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Linear regression and the Lasso

Observations {Xi, Yi}ni=1:

co-variables Xi ∈ Rp, response variables Yi ∈ R.

Linear model:

Yi = β1Xi,1 + . . . + βi,pXi,p + εi, ı = 1, . . . , n,

with β1, . . . , βp unknown parameters.

High-dimensional data: p� n!

Least squares with Lasso penalty:

β̂ := arg min
β

n∑
i=1

(Yi − (Xβ)i)
2 + λ

p∑
j=1

|βj|.
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Oracle result

Let f0 := arg minall f E‖Y − f‖22.

For appropriate choice of λ, of order
√

log p/n :

E‖Xβ̂ − f0‖22
≤ (1 + δ){min

β
‖Xβ − f0‖2 + λ2#{βj 6= 0}}.

(see Bühlmann and Meinshausen (2006),

Candes and Tao (2007), vdG (2007), ...)
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Extensions

To other loss functions (vdG (2008)),

e.g., support vector machine loss

(Tarigan and vdG (2006))

Technical tools

Contraction and concentration inequalities,

the behavior of suprema of stochastic processes in-

dexed by functions.
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Cross road to model selection

f̂ := arg min
j=1,...,p

‖Y − fj‖22.

Aim is to show that ‖f̂ − f0‖22 is close to

‖f∗ − f0‖22 := min
j=1,...,p

‖fj − f0‖22

(recall f0 := arg minall f E‖Y − f‖22).

Recent work concerns the case where the errors

ε := Y − f0 have only lower order moments,

e.g., oracle results of the form
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√√√√E
‖f̂ − f0‖22
‖f∗ − f0‖22

≤ 1 + rest,

with

rest = C

√
λ

‖f∗ − f0‖22
+c

(
K

‖f∗ − f0‖22

) s
s+1

λ
s−1
s+1 ,

where

λ :=
2 log(2p)

n
,K := E|ε|s

(Mitchell and vdG (2008)).
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Junction to Nemirovski inequalities

Lemma (Dümbgen, vdG, Wellner (2008)) Let

X1, . . . , Xn be independent centered random vari-

ables in Rp and set Sn =
∑n
i=1Xi. Then

√
E‖Sn‖∞ ≤ (1 + 3.46)

√
log(2p)

√√√√ n∑
i=1

E‖Xi‖2∞.



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Cross road to additive models with many components

Yi = f1(Xi,1) + . . . + fp(Xi,p) + εi, i = 1, . . . , n,

with fj unknown functions satisfying a smoothness

assumption, e.g.,

I2(fj) :=

∫
|f (s)
j (x)|2dx <∞.
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Estimator of group Lasso type:

f̂ = arg min

‖Y −
p∑
j=1

fj‖22 + pen(f )

 ,

with

pen(f ) :=

p∑
j=1

pen(fj)

pen(fj) := λ
√
‖fj‖22 + λ2I2(fj) + λ2I2(fj).
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Oracle result

E‖f̂ − f0‖22

≤ (1+δ) min
f

‖f − f0‖22 + λ2−γ ∑
fj 6=0

I2(fj) ∨ 1

 .

(Bühlmann, Meier and vdG (2008)).
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Regression model

Yi = f0(xi) + εi, i = 1, . . . , n,

with

Yi ∈ R,

xi ∈ X (fixed design),

f0 : X → R an unknown function.
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Penalized least squares

We study the estimator

f̂ := arg min
f∈F

1

n

n∑
i=1

|Yi − f (xi)|2 + pen(f )

 ,

where pen(f ) is a penalty,

depending on some measure of complexity I(f ),
and on a smoothing parameter λn.
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Notation

Let

Qn :=
1

n

n∑
i=1

δxi

be the empirical distribution of the co-variables.

Define

‖f‖2n :=
1

n

n∑
i=1

f2(xi).

Let

F ⊂ L2(Qn),

be some linear space of functions.
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Complexity measure

Let I : F → [0,∞) be some map. Think of I(f )
measuring the complexity of the function f .
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Example: smooth functions.

X := [0, 1],

I(f ) :=

(∫
|f (s)(x)|qdx

)1
q
.

Here, 1 ≤ q ≤ ∞.
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Example: linear functions.

