M-estimation

and Complexity Regularization

Sara van de Geer Seminar für Statistik, ETH Zürich

Program

- 1. Notation and motivation
- 2. Probability and moment inequalities
- 3. Empirical risk minimization over a finite class
- 4. Empirical risk minimization over an infinite class
- 5. Symmetrization
- 6. Entropy
- 7. The expectation of the empirical process

1. Notation and motivation

Let Z_1, \ldots, Z_n be independent random variables in \mathcal{Z} .

Notation: for $\gamma : \mathcal{Z} \to \mathbf{R}$, the theoretical measure is

$$P\gamma := \frac{1}{n} \sum_{i=1}^{n} E\gamma(Z_i),$$

and the empirical measure is

$$P_n \gamma := \frac{1}{n} \sum_{i=1}^n \gamma(Z_i).$$

We moreover write

$$\nu_n(\gamma) := \sqrt{n}(P_n - P)\gamma.$$

Consider a class Γ of functions γ on \mathcal{Z} .

EPT (Empirical Process Theory) is about the study of

$$\nu_n := \{ \sqrt{n}(P_n - P)\gamma : \ \gamma \in \Gamma \}$$

as process indexed by Γ .

In particular, the study of probability and moment inequalities for

$$\mathbf{V}_n := \sup_{\gamma \in \Gamma} |\nu_n(\gamma)|.$$

Statistical motivation:

We will consider empirical risk minimization (M-estimation).

Let Γ be a class of loss functions, indexed by a parameter.

Parametric:

$$\Gamma = \{ \gamma_{\theta} : \theta \in \Theta \}, \ \Theta \subset \mathbf{R}^r.$$

Nonparametric:

$$\Gamma = \{ \gamma_f : f \in \mathcal{F} \},$$

with \mathcal{F} some collection of functions.

Empirical risk minimizer

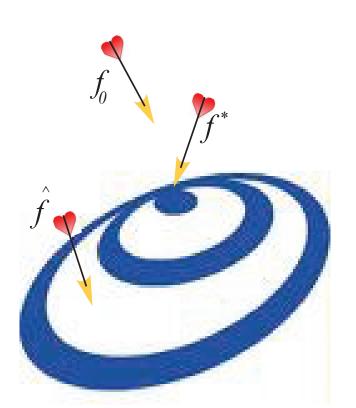
$$\hat{f} := \arg\min_{f \in \mathcal{F}} P_n \gamma_f, \ \hat{\gamma} := \gamma_{\hat{f}}.$$

Let $F \supset \mathcal{F}$. The target is

$$f^0 := \arg\min_{f \in \mathbf{F}} P\gamma_f, \ \gamma^0 := \gamma_{f^0}.$$

Best approximation in the class

$$f^* := \arg\min_{f \in \mathcal{F}} P\gamma_f, \ \gamma^* := \gamma_{f^*}.$$



Excess risk

$$\mathcal{E}(\gamma) := P(\gamma - \gamma^0).$$

Approximation error

$$\mathcal{E}^* := \mathcal{E}(\gamma^*).$$

Basic inequality: For $\hat{\mathcal{E}} = \mathcal{E}(\hat{\gamma})$,

$$\hat{\mathcal{E}} \le -(P_n - P)(\hat{\gamma} - \gamma^*) + \mathcal{E}^*.$$

Proof. . . .

Define

$$\sigma^2(\gamma) := \frac{1}{n} \sum_{i=1}^n E[\gamma(Z_i) - E\gamma(Z_i)]^2.$$

Let $\hat{\sigma} := \sigma(\hat{\gamma} - \gamma^0)$, $\sigma^* := \sigma(\gamma^* - \gamma^0)$. More generally, let d be some metric on \mathbf{F} , and $\hat{d} := d(\hat{f}, f^0)$, $d^* := d(f^*, f^0)$. Let $\psi(\cdot)$ (some concave function) be the "modulus of continuity" of the empirical process, that is, ψ is such that

$$\mathbf{V}_n := \sup_{\gamma \in \Gamma} \frac{|\sqrt{n}(P_n - P)(\gamma - \gamma^*)|}{\psi(d(f, f^0) \vee d^*)}$$

is a "bounded" random variable.

