Sparse estimation in high-dimensional models, II

Alexandre Tsybakov

Laboratoire de Statistique, CREST and Laboratoire de Probabilités et Modèles Aléatoires, Université Paris 6

Toulouse, June 17, 2008

イロト イポト イヨト イヨト

Model, dictionary, linear approximation Sparsity and dimension reduction

Nonparametric regression model

Assume that we observe the pairs $(X_1, Y_1), \ldots, (X_n, Y_n) \in \mathbb{R}^d \times \mathbb{R}$ where

$$Y_i = f(X_i) + \xi_i, \quad i = 1, ..., n.$$

- Regression function $f : \mathbb{R}^d \to \mathbb{R}$ is unknown
- Errors ξ_i are independent Gaussian $\mathcal{N}(0, \sigma^2)$ random variables.
- $X_i \in \mathbb{R}^d$ are arbitrary fixed (non-random) points.

We want to estimate f based on the data $(X_1, Y_1), \ldots, (X_n, Y_n)$.

Model, dictionary, linear approximation Sparsity and dimension reduction

Dictionary, linear approximation

Let f_1, \ldots, f_M be a finite **dictionary of functions**, $f_j : \mathbb{R}^d \to \mathbb{R}$. We approximate the regression function f by linear combination

$$f_{\lambda}(x) = \sum_{j=1}^{M} \lambda_j f_j(x)$$
 with weights $\lambda = (\lambda_1, \dots, \lambda_M)$

We believe that

$$f(x) \approx \sum_{j=1}^{M} \lambda_j f_j(x)$$

for some $\lambda = (\lambda_1, \ldots, \lambda_M)$.

Model, dictionary, linear approximation Sparsity and dimension reduction

Dictionary, linear approximation

Let f_1, \ldots, f_M be a finite **dictionary of functions**, $f_j : \mathbb{R}^d \to \mathbb{R}$. We approximate the regression function f by linear combination

$$f_{\lambda}(x) = \sum_{j=1}^{M} \lambda_j f_j(x)$$
 with weights $\lambda = (\lambda_1, \dots, \lambda_M)$

We believe that

$$f(x) \approx \sum_{j=1}^{M} \lambda_j f_j(x)$$

for some $\lambda = (\lambda_1, \ldots, \lambda_M)$.

Possibly	$M \gg n$
----------	-----------

ロト イポト イヨト イヨト

Model, dictionary, linear approximation Sparsity and dimension reduction

Scenarios

(LinReg) Exact equality: there exists $\lambda^* \in \mathbb{R}^M$ such that $f = f_{\lambda^*} = \sum_{j=1}^M \lambda_j^* f_j$ (linear regression, with possibly $M \gg n$ parameters);

・ロン ・回と ・ヨン・

Model, dictionary, linear approximation Sparsity and dimension reduction

Scenarios

(LinReg) Exact equality: there exists $\lambda^* \in \mathbb{R}^M$ such that $f = f_{\lambda^*} = \sum_{j=1}^M \lambda_j^* f_j$ (linear regression, with possibly $M \gg n$ parameters); (NPReg) f_1, \ldots, f_M are the first M functions of a basis (usually orthonormal) and $M \leq n$, there exists λ^* such that $f - f_{\lambda^*}$ is small: nonparametric estimation of regression;

イロト イポト イヨト イヨト

Model, dictionary, linear approximation Sparsity and dimension reduction

Scenarios

- (LinReg) Exact equality: there exists $\lambda^* \in \mathbb{R}^M$ such that $f = f_{\lambda^*} = \sum_{j=1}^M \lambda_j^* f_j$ (linear regression, with possibly $M \gg n$ parameters); (NPReg) f_1, \ldots, f_M are the first M functions of a basis (usually orthonormal) and $M \leq n$, there exists λ^* such that $f - f_{\lambda^*}$ is small: nonparametric estimation of regression; (Agg) aggregation of arbitrary estimators: in this case f_1, \ldots, f_M
 - are preliminary estimators of f based on a training sample independent of the observations $(X_1, Y_1), \ldots, (X_n, Y_n)$;