F := {fβ(·) :=

p∑
j=1

βjψj(·) : β ∈ Rp},

with {ψj} a given dictionary of functions on X .

Moreover, possibly p� n.

Take the `γ complexity measure

Iγ(f ) :=

p∑
j=1

|βj|γ := ‖β‖γγ.
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Special cases:

• γ = 1: I(fβ) = ‖β‖1 =
∑p
j=1 |βj|, the LASSO.

• γ = 0: BIC

I0(fβ) = ‖β‖00 = card{j : βj 6= 0} := Nβ.
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Remark

•• γ → 0:

I0+(fβ) :=
∑p
j=1 log

(
1 +

|βj|
λn

)
?
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Let β∗ be arbitrary (later it will be the oracle), but

satisfying the compatibility condition below. Let

f∗ := fβ∗ and let

A∗ := {j : β∗j 6= 0}

be the active set, with cardinality

N∗ := card(A∗).
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Define βin = βl{j ∈ A∗} and βout = βl{j /∈ A∗}.
Let

f = fβ := fin + fout

with

fin := fβin
=
∑
j∈A∗

βjψj,

and

fout := fβout
=
∑
j /∈A∗

βjψj.
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Compatibility assumption: For all β, we have the

eigenvalue assumption

‖βin‖2 ≤ ‖fin‖n/ψ∗,

and the canonical correlation assumption

|(fin, fout)n|
‖fin‖n‖fout‖n

≤ ρ∗ < 1.
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Relaxed compatibility assumption:

Opposition does not pay off.

For all β with I(fout) ≤ 3I(fin), we have the eigen-

value assumption

‖βin‖2 ≤ ‖fin‖n/ψ2
∗,

and the opposition assumption

(fin, fout)n
‖fin‖n‖fout‖n

≥ ρ∗ > −1.
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Remark

In the case of `1 penalization:

The Relaxed compatibility condition is related to

the Restricted Eigenvalue (RE) Property in Bickel,

Ritov and Tsybakov (2007).

The Restricted Isometry Property (RIP) (Candes

and Tao (2007)) is sufficient.

Related: Mutual Incoherence, Uniform Uncer-

tainty
Principle (UUP), Irrepresentability Condition.

(vdG (2007) calls it the Compatibility Condition, or simply Condition C.)
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Conjugate

Let 0 ≤ γ ≤ 1. The conjugate of γ is defined as

α := g(γ),

where

g(γ) =
2(1− γ)

2− γ
.

Note that

g = g−1.
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The empirical process

Define

(ε, f )n :=
1

n

n∑
i=1

εif (xi).

Let α = g(γ) be the conjugate of γ.

We will assume the Empirical Process Condition:

with large probability

sup
f∈F

|(ε, f )n|
‖f‖αnI1−α(f )

≤ λn.

Generally

λn ∼
1√
n
× possible log factors.
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Example: smooth functions.

I(f ) :=

(∫
|f (s)(x)|qdx

)1
q
.

Then

α = 1− 1

2s
, γ =

2

2s + 1
,

and

λn ∼
1√
n
.
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Example: linear functions.

Iγ(f ) :=

p∑
j=1

|βj|γ.

Then

α =
2(1− γ)

2− γ
= g(γ)

and

λn ∼
√

log(p)

n
.



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Special cases:

• γ = 1⇒ α = 0:

|(ε, fβ)n| = |
p∑
j=1

βj(ε, ψj)n| ≤ ‖β‖1 max
1≤j≤p

|(ε, ψj)n|

≤ λn‖β‖1.
Note: with correlated ψj, this can be improved to

some α > 0 (entropy conditions).

• γ = 0⇒ α = 1:

|(ε, fβ)n| ≤ λn‖fβ‖n
√
‖β‖00 = λn‖fβ‖n

√
Nβ.
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Entropy conditions

Let H(·, {f ∈ F : I(f ) ≤ 1}, Qn) be the entropy

of {f ∈ F : I(f ) ≤ 1}. Assume that I is scalable

and

H(δ, {f ∈ F : I(f ) ≤ 1}, Qn) ≤ Anδ
−2(1−α).