Let $G(\cdot)$ (some convex function) be the margin, i.e.,

$$\mathcal{E}(\gamma_f) \geq G(d(f, f^0)), \ \forall \ f \in \mathcal{F}.$$

Example(Classification)

Suppose that $Z_i = (X_i, Y_i)$, with $Y_i \in \mathcal{Y} := \{0, 1\}$ a label, i = 1, ..., n. Let **F** be a class of functions $f : \mathcal{X} \to [0, 1]$. We consider 0/1-loss

$$\gamma_f(x,y) = \gamma(f(x),y) := (1-y)f(x) + y(1-f(x)).$$

For $a \in [0, 1]$, write

$$l(a,\cdot) := \mathbb{E}(\gamma(a,Y_i)|X_i = \cdot)$$

$$= (1 - \eta)a + \eta(1 - a) = a(1 - 2\eta) + \eta ,$$

where $\eta = \mathbb{E}(Y_i|X_i = \cdot)$.

The target is the overall minimizer

$$f^0 := \arg\min_{a \in [0,1]} l(a, \cdot)$$
.

It is clear that f^0 is the Bayes rule

$$f^0 = 1\{1 - 2\eta < 0\} + q\{1 - 2\eta = 0\},\,$$

with q an arbitrary value in [0, 1].

We moreover have

$$P(\gamma_f - \gamma_{f^0}) = P|(f - f^0)(1 - 2\eta)|.$$

Consider the functions

$$H_1(v) = vP1\{|1 - 2\eta| < v\}, \ v \in [0, 1],$$

and

$$G_1(u) = \max_{v} \{uv - H_1(v)\}, \ u \in [0, 1]$$

(assuming the maximum exists).

Lemma The inequality

$$P(\gamma_f - \gamma_{f^0}) \ge G(\sigma(\gamma_f - \gamma_{f^0}))$$

holds with
$$G(u) = G_1(u^2)$$
, $u \in [0, 1]$.

Suppose that $G_{\psi} := G \circ \psi^{-1}$ is strictly convex. **Definition** The convex conjugate of G_{ψ} is

$$H_{\psi}(v) := \sup_{u} [uv - G_{\psi}(u)].$$

Lemma For all $0 < \lambda_n^2 < 1$,

$$(1-\delta)\hat{\mathcal{E}} \leq \delta H_{\psi}\left(\frac{\mathbf{V}_n}{\sqrt{n}\delta}\right) + (1+\delta)\mathcal{E}^*.$$

Proof. ...

Bernstein's inequality

Let $\gamma_j: \mathbb{Z} \to \mathbf{R}, j = 1, \dots, p$.

Assume that for all j, i and $m \geq 2$,

$$E\gamma_j(Z_i) = 0, \ P|\gamma_j - \gamma^*|^m \le \frac{m!}{2}(2K)^{m-2}d^2(f_j, f^*).$$

Then for all $m < 1 + \log p$,

$$\mathbb{E}^{1/m} \left(\max_{1 \le j \le p} \frac{|P_n(\gamma_j - \gamma^*)|}{d(f_j, f^*) \vee \tau} \right)^m \le \lambda_n + \frac{K\lambda_n^2}{\tau},$$

where $\lambda_n^2 := \frac{2\log(2p)}{n}$.

Moreover, for all t > 0,

Moreover, for all
$$t > 0$$
,

Moreover, for all
$$t > 0$$
,

whoreover, for all
$$t > 0$$
,

$$\mathbf{P} \left[\max_{1 \le j \le p} \frac{|P_n(\gamma_j - \gamma^*)|}{d(f_j, f^*) \vee \tau} \ge \sqrt{\lambda_n^2 + 2t} + \frac{K(\lambda_n^2 + 2t)}{\tau} \right]$$

 $\leq \exp[-nt].$

Bousquet's inequality. Let $\gamma : \mathcal{Z} \to \mathbf{R}$, $\gamma \in \Gamma$.

