ 0E™.
= ( 5 +25G1(5*\/5)> {149




Lemma.
Suppose

m! _
Ply; — " < K" 2 d(f, ).
and the general margin condition

E(vy) > d*(f5, 1)/ C.
Then,

m

1
5\ 2k
El/m (é) <1






3.3 Unbounded loss, under standard margin condi-
tion
Lemma. Suppose

i) =) < K(), V(i 1),
and that for some s > 1,
|K]|3 = PK® < c.
Assume the standard margin condition
E(v)) = a*(v; — ")/ C, Vj.



Then for logp > 1,

C\2

>§1+ &
s—1 5
TER) T



where

',_L

(V)

P—“

2
s—1 S+1+ s—1
Ce .=
5 9 9

Corollary. When

s+1 9 ;1 9
E* > 2¢,° HKHS(A) oA,

It holds that X
E
IE§ — 1.



4. Empirical risk minimization over an infinite class
Estimator
A = arg min Py
vel
Target
70 =argmin Py, I' D T
vel
Best approximation
~* := arg min P~.
vel’
We assume V v € T,
1. boundedness: ||v — v*|| < K,

2. margin condition: £(v) > G(a(y — V).



Recall: we sketched a result involving the weighted
empirical process

= Py =)
Vo= s e

We will now show how to obtain this from the un-
weighted process, using the peeling device.
Let for o > 0,

Zp(o) = sup  |(Pn—P)(y =77l
o(y—V)<o




Assume that (for some o, and) all & > o3, we have the
3. Increments of the empirical process:

EZy, (o) < (o),

where ¥(o) > o.
Let (as before)

Gy=Gorp ',

so that
G;l =)o G 1.



Assume the
4. decay condition: thereisan 0 < « < 1 such
that,

|l ine.

Peeling device. Let ¢ > G(og). Then

VAlPa= P =M _ , Ga
) <6<v>p>e ED ) =

where C, = oz_%/(l — ).



Theorem Let ¢; > G(o() and

4C,, + 24/2t th
dv/n 3n

where H, Is the convex conjugate of G,. Then

g*

(1 — 5)675 > 5H¢ (

P(€ > ¢) < exp|—t].



5. Symmetrization
Definition A Rademacher sequence is a sequence
of independent random variables {&;} ; with

P@:+U:P@:—D=§

Notation

Let {Z/} be an independent copy of {Z;}, and let
{&;} be a Rademacher sequence, independent of
{Z;} and {Z]}. Define

n

1

n 4
1=1



and write
| Py — Plp == Sup (P — P)l,
~verl
| P, — P||r == sup [(P), — P)l,
vel’

| PS|Ir = sup |PSH).

Lemma We have
E| P, — Pl|p < 2E|| P ||r-



6. Entropy
Let (I', d) be a subset of a metric space.

Definition

For u > 0, a u-covering of I' is defined as a collec-
tion {;}7, such that

vy there is a y; with d(vy, v;) < u.

The covering number N(-,T',d) is defined for all

u > 0 as
N(u,l';d) = min{N : there is a wu-covering

{Wj}évﬂ}-
The entropy is H(-,T",d) := log(1 + N(-,[', d)).



Example. Let
D= {y:00,1] = [0,1] : [4"™]|oo < 1},
Then
H(w, T, || - [loo) < At ™7, u > 0.
Example. Let
={y:R—1[0,1]: v T}

Let ) be some probability measure and || - || be
the Lo(Q)-norm. Then

Hw,T, |- llg) < Au™", u> 0.



7. Moment inequalities for an infinite class
Let I be some class of functions.
We assume

Sup H('7F7 ” ' HQ) < H()?

prob. measures ()

and write

—24/\/7du

Let || - || be the Lo(P)-norm and || - ||,, be the
Lo(Py,)-norm.



Define

o = sup |7, o := sup [|7][n.
vel’ vel

Lemma We have
(o)
2/n

E|| Pl <

Proof. ...



Contraction principle (Ledoux and Talagrand
(1991)) (It holds more generally for Lipschitz func-
tions.) Suppose ||v|cc < K forall v € I". Then

E Sup\PS ] <2KE Sup\PSfy\ .
vel vel



Lemma. Suppose ||v|cc < K forall v € T'. Let
H be the convex conjugate of G, = G o L with

G(u) = u*, u > 0. Then for all
0 2K
2
—H
§ (f 5)

Eo(5) < (0\/2/1 - 5) .

we have

Proof. - --
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