Then the Empirical Process Condition holds: with

large probability

sup
f∈F

|(ε, f )n|
‖f‖αnI1−α(f )

≤ λn,

with

λn ∼
√
An
n
.
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Basic inequality

Lemma 1 We have the basic inequality

‖f̂ − f0‖2n + pen(f̂ )

≤ 2|(ε, f̂ − f∗)n| + pen(f∗) + ‖f∗ − f0‖2n.

Proof. This is rewriting,

1

n

n∑
i=1

|Yi − f̂ (xi)|2 + pen(f̂ )

≤ 1

n

n∑
i=1

|Yi − f∗(xi)|2 + pen(f∗).

tu
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Recall the Empirical Process Condition: with large

probability

2|(ε, f )n| ≤ 2λn‖f‖αnI1−α(f ).

The penalty should be such that it kills the empiri-

cal process.

Now, use that for positive a and b,

aαb1−α ≤ a2 + bγ.
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This implies

2λna
αb1−α ≤ a2 + (2λn)2−γbγ.

Theorem Take

pen(f ) := 2× (2λn)2−γIγ(f ),

where γ = g(α) is the conjugate of α. Then on the

set

S :=

{
sup
f∈F

|(ε, f )n|
‖f‖αnI1−α(f )

≤ λn

}
,

we have

‖f̂ − f0‖2n + pen(f̂ ) ≤ 3pen(f∗) + ‖f∗ − f0‖2n.
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If pen is the `γ penalty, then it is sparsity decom-

posable:

pen(f ) = pen(fin) + pen(fout), pen(f∗out) = 0,

and sub-linear:

pen(f + f̃ ) ≤ pen(f ) + pen(f̃ ).

If the the relaxed compatibility condition holds,

then on S, for φ2
∗ := ψ2

∗(1− ρ2
∗),

‖f̂−f0‖2n+pen(f̂−f∗) ≤ 16
N∗λ2

n

φ2∗
+3‖f∗−f0‖2n.
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Example: smooth functions.

I2(f ) :=

∫ 1

0
|f (s)(x)|2dx.

Then

γ =
2

2s + 1
, α = 1− 1

2s
.

and

λ
2−γ
n ∼ n−

2−γ
2 = n−

2s
2s+1.
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So we take

pen(f ) ∼ n−
2s

2s+1

(∫
|f (s)(x)|2dx

) 1
2s+1

.

We find

‖f̂ − f∗‖2n + pen(f̂ ) ≤ 3pen(f∗).

Standard penalty:

standardpen(f ) := λ2
∫
|f (s)(x)|2dx.

By data depend choice of λ

standardpen(f ) = pen(f ).
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Example: linear functions

Iγ(fβ) := ‖β‖γγ.

Then α = g(γ), and

λn ∼
√

log(p)/n.

So we take

pen(fβ) ∼
(

log(p)

n

)2−γ
2
‖β‖γγ.
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Special cases:

• γ = 1: pen(fβ) = ‖β‖1
√

log(p)/n.

• γ = 0: pen(fβ) = ‖β‖00log(p)/n.

For general γ, under the compatibility condition,

we get, taking f∗ = f0 (or the projection of f0

onto the space of linear functions {fβ : β ∈ Rp}),

‖f̂ − f0‖2n ∼
log(p)

n

N∗
φ2∗

‖β̂ − β0‖γγ ∼
(

log(p)

n

)γ
2 N∗
φ2∗
.

• γ = 1: ‖β̂ − β0‖1 ∼
√

log(p)
n

N∗
φ2∗

.

• γ = 0: ‖β̂ − β0‖00 ∼ N∗.
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Numerics. With γ = 0, the estimator is computa-

tionally infeasible. For 0 < γ < 1, one has

d

dβ
|β|γ = γ

1

|β|1−γ
.

Adaptive Lasso:

min

1

n

n∑
i=1

|Yi − fβ(xi)|2 + λ̃n

p∑
j=1

|βj|
|βinit
j |1−γ

 .
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Additive model

Let X = [0, 1]p with p large, and

F := {f (x1, . . . , xp) =

p∑
j=1

fj(xj) : fj ∈ F}.