Assume that for all γ , i,

$$E\gamma(Z_i) = 0, \ |\gamma - \gamma^*| \le 2K.$$

Let

$$\mathbf{Z} := \sup_{\gamma \in \Gamma} \frac{|P_n(\gamma - \gamma^*)|}{\sigma(\gamma - \gamma^*) \vee \tau}.$$

Then $\forall t > 0$,

$$\mathbb{P}\left(\mathbf{Z} \ge \mathbb{E}\mathbf{Z} + \sqrt{2t}\sqrt{1 + 4K\mathbb{E}\mathbf{Z}} + \frac{2tK}{3}\right) \le e^{-nt}.$$

Hoeffding's inequality

Suppose for $1 \leq j \leq p$,

$$E\gamma_j(Z_i) = 0, |(\gamma_j - \gamma^*)(Z_i)| \le c_{i,j} \,\forall i.$$

Let

$$d^2(\gamma_j, \gamma^*) := \frac{1}{n} \sum_{i=1}^n c_{i,j}^2.$$

Then

$$\mathbb{E}\left(\max_{1\leq i\leq p}\frac{|P_n(\gamma_j-\gamma^*)|}{d(\gamma_i,\gamma^*)}\right)\leq \lambda_n.$$

Moreover, for all t > 0,

$$\mathbf{P}\left(\max_{1\leq j\leq p}\frac{|P_n(\gamma_j-\gamma^*)|}{d(\gamma_j,\gamma^*)}\geq \lambda_n+\sqrt{2t}\right)$$

$$\leq \exp\left[-nt\right].$$

3. Empirical risk minimization over a finite class

Let $\gamma_j : \mathbb{Z} \to \mathbf{R}$, j = 1, ..., p be given loss functions in a class $\Gamma \subset \Gamma$. We define the model selection estimator

$$P_n \hat{\gamma} := \min_{1 < j < p} P_n \gamma_j.$$

The target is

$$P\gamma^0 := \arg\min_{\gamma \in \Gamma} P\gamma.$$

The best approximation is

$$P\gamma^* := \min_{1 \le i \le p} P\gamma_j.$$

We define the excess risks

$$\hat{\mathcal{E}} := P(\hat{\gamma} - \gamma^0),$$

and

$$\mathcal{E}^* := P(\gamma^* - \gamma^0).$$

Moreover, we let

$$\sigma^{2}(\gamma) := \frac{1}{n} \sum_{i=1}^{n} E[\gamma(Z_{i}) - E\gamma(Z_{i})]^{2}.$$

3.1 Bounded loss, standard margin condition **Lemma.** *Suppose*

$$|\mathbf{P}|\gamma_j - \gamma^*|^m \le \frac{m!}{2} K^{m-2} d^2(f_j, f^*),$$

and the standard margin condition

$$\mathcal{E}(\gamma_i) \ge d^2(f_i, f^*)/C.$$

Then for $\mathcal{E}^* \geq \lambda_n^2$,

$$\mathbb{E}^{1/m} \left(\sqrt{\frac{\hat{\mathcal{E}}}{\mathcal{E}^*}} \right)^m \le 1 + \sqrt{\frac{C\lambda_n^2}{\mathcal{E}^*}} + \frac{K\lambda_n^2}{\mathcal{E}^*}.$$

Remark. The result with m=2 reads

$$\mathbb{E}\left[\frac{\hat{\mathcal{E}}}{\mathcal{E}^*}\right] \leq \left[1 + \sqrt{\frac{C\lambda_n^2}{\mathcal{E}^*}} + \frac{K\lambda_n^2}{\mathcal{E}^*}\right]^2.$$

Corollary. When

$$\mathcal{E}^* \gg (K+C) \lambda_n^2$$

it holds that

$$\mathbb{E}\left(\sqrt{\frac{\hat{\mathcal{E}}}{\mathcal{E}^*}}\right)^m \to 1.$$

Example: density estimation.

Define

$$\hat{\mathcal{K}} := P(\gamma_{(\hat{f}+f^*)/2} - \gamma_{f^0}),$$

and

$$\mathcal{K}^* := P(\gamma_{f^*} - \gamma_{f^0}).$$

Lemma Suppose that

$$\sqrt{\frac{f^0}{f^*}} \le \frac{C}{8} .$$

Then

$$\mathbb{E}^{1/m} \left(\frac{\hat{\mathcal{K}}}{\mathcal{K}^*} \right)^{m/2} \le 1 + C \sqrt{\frac{\lambda_n^2}{\mathcal{K}^*}} + \frac{\lambda_n^2}{\mathcal{K}^*}.$$

3.2 Bounded loss, general margin condition

Lemma Suppose that the margin condition holds, with strictly convex margin function G. Let H be the convex conjugate of G. Assume that for some $r \leq 1 + \log p$, the function $H(v^{\frac{1}{r}})$, v > 0, is concave. Assume moreover that the exponential moment condition holds for some K > 0.