Model, dictionary, linear approximation Sparsity and dimension reduction

Scenarios

- (LinReg) Exact equality: there exists λ* ∈ ℝ^M such that f = f_{λ*} = ∑_{j=1}^M λ_j*f_j (linear regression, with possibly M ≫ n parameters);
 (NPReg) f₁,..., f_M are the first M functions of a basis (usually orthonormal) and M ≤ n, there exists λ* such that f - f_{λ*} is small: nonparametric estimation of regression;
 (Agg) aggregation of arbitrary estimators: in this case f₁,..., f_M are preliminary estimators of f based on a training sample
 - independent of the observations $(X_1, Y_1), \ldots, (X_n, Y_n);$
 - (Weak) **learning**: f_1, \ldots, f_M are "weak learners", i.e., some rough approximations to f; M is extremely large.

Model, dictionary, linear approximation Sparsity and dimension reduction

Sparsity of a vector

The number of non-zero coordinates of λ :

$$M(\lambda) = \sum_{j=1}^M \mathbb{I}_{\{\lambda_j
eq 0\}}$$

The value $M(\lambda)$ characterizes the **sparsity** of vector $\lambda \in \mathbb{R}^M$: the smaller $M(\lambda)$, the "sparser" λ .

Model, dictionary, linear approximation Sparsity and dimension reduction

Sparsity of the model

Intuitive formulation of sparsity assumption:

$$f(x) \approx \sum_{j=1}^{M} \lambda_j f_j(x)$$
 ("f is well approximated by f_{λ} ")

where the vector $\lambda = (\lambda_1, \ldots, \lambda_M)$ is sparse:

 $M(\lambda) \ll M.$

Model, dictionary, linear approximation Sparsity and dimension reduction

Strong sparsity

Strong sparsity:

f admits an exact sparse representation

 $f = f_{\lambda^*}$

for some $\lambda^* \in \mathbb{R}^M$, with

 $M(\lambda^*) \ll M$

$$\Rightarrow$$
 Scenario (LinReg)

・回 ・ ・ ヨ ・ ・ ヨ ・

Model, dictionary, linear approximation Sparsity and dimension reduction

Sparsity and dimension reduction

The empirical norm:

$$\|f\|_n = \sqrt{\frac{1}{n}\sum_{i=1}^n f^2(X_i)}.$$

・ロン ・回と ・ヨン・

Model, dictionary, linear approximation Sparsity and dimension reduction

Sparsity and dimension reduction

The empirical norm:

$$||f||_n = \sqrt{\frac{1}{n}\sum_{i=1}^n f^2(X_i)}.$$

Let $\widehat{\lambda}_{OLS}$ be the ordinary least squares (OLS) estimator. Elementary result:

$$\mathbb{E} \|\mathbf{f}_{\widehat{\lambda}_{\mathsf{OLS}}} - f\|_n^2 \le \|f - \mathbf{f}_{\lambda}\|_n^2 + \frac{\sigma^2 M}{n}$$

for any $\lambda \in \mathbb{R}^M$.

(日) (同) (E) (E) (E)

Model, dictionary, linear approximation Sparsity and dimension reduction

Sparsity and dimension reduction

For any $\lambda \in \mathbb{R}^M$ the "oracular" OLS that acts only on the relevant $M(\lambda)$ coordinates satisfies

$$\mathbb{E}\|\mathsf{f}_{\widehat{\lambda}_{\mathsf{OLS}}}^{\mathsf{oracle}} - f\|_n^2 \leq \|f - \mathsf{f}_\lambda\|_n^2 + \frac{\sigma^2 M(\lambda)}{n}.$$

This is only an OLS oracle, not an estimator! The set of relevant coordinates should be known.