Let

Iq(fj) :=

∫
|f (s)
j (z)|qdz, fj ∈ F0

Define the active set

A∗ = {j : ‖f∗j ‖n 6= 0},

and let N∗ = card(A∗).
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Empirical process

Let

S := {|(ε, f )n| ≤
p∑
j=1

|(ε, fj)n| ≤ λn

p∑
j=1

‖fj‖αnI1−α(fj) ∀ fj ∀ j},

where α = g(γ), and γ := 2/(2s + 1). Moreover,

let

λn ∼
√

log(p)/n.

The set S has large probability (under certain con-

ditions).
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To come up with an appropriate penalty, we again

use that

aαb1−α ≤ a2 + bγ.

This leads to the penalty

pen(f ) ∼ λ
2−γ
n

p∑
j=1

I(fj)
γ.
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Lemma 2 Suppose the strong compatibility condi-

tion
p∑
j=1

‖fj‖2n ≤ ‖
p∑
j=1

fj‖2n/φ2
∗.

Then on S,

‖f̂ − f )‖2n + pen(f̂ ) ≤ 3{pen(f∗) + ‖f∗ − f0‖2n}.
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We note that

pen(f∗) ∼ λ
2−γ
n

∑
j∈A∗

Iγ(f∗j )

∼ n−
2s

2s+1
∑
j∈A∗

Iγ(f∗j ) ≤ n−
2s

2s+1N∗/φ
2−γ
∗ ,

assuming that I(f∗j ) ≤ 1 for all j.
So we have an oracle inequality.
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Numerics.

The estimator is computationally intractable. For

example, with q = 2, we have

pen(f ) = λ
4s

2s+1
n

p∑
j=1

(∫
|f (s)
j (z)|2dz

) 1
2s+1

.



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Alternatively, we may use that

aαb1−α ≤ a + b.

Hence

λaαb1−α ≤ λ
2−γ

2 a + λ2−γb.

This leads to the penalty

pen(f ) ∼ λ
2−γ

2
n

p∑
j=1

‖fj‖n + λ
2−γ
n

p∑
j=1

I(fj).

Compatibility condition: For all f =
∑p
j=1 fj,∑

j∈A∗
‖fj‖2n ≤ ‖

p∑
j=1

fj‖2n/φ2
∗.
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Lemma 3 Assume the compatibility condition.

Then on S,

‖f̂−f0‖2n ∼ λ
2−γ
n

N∗
φ∗

+
∑
j∈A∗

I(f∗j )

+‖f∗−f0‖2n,

and

p∑
j=1

‖f̂j − f∗j ‖n ∼ λ
2−γ

2
n

N∗
φ∗

+
∑
j∈A∗

I(f∗j )


+λ−

2−γ
2 ‖f∗ − f0‖2n.
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Numerics. With q = 2, the penalty is

pen(f ) ∼

λ
2−γ

2
n

 p∑
j=1

‖fj‖n +

√
λ

2−γ
n

∫ 1

0
|f (s)
j (z)|2dz

 .

This is computationally similar to the group lasso

penalty, but the two terms are intertwined.
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It would be computationally easier to use

pen(f ) ∼

λ
2−γ

2
n

p∑
j=1

√
‖fj‖2n + λ

2−γ
n

∫ 1

0
|f (s)
j (z)|2dz.

However, so far the theory does not work for that

penalty.
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Uniting computational feasibility and oracle behavior

Let

pen(f ) :=

p∑
j=1

pen(fj),

with

pen(fj) := λ
2−γ

2

√
‖fj‖2n + λ2−γI2(fj)+λ

2−γI2(fj).
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Theorem Take 2
√

2λn ≤ λ ≤ 1. Suppose the com-

patibility condition is met. Then on the set S, it

holds that

‖f̂ − f0
add‖

2
n + λ

2−γ
2

p∑
j=1

‖f̂j − f∗j ‖n

≤ 3‖f∗ − f0
add‖

2
n + 4λ2−γ ∑

j∈A∗
[I2(f∗j ) +

3

φ2∗
],

where f0
add is the projection of f0 on the space of

additive functions.
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Remark One may take λ ∼
√

log p/n. When

I2(fj) :=
∫ (

f ′′j (x)dx
)2

, this gives λ2−γ of order

(log p/n)4/5, which is up to the log-term the usual

rate for estimating a twice differentiable function.