Then for all $0 < \delta < 1$, and $\varepsilon > 0$, we have

or all
$$0 < \delta < 1$$
, and $\varepsilon > 0$, we have

 $\leq 2\delta H \left(\sqrt{\frac{\lambda_n^2}{\delta} + \frac{K\lambda_n^2}{2\delta G^{-1}(\mathcal{E}^* \vee \varepsilon)}} \right) + (1+\delta)\mathcal{E}^*.$

Then for all
$$0 < 0 < 1$$
, and $\varepsilon > 0$, we have

$$(1-\delta)\mathbb{E}\hat{\mathcal{E}}$$

Lemma.

Suppose

$$|\mathbf{P}|\gamma_j - \gamma^*|^m \le \frac{m!}{2} K^{m-2} d^2(f_j, f^*),$$

and the general margin condition

$$\mathcal{E}(\gamma_i) \ge d^{2\kappa}(f_i, f^0)/C.$$

Then,

$$\mathbb{E}^{1/m} \left(\left(\frac{\hat{\mathcal{E}}}{\mathcal{E}^*} \right)^{\frac{1}{2\kappa}} \right)^m \le 1$$

$$+\bar{c}_{\kappa} \left(\sqrt{\frac{C^{\frac{1}{\kappa}} \lambda_{n}^{2}}{(\mathcal{E}^{*})^{\frac{2\kappa-1}{\kappa}}}} + \frac{K \lambda_{n}^{2}}{\mathcal{E}^{*}} \right)^{\frac{1}{2\kappa-1}},$$

where

$$+\bar{c}_{\kappa}\left(\begin{array}{c} \left(\begin{array}{c} C^{\frac{1}{\kappa}}\lambda_{n}^{2} \\ 2\kappa-1 \end{array}\right) \end{array}\right)$$

$$\frac{\lambda_n^2}{\kappa-1} + \frac{I}{I}$$

 $\bar{c}_{\kappa} := \left(\frac{1 + (2\kappa - 1)^{\frac{1}{2\kappa - 1}}}{(2\kappa)^{\frac{1}{2\kappa - 1}}} \right).$

$$K\lambda_n^2$$

$$K\lambda_n^2$$

$$K\lambda_n^2$$

$$\lambda$$
 $2\kappa-1$

$$2\kappa-1$$

3.3 Unbounded loss, under standard margin condition

Lemma. Suppose

$$|\gamma_j(\cdot) - \gamma_l(\cdot)| \le \mathbf{K}(\cdot), \ \forall (j, l),$$

and that for some s > 1,

$$\|\mathbf{K}\|_{s}^{s} := P\mathbf{K}^{s} < \infty.$$

Assume the standard margin condition

$$\mathcal{E}(\gamma_j) \ge \sigma^2(\gamma_j - \gamma^0)/C, \ \forall j.$$

Then for $\log p \geq 1$,

$$\mathbb{E}^{1/2}\left(\frac{\hat{\mathcal{E}}}{\mathcal{E}_*}\right) \le 1 + \sqrt{\frac{C\lambda_n^2}{\mathcal{E}^*}}$$

$$\mathbb{E}^{1/2}\left(\frac{c}{\mathcal{E}_*}\right) \le 1 + \sqrt{\frac{c \times \eta_0}{\mathcal{E}^*}}$$

$$+c_s(2\|\mathbf{K}\|_s)^{\frac{s}{s+1}} \left(\lambda_n^2\right)^{\frac{s-1}{s+1}} (\mathcal{E}^*)^{-\frac{s}{s+1}},$$

where

$$c_s := \left(\frac{s-1}{2}\right)^{\frac{2}{s+1}} + \left(\frac{s-1}{2}\right)^{-\frac{s-1}{s+1}}.$$

Corollary. When

$$\mathcal{E}^* \gg 2c_s^{\frac{s+1}{s}} \|\mathbf{K}\|_s \left(\lambda_n^2\right)^{\frac{s-1}{s}} + C\lambda_n^2,$$

it holds that

$$\mathbb{E}\frac{\mathcal{E}}{\mathcal{E}^*} \to 1.$$

4. Empirical risk minimization over an infinite class Estimator

$$\hat{\gamma} := \arg\min_{\gamma \in \Gamma} P_n \gamma$$

Target

$$\gamma^0 := \arg\min_{\gamma \in \Gamma} P\gamma, \ \Gamma \supset \Gamma.$$

Best approximation

$$\gamma^* := \arg\min_{\gamma \in \Gamma} P\gamma.$$

We assume $\forall \gamma \in \Gamma$,

- 1. boundedness: $\|\gamma \gamma^*\| \leq K$,
- 2. margin condition: $\mathcal{E}(\gamma) \geq G(\sigma(\gamma \gamma^0))$.