소리가 소문가 소문가 소문가

Implications of SOI

Sparsity oracle inequalities

Do there exist estimators with similar behavior? Choose some other data-driven weights $\widehat{\lambda} = (\widehat{\lambda}_1, \dots, \widehat{\lambda}_M)$ and estimate f by

$$\widehat{f}(x) = f_{\widehat{\lambda}}(x) = \sum_{j=1}^{M} \widehat{\lambda}_j f_j(x).$$

Can we find $\widehat{\lambda}$ such that

$$\mathbb{E}\|\mathsf{f}_{\widehat{\lambda}}-f\|_n^2 \lesssim \|f-\mathsf{f}_{\lambda}\|_n^2 + \frac{\sigma^2 M(\lambda)}{n}, \quad \forall \lambda ?$$

イロン イヨン イヨン イヨン

Implications of SOI

Sparsity oracle inequalities (SOI)

Realizable task: look for an estimator $f_{\widehat{\lambda}}$ satisfying a sparsity oracle inequality (SOI)

$$\mathbb{E}\|\mathsf{f}_{\widehat{\lambda}}-f\|_n^2 \leq \inf_{\lambda \in \mathbb{R}^M} \left\{ C\|f-\mathsf{f}_{\lambda}\|_n^2 + C'\frac{M(\lambda)\log M}{n} \right\}$$

with some constants $C \ge 1$, C' > 0 and an inevitable extra log M in the variance term. $C = 1 \Rightarrow$ sharp SOI.

・ロン ・回 と ・ヨン ・ヨン

Implications of SOI

Sparsity oracle inequalities (SOI)

Realizable task: look for an estimator $f_{\widehat{\lambda}}$ satisfying a sparsity oracle inequality (SOI)

$$\mathbb{E}\|\mathsf{f}_{\widehat{\lambda}}-f\|_n^2 \leq \inf_{\lambda \in \mathbb{R}^M} \left\{ C\|f-\mathsf{f}_{\lambda}\|_n^2 + C'\frac{M(\lambda)\log M}{n} \right\}$$

with some constants $C \ge 1$, C' > 0 and an inevitable extra log M in the variance term. $C = 1 \Rightarrow$ **sharp SOI**. "In probability" form of sparsity oracle inequalities:

with probability close to 1,

$$\|f_{\widehat{\lambda}} - f\|_n^2 \leq \inf_{\lambda \in \mathbb{R}^M} \left\{ C \|f - f_{\lambda}\|_n^2 + C' \frac{M(\lambda) \log M}{n} \right\}$$

イロト イポト イヨト イヨト

Implications of SOI

Implications of SOI: Scenario (LinReg)

Assume that we have found an estimator $f_{\widehat{\lambda}}$ satisfying SOI. Some consequences for different scenarios:

(LinReg) linear regression: $f = f_{\lambda^*}$ for some λ^* . Using SOI:

$$\mathbb{E} \| \mathbf{f}_{\widehat{\lambda}} - f \|_n^2 \leq C \left\{ \| f - \mathbf{f}_{\lambda^*} \|_n^2 + \frac{M(\lambda^*) \log M}{n} \right\}$$
$$= \frac{CM(\lambda^*) \log M}{n}$$

(the desired result for Scenario (LinReg)).

Implications of SOI: Scenario (NPReg)

(NPReg) **nonparametric regression**. If *f* belongs to standard smoothness classes of functions, $\min_{\lambda \in \Lambda_m} ||f - f_\lambda||_n \le Cm^{-\beta}$ for some $\beta > 0$ (Λ_m = the set of vectors with only first *m* non-zero coefficients, $m \le M$). Using SOI:

$$\mathbb{E} \| \mathbf{f}_{\widehat{\lambda}} - f \|_{n}^{2} \leq C \inf_{m \geq 1} \left\{ \min_{\lambda \in \Lambda_{m}} \| f - \mathbf{f}_{\lambda} \|_{n}^{2} + \frac{m \log M}{n} \right\}$$

$$\leq C \inf_{m \geq 1} \left\{ \frac{1}{m^{2\beta}} + \frac{m \log M}{n} \right\}$$

$$= O\left(\left(\left(\frac{\log n}{n} \right)^{2\beta/(2\beta+1)} \right) \quad \text{for } M \leq n$$

(optimal rate of convergence, up to logs, in Scenario (NPReg)).