If the oracle f∗ has bounded smoothness I(f∗j ) for

all j, the rate is thus N∗(log p/n)4/5, with being the

number of active variables the oracle needs. This is,

again up to the log-term, the same rate one would

obtain if it was known beforehand which of the p
functions are relevant.
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Remark Let A0 = {j : ‖f0
add,j‖n 6= 0} be the

active set of f0
add. Assume the compatibility condi-

tion holds for A0, with constant φ0. Suppose also

that for j ∈ A0, I(f0
add,j) ≤ 1 (say) . The theorem

tells us that on S,

p∑
j=1

‖f̂j − f0
add,j‖n ≤ 16λ

2−γ
2 |A0|/φ2

0.

Hence, if

‖f0
add,j‖n > 16λ

2−γ
2 |A0|/φ2

0, j ∈ A0,

we have (on S), that the estimated active set {j :
‖f̂j‖n 6= 0} ⊃ A0.
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Simulation

We use the penalty

pen(fj) = λ1

√
‖fj‖2n + λ2I2(fj) + λ3I

2(fj).

The parameters λ1 and λ2 are selected by cross-

validation, and either λ3 := λ2 or λ3 := 0.
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For each function fj we use a cubic B-spline

parametrization with a reasonable amount of knots

or basis functions. A typical choice would be to use

K − 4 �
√
n interior knots that are placed at the

empirical quantiles of xj. Hence, we parametrize

fj(x) =

K∑
k=1

βj,kbj,k(x),

where bj,k : R → R are the B-spline basis func-

tions and βj ∈ RK are the corresponding parame-

ter vectors.
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True functions fj (solid) and estimated functions

f̂j (dashed) for the first 6 components of a simula-

tion run of Example 1. Small vertical bars indicate

original data and grey vertical lines knot positions.

The dotted lines are the function estimates when

no smoothness penalty is used, i.e. when setting

λ2 = 0.
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Example 1 (n = 150, p = 200, N0 = 4, SNR ≈
15)

This example is similar to example 1 in Wasserman

et al.(2008). The model is

Yi = f1(x1) + f2(x2) + f3(x3) + f4(x4) + εi,

with

f1(x) = − sin(2x), f2(x) = x2
2−25/12, f3(x) = x,

f4(x) = e−x − 2/5 · sinh(5/2).

The covariates are simulated from independent

Uniform(−2.5, 2.5) distributions.
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Example 2 (n = 100, p = 1000, N0 = 4, SNR ≈
6.7)

As above but high-dimensional and correlated. The

covariates are simulated according to a multivariate

normal distribution with covariance matrix Σij =

0.5|i−j|; i, j = 1, . . . , p.
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Example 3 (n = 100, p = 80, N0 = 4, SNR ≈ 7.9
This is similar to example 1 in Zhang (2006) but

with more predictors. The model is

Yi = 5f1(x(1))+3f2(x(2))+4f3(x(3))+6f4(x(4))+εi,

εi N(0, 1.74),
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with

f1(x) = x, f2(x) = (2x−1)2, f3(x) =
sin(2πx)

2− sin(2πx)

and

f4(x) = 0.1 sin(2πx) + 0.2 cos(2πx) + 0.3 sin2(2πx)

+0.4 cos3(2πx) + 0.5 sin3(2πx).

The covariates are simulated according to

x(j) =
W (j) + tU

1 + t
,

where W (1), . . . ,W (p) and U are i.i.d. Uniform(0,

1). The case t = 1 results in a design with correla-

tion 0.5 between all covariates.
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True functions fj (solid) and estimated functions f̂j
(dashed) for the first 6 components of a simulation

run of Example 3. The dotted lines are the function

estimates when no smoothness penalty is used, i.e.