Recall: we sketched a result involving the weighted empirical process

$$\mathbf{V}_n := \sup_{\gamma \in \Gamma} \frac{\sqrt{n} |(P_n - P)(\gamma - \gamma^*)|}{\psi(\sigma(\gamma - \gamma^0) \vee \sigma^*)}.$$

We will now show how to obtain this from the unweighted process, using the peeling device.

Let for $\sigma > 0$,

$$\mathbf{Z}_n(\sigma) := \sup_{\sigma(\gamma - \gamma^0) < \sigma} |(P_n - P)(\gamma - \gamma^*)|.$$

Assume that (for some σ_0 and) all $\sigma \geq \sigma_0$, we have the 3. increments of the empirical process:

$$\mathbb{E}\mathbf{Z}_n(\sigma) \le \psi(\sigma),$$

where $\psi(\sigma) \geq \sigma$.

Let (as before)

$$G_{\psi} := G \circ \psi^{-1},$$

so that

$$G_{\psi}^{-1} = \psi \circ G^{-1}.$$

Assume the

4. decay condition: there is an $0 < \alpha < 1$ such that,

$$\frac{G_{\psi}^{-1}(\epsilon)}{\epsilon^{\alpha}} \downarrow \text{ in } \epsilon.$$

Peeling device. Let $\epsilon \geq G(\sigma_0)$. Then

$$\mathbb{E}\left(\sup_{\mathcal{E}(\gamma)>\epsilon} \frac{\sqrt{n}|(P_n - P)(\gamma - \gamma^*)|}{\mathcal{E}(\gamma)}\right) \le C_{\alpha} \frac{G_{\psi}^{-1}(\epsilon)}{\epsilon},$$

where $C_{\alpha} := \alpha^{-\frac{\alpha}{1-\alpha}}/(1-\alpha)$.

Theorem Let $\epsilon_t > G(\sigma_0)$ and

$$(1 - \delta)\epsilon_t > \delta H_{\psi} \left(\frac{4C_{\alpha} + 2\sqrt{2t}}{\delta\sqrt{n}} \right) + \frac{2Kt}{3n} + \mathcal{E}^*,$$

where H_{ψ} is the convex conjugate of G_{ψ} . Then

$$\mathbf{P}(\hat{\mathcal{E}} > \epsilon_t) \le \exp[-t].$$

5. Symmetrization

Definition A Rademacher sequence is a sequence of independent random variables $\{\xi_i\}_{i=1}^n$ with

$$\mathbf{P}(\xi_i = +1) = \mathbf{P}(\xi_i = -1) = \frac{1}{2}.$$

Notation

Let $\{Z'_i\}$ be an independent copy of $\{Z_i\}$, and let $\{\xi_i\}$ be a Rademacher sequence, independent of $\{Z_i\}$ and $\{Z'_i\}$. Define

$$P'_n := \frac{1}{n} \sum_{i=1}^n \gamma(Z'_i),$$

$$P_n^{\xi} := \frac{1}{n} \sum_{i=1}^n \xi_i \gamma(Z_i),$$

and write

$$||P_n - P||_{\Gamma} := \sup_{\gamma \in \Gamma} |(P_n - P)\gamma|,$$

$$||P'_n - P||_{\Gamma} := \sup_{\gamma \in \Gamma} |(P'_n - P)\gamma|,$$

$$||P^{\xi}_n||_{\Gamma} := \sup_{\gamma \in \Gamma} |P^{\xi}_n\gamma|.$$

Lemma We have

$$\mathbb{E}||P_n - P||_{\Gamma} \le 2\mathbb{E}||P_n^{\xi}||_{\Gamma}.$$

6. Entropy

Let (Γ, d) be a subset of a metric space.