Implications of SOI: Scenario (Agg)

(Agg) **aggregation of arbitrary estimators**: in this case f_1, \ldots, f_M are preliminary estimators of f based on a pilot (training) sample independent of the observations $(X_1, Y_1), \ldots, (X_n, Y_n)$. The training sample is considered as frozen. Assume that SOI holds with leading constant 1. Then:

$$\mathbb{E} \| \mathbf{f}_{\widehat{\lambda}} - f \|_{n}^{2} \leq \inf_{\lambda \in \mathbb{R}^{M}} \left\{ \| f - \mathbf{f}_{\lambda} \|_{n}^{2} + \frac{CM(\lambda) \log M}{n} \right\}$$
$$\leq \min_{1 \leq j \leq M} \| f - f_{j} \|_{n}^{2} + \frac{C \log M}{n}$$

 \implies f_{$\hat{\lambda}$} attains optimal rate of Model Selection type aggregation $\frac{\log M}{n}$ (T., 2003).

イロト イポト イヨト イヨト

Implications of SOI: Scenario (Agg)

Similar conclusion holds for Convex aggregation. We restrict λ to the simplex

$$\Lambda^M = \{\lambda \in \mathbb{R}^M : \lambda_j \ge 0, \sum_{j=1}^M \lambda_j = 1\}.$$

From SOI with leading constant 1 + "Maurey argument":

$$\mathbb{E} \| \mathbf{f}_{\widehat{\lambda}} - f \|_{n}^{2} \leq \inf_{\lambda \in \mathbb{R}^{M}} \left\{ \| f - \mathbf{f}_{\lambda} \|_{n}^{2} + \frac{CM(\lambda) \log M}{n} \right\}$$
$$\leq \inf_{\lambda \in \Lambda^{M}} \| f - \mathbf{f}_{\lambda} \|_{n}^{2} + C' \sqrt{\frac{\log M}{n}}.$$

 \implies $f_{\widehat{\lambda}}$ attains optimal rate of Convex aggregation $\sqrt{\frac{\log M}{n}}$ [Nemirovski (2000), Juditsky and Nemirovski (2000)].

(4回) (1日) (日)

Implications of SOI

Sparsity oracle inequalities

Conclusion: all these nice properties are simultaneously satisfied for one and the same procedure, whenever it obeys a SOI.

Ultimate target:

- no assumptions on the dictionary f_1, \ldots, f_M
- SOI with leading constant 1
- computational feasibility

- 4 同 2 4 日 2 4 日 2

Definition of the BIC method

First idea: penalize least squares directly by $M(\lambda)$ (BIC criterion, Schwarz (1978), Foster and George (1994)).

$$\widehat{\lambda}^{BIC} = \arg\min_{\lambda \in \mathbb{R}^M} \left\{ \|\mathbf{y} - \mathbf{f}_{\lambda}\|_n^2 + \gamma \, \frac{M(\lambda) \log M}{n} \right\},\,$$

where $\gamma > 0$ and

$$\|\mathbf{y}-\mathbf{f}_{\lambda}\|_{n}^{2} \triangleq \frac{1}{n}\sum_{i=1}^{n}\left(Y_{i}-\mathbf{f}_{\lambda}(X_{i})\right)^{2}, \quad \mathbf{y}=(Y_{1},\ldots,Y_{n}).$$

・ロト ・回ト ・ヨト ・ヨト

Definition of the BIC method

First idea: penalize least squares directly by $M(\lambda)$ (BIC criterion, Schwarz (1978), Foster and George (1994)).