when setting λ2 = 0.
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Moreover, we also consider a “high-frequency” sit-

uation where we use f3(8x) and f4(4x) instead of

f3(x) and f4(x). The corresponding signal-to-noise

ratios for these models are SNR ≈ 8.1.
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Example 4 (n = 100, p = 60, N0 = 12, SNR ≈
9 (t = 0), ≈ 11.25 )
This is similar to example 2 in Zhang (2006) but

with fewer observations. We use the same func-

tions as in example 3. The model is

Yi = f1(x(1)) + f2(x(2)) + f3(x(3)) + f4(x(4)) +

1.5f1(x(5)) + 1.5f2(x(6)) + 1.5f3(x(7)) + 1.5f4(x(8)) +

2f1(x(9)) + 2f2(x(10)) + 2f3(x(11)) + 2f4(x(12)) + εi,

with εi i.i.d. N(0, 0.5184). The covariates are sim-

ulated as in Example 3.
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Model TPSSP FPSSP TPboost FPboost

Example 1 4.00 (0.00) 24.24 (14.23) 4.00 (0.00) 22.54 (12.91)

Example 2 3.48 (0.61) 34.66 (17.10) 3.60 (0.63) 28.76 (20.15)

Example 3 3.93 (0.29) 19.25 (9.55) 3.92 (0.27) 18.69 (8.38)

Example 3 “high-freq” 2.80 (0.78) 12.26 (7.61) 2.16 (0.94) 9.23 (9.74)

Example 4 10.63 (1.15) 19.49 (7.27) 10.67 (1.25) 23.76 (9.89)
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Motif Regression In motif regression problems, the aim is to predict gene ex-

pression levels or binding intensities based on information on the DNA se-

quence. For our specific dataset, from the Ricci lab at ETH Zurich, we have

binding intensities Yi of a certain transcription factor (TF) at 287 regions on

the DNA. Moreover, for each region i, motif scores x
(1)
i , . . . , x

(p)
i , p = 196

are available. We used 5 fold cross-validation to determine the prediction op-

timal tuning parameters, yielding 28 active functions. To assess the stability

of the estimated model, we performed a nonparametric bootstrap analysis. The

two functions which appear most often in the bootstrapped model estimates are

depicted in the next figure.
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Indeed, Motif.P1.6.26 is the true (known) binding site. A follow-up exper-

iment showed that the TF does not direclty bind to Motif.P1.6.23. Hence,

this motif is a candidate for a binding site of a co-factor (another TF) and needs

further experimental validation.
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Estimated functions f̂j of the two most stable motifs. Small vertical bar indicate

original data.
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On the compatibility condition

Well-conditioned active set condition We say that

the active set A∗ is well conditioned if for some

constant 0 < ψ∗ ≤ 1, and for all {fj}j∈A∗,∑
j∈A∗

‖fj‖2n ≤ ‖
∑
j∈A∗

fj‖2n/ψ2
∗.
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Writing fj as linear function of base functions, with

coefficients βj,

fj = Bjβj,

with Bj the B-spline matrix of the jth predictor,

one sees that ψ2
∗ can be taken as the smallest eigen-

value of the matrix(
(BTj Bj)

−1/2(BTj Bk)(BTk Bk)−1/2
)
j,k∈A∗

.
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The inner product between functions f and f̃ is de-

noted by (f, f̃ )n:=
∑n
i=1 f (xi)f̃ (xi)/n.

No perfect canonical dependence condition We

say that the active and non-active variables have

no perfect canonical dependence, if for a constant

0 ≤ ρ∗ < 1, and all {fj}
p
j=1, we have for fin :=∑

j∈A∗ fj and fout :=
∑
j /∈A∗ fj, that

|(fin, fout)n|
‖fin‖n‖fout‖n

≤ ρ∗.
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Again, writing fj = Bjβj, one sees that ρ∗ can

be taken as the canonical correlation between the

linear space spanned by {Bj}j∈A∗ and the linear

space spanned by {Bj}j /∈A∗. Note that the condi-

tion ρ∗ < 1 allows for perfect linear dependencies

between non-active Bj.
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The next Lemma makes the link between the com-

patibility condition and the above two conditions.

Lemma Let f = fin + fout satisfy

|(fin, fout)n|
‖fin‖n‖fout‖n

≤ ρ∗ < 1.

Then

‖fin‖2n ≤ ‖f‖2n/(1− ρ2
∗).
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Corollary A well-conditioned active set in combi-

nation with no perfect canonical dependence, im-

plies the compatibility condition with φ2
∗ = ψ2

∗(1−
ρ2
∗).
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