Definition

For u > 0, a *u*-covering of Γ is defined as a collection $\{\gamma_j\}_{j=1}^N$ such that

 $\forall \gamma \text{ there is a } \gamma_j \text{ with } d(\gamma, \gamma_j) \leq u.$

The covering number $N(\cdot, \Gamma, d)$ is defined for all u > 0 as

 $N(u,\Gamma,d):=\min\{N: \text{there is a }u\text{-covering} \ \{\gamma_j\}_{j=1}^N\}.$

The entropy is $\mathcal{H}(\cdot, \Gamma, d) := \log(1 + N(\cdot, \Gamma, d))$.

Example. Let

$$\Gamma = \{ \gamma : [0, 1] \to [0, 1] : \| \gamma^{(m)} \|_{\infty} \le 1 \}.$$

Then

$$\mathcal{H}(u,\Gamma,\|\cdot\|_{\infty}) \le A_m u^{-\frac{1}{m}}, \ u > 0.$$

Example. Let

$$\Gamma = \{ \gamma : \mathbf{R} \to [0, 1] : \gamma \uparrow \}.$$

Let Q be some probability measure and $\|\cdot\|_Q$ be the $L_2(Q)$ -norm. Then

$$\mathcal{H}(u, \Gamma, \|\cdot\|_{Q}) \le Au^{-1}, \ u > 0.$$

7. Moment inequalities for an infinite class Let Γ be some class of functions. We assume

$$\sup_{\text{prob. measures } Q} \mathcal{H}(\cdot, \Gamma, \|\cdot\|_Q) \leq \mathcal{H}(\cdot),$$

and write

$$\psi(\cdot) := 24 \int_0^{\cdot} \sqrt{\mathcal{H}(u)} du.$$

Let $\|\cdot\|$ be the $L_2(P)$ -norm and $\|\cdot\|_n$ be the $L_2(P_n)$ -norm.

Define

$$\sigma := \sup_{\gamma \in \Gamma} \|\gamma\|, \ \hat{\sigma} := \sup_{\gamma \in \Gamma} \|\gamma\|_n.$$

Lemma We have

$$\mathbb{E} \|P_n^{\xi}\|_{\Gamma} \le \frac{\mathbb{E}\psi(\hat{\sigma})}{2\sqrt{n}}.$$

Proof. ...

Contraction principle (Ledoux and Talagrand (1991)) (It holds more generally for Lipschitz functions.) Suppose $\|\gamma\|_{\infty} \leq K$ for all $\gamma \in \Gamma$. Then

$$\mathbb{E}\left(\sup_{\gamma\in\Gamma}|P_n^{\xi}\gamma^2|\right)\leq 2K\mathbb{E}\left(\sup_{\gamma\in\Gamma}|P_n^{\xi}\gamma|\right).$$

Lemma. Suppose $\|\gamma\|_{\infty} \leq K$ for all $\gamma \in \Gamma$. Let H be the convex conjugate of $G_{\psi} = G \circ \psi^{-1}$, with $G(u) = u^2$, u > 0. Then for all

$$\sigma^2 \ge \frac{\delta}{1 - \delta} H\left(\frac{2K}{\sqrt{n}\delta}\right),\,$$

we have

$$\mathbb{E}\psi(\hat{\sigma}) \le \psi\left(\sigma\sqrt{2/1-\delta}\right).$$

Proof. · · ·

Some references

Bartlett, P.L., Bousquet, O. and Mendelson, S., *Local Rademacher complexities*, Ann. Statist. **33** (2005), 1497–1537.

Bousquet, O., A Bennett concentration inequality and its application to suprema of empirical processes, C.R. Acad. Sci. Paris 334 (2002), 495–500.

E. del Barrio, P. Deheuvels and S.A. van de Geer (2007). Oracle i nequalities and regularization.

EMS Series of Lectures in Mathematics

Koltchinskii, V., 2004 IMS Medallion Lecture: Local Rademacher complexities and oracle inequalities in risk minimization, Ann. Statist. **3**4 (2006).

MASSART, P. (2000). Some applications of concentration inequalities to statistics. *Ann. Fac. Sci. Toulouse* **9** 245–303.

S. van de Geer (2000). *Empirical Process in M-Estimation*. Cambridge University Press.

S. van de Geer (2008). High-dimensional generalized linear models and the Lasso. Ann. Statist.

A. van der Vaart and J. Wellner (1996). Weak Convergence and Empirical Processes. Springer.