$$\widehat{\lambda}^{\textit{BIC}} = \arg\min_{\lambda \in \mathbb{R}^{M}} \left\{ \|\mathbf{y} - \mathbf{f}_{\lambda}\|_{n}^{2} + \gamma \, \frac{M(\lambda) \log M}{n} \right\},\$$

where $\gamma > 0$ and

$$\|\mathbf{y} - \mathbf{f}_{\lambda}\|_{n}^{2} \triangleq \frac{1}{n} \sum_{i=1}^{n} \left(Y_{i} - \mathbf{f}_{\lambda}(X_{i})\right)^{2}, \quad \mathbf{y} = (Y_{1}, \dots, Y_{n}).$$

Remarks:

- If the matrix $X = (f_j(X_i))_{i,j}$ has orthnormal columns, BIC is equivalent to hard thresholding of the components of $X^T \mathbf{y}/n$ at the level $\sqrt{\gamma(\log M)/n}$.
- In general: non-convex, discontinuous minimization problem!

Sparsity oracle inequality for BIC

Theorem. [Bunea/ T/ Wegkamp (2004)]: if $\gamma > K_0\sigma^2$ for an absolute constant K_0 , and with no assumption on the dictionary f_1, \ldots, f_M , the BIC estimator satisfies, with probability close to 1,

$$\|f_{\widehat{\lambda}^{B/C}}-f\|_n^2 \leq (1+\varepsilon)\inf_{\lambda\in\mathbb{R}^M}\left\{\|f-f_\lambda\|_n^2+C(\varepsilon)\frac{M(\lambda)\log M}{n}\right\}, \ \forall \varepsilon>0.$$

・ロン ・回と ・ヨン・

Sparsity oracle inequality for BIC

Theorem. [Bunea/ T/ Wegkamp (2004)]: if $\gamma > K_0\sigma^2$ for an absolute constant K_0 , and with no assumption on the dictionary f_1, \ldots, f_M , the BIC estimator satisfies, with probability close to 1,

$$\|f_{\widehat{\lambda}^{B/C}}-f\|_n^2 \leq (1+\varepsilon)\inf_{\lambda\in\mathbb{R}^M}\left\{\|f-f_\lambda\|_n^2+C(\varepsilon)\frac{M(\lambda)\log M}{n}\right\}, \ \forall \varepsilon>0.$$

Remarks:

- the BIC is realizable only for small M (say, $M \leq 20$),
- the leading constant is **not** 1.

LASSO

Second popular idea: LASSO [Frank and Friedman (1993, "Bridge" regression), name: Tibshirani (1996), Chen and Donoho (1998, basis pursuit), etc.]: instead of penalizing the residual sum of squares by $M(\lambda)$, as in the BIC, penalize by the ℓ_1 norm of λ :

$$\widehat{\lambda}^{L} = \arg\min_{\lambda \in \mathbb{R}^{M}} \left\{ \|\mathbf{y} - \mathbf{f}_{\lambda}\|_{n}^{2} + 2r|\lambda|_{1} \right\},\$$

where $|\lambda|_1 = \sum_{j=1}^M |\lambda_j|$, r > 0 a tuning constant. A sensible choice:

$$r = A \sqrt{\frac{\log M}{n}}$$
 for $A > 0$ large enough.

If the matrix X = (f_j(X_i))_{i,j} has orthonormal columns, LASSO is equivalent to soft thresholding of the components of X^Ty/n at the level r.

Relaxed positive definiteness

For a vector $\mathbf{\Delta} = (a_j)_{j=1,...,M}$ and a subset of indices $J \subseteq \{1,\ldots,M\}$ write

$$\mathbf{\Delta}_J = (a_j \mathbf{1}\{a_j \in J\})_{j=1,\dots,M}.$$

The Gram matrix:

$$\Psi_M = \left(\langle f_j, f_{j'} \rangle_n \right)_{1 \le j, j' \le M}.$$

Assumption $RE(s, c_0)$. (Bickel/Ritov/T, 2007)

For an integer $1 \le s \le M$ and $c_0 > 0$ there exists $\kappa = \kappa(s, c_0)$:

$$\mathbf{\Delta}^{\mathsf{T}} \Psi_{\mathsf{M}} \mathbf{\Delta} \geq \kappa |\mathbf{\Delta}_{\mathsf{J}}|_2^2$$

for all $J \subseteq \{1, \ldots, M\}$ such that $|J| \leq s$ and $|\mathbf{\Delta}_{J^c}|_1 \leq c_0 |\mathbf{\Delta}_J|_1$.

Sparsity oracle inequality for BIC LASSO Relaxed positive definiteness Sparsity oracle inequality for the LASSO

More specific assumptions

Assumption RE is more general than other assumptions on the Gram matrix in the LASSO/Dantzig literature:

- "Uniform uncertainty principle" (Candes/Tao),
- Mutual coherence assumption (Bunea/T/Wegkamp),
- Incoherent design assumption (Meinshausen/Yu, Zhang/Huang).

Most of the LASSO/Dantzig papers focus on the linear regression scenario (LinReg).

Sparsity oracle inequality for the LASSO

Theorem [Bickel, Ritov and T., 2007]

Let $||f_j||_n = 1, j = 1, ..., M$. Fix some $\varepsilon > 0$. Let Assumption $RE(s, c_0)$ be satisfied with $c_0 = 3 + 4/\varepsilon$. Consider the LASSO estimator $f_{\widehat{\lambda}L}$ with the tuning constant

$$r = A\sigma \sqrt{\frac{\log M}{n}}$$

for some $A > 2\sqrt{2}$. Then, for all $M \ge 3$, $n \ge 1$ with probability at least $1 - M^{1-A^2/8}$ we have: $\forall \lambda \in \mathbb{R}^M$: $M(\lambda) = s$,

$$\|\mathbf{f}_{\widehat{\lambda}^{L}} - f\|_{n}^{2} \leq (1 + \varepsilon) \|\mathbf{f}_{\lambda} - f\|_{n}^{2} + C(\varepsilon) \left(\frac{M(\lambda) \log M}{\kappa}\right)$$

.

Disadvantages of the LASSO:

- SOI for the LASSO holds under very restrictive assumptions on the dictionary involving κ. Moreover, the assumptions depend on the (unknown) number s of non-zero components of the oracle vector, or eventually on the upper bound on this number. Such assumptions are unavoidable: Candes and Plan (2008).
- Bad behavior when κ is small.
- The leading constant in SOI is **not** 1.

Same problems with the Dantzig selector: the properties of Dantzig selector are essentially the same as for LASSO, cf. Bickel, Ritov and T. (2007).

	A PAC-Bayesian bound
Introduction	Sparsity prior
Sparsity oracle inequalities(SOI)	SOI for the SEW estimator
BIC and LASSO	PAC-Bayesian bound for mirror averaging
Sparse exponential weighting (SEW)	SOI for Mirror Averaging
	Computation of SEW estimators

Sparse exponential weighting

Choose $\widehat{\lambda}^{EW}$ according to:

$$\widehat{\lambda}_{j}^{EW} = \int_{\mathbb{R}^{M}} \lambda_{j} S_{n}(d\lambda), \quad j = 1, \dots, M,$$

where the probability measure S_n is given by

$$S_n(d\lambda) = \frac{\exp\left\{-n\|\mathbf{y} - f_\lambda\|_n^2/\beta\right\}\pi(d\lambda)}{\int_{\mathbb{R}^M} \exp\left\{-n\|\mathbf{y} - f_w\|_n^2/\beta\right\}\pi(dw)}$$

with some $\beta > 0$ and some prior measure π .

- Bayesian estimator if $\beta = 2\sigma^2$, but we need a larger β .
- Non-discrete π : is the fast computation possible?

A PAC-Bayesian bound

Sparsity prior SOI for the SEW estimator PAC-Bayesian bound for mirror averaging SOI for Mirror Averaging Computation of SEW estimators

A PAC-Bayesian bound

Lemma [Dalalyan and T., 2007]

The estimator with exponential weights $f_{\widehat{\lambda}^{EW}}$ defined with $\beta \ge 4\sigma^2$ and any prior π satisfies:

$$\mathbb{E}\|\mathsf{f}_{\widehat{\lambda}^{EW}}-f\|_n^2 \leq \inf_P \left\{ \int \|\mathsf{f}_{\lambda}-f\|_n^2 P(d\lambda) + \frac{\beta \mathcal{K}(P,\pi)}{n} \right\}$$

where the infimum is taken over all probability measures P on \mathbb{R}^M and $\mathcal{K}(P,\pi)$ denotes the Kullback-Leibler divergence between Pand π .

イロン イヨン イヨン イヨン

A PAC-Bayesian bound Sparsity oracle inequalities(SOI) BIC and LASSO Sparse exponential weighting (SEW) A PAC-Bayesian bound SOI for the SEW estimator PAC-Bayesian bound SOI for the SEW estimators

Sparsity prior

Choose a specific prior measure π with Lebesgue density q defined by

$$q(\lambda) = \prod_{j=1}^M au^{-1} q_0 ig(\lambda_j / auig), \; orall \lambda \in \mathbb{R}^M,$$

where q_0 is the Student t_3 density,

$$q_0(t) \sim |t|^{-4}, ext{ for large } |t|$$

and $\tau \sim (Mn)^{-1/2}$. We will call this prior the **sparsity prior**. The resulting estimator $f_{\hat{\lambda}^{EW}}$ is called the **Sparse Exponential** Weighting (SEW) estimator.

・ロン ・回 と ・ ヨ と ・ ヨ と

Introduction Sparsity oracle inequalities(SOI) BIC and LASSO Sparse exponential weighting (SEW) Sol for Mirror Averaging SOI for Mirror Averaging Computation of SEW estimators

SOI for the SEW estimator

Theorem [Dalalyan and T., 2007]

Let $\max_{1 \le j \le M} \|f_j\|_n \le c_0 < \infty$. Then the exponential weighted estimator $f_{\widehat{\lambda}^{EW}}$ defined with $\beta \ge 4\sigma^2$ and with the sparsity prior π satisfies:

$$\mathbb{E}\|f_{\widehat{\lambda}^{EW}} - f\|_n^2 \leq \inf_{\lambda \in \mathbb{R}^M} \left\{ \|f_\lambda - f\|_n^2 + \frac{CM(\lambda)}{n} \log\left(1 + \frac{|\lambda|_1\sqrt{Mn}}{M(\lambda)}\right) \right\}$$

where $|\lambda|_1$ is the ℓ_1 -norm of λ .

- No assumption on the dictionary.
- Leading constant 1.
- ℓ_1 -norm of λ , but under the log.
- Fast computation for at least $M \sim 10^3$.

A PAC-Bayesian bound Sparsity oracle inequalities(SOI) BIC and LASSO Sparse exponential weighting (SEW) SOI for Mirror Averaging Computation of SEW estimators

SEW estimator: discussion

$$\widehat{\lambda}_{j}^{EW} = \int_{\mathbb{R}^{M}} \lambda_{j} S_{n}(d\lambda) = \int_{\mathbb{R}^{M}} \lambda_{j} \theta_{n}(\lambda) d\lambda, \quad j = 1, \dots, M,$$

with posterior density $\theta_n(\lambda) = S_n(d\lambda)/d\lambda$:

$$\begin{array}{ll} \theta_n(\lambda) &\asymp & \exp\left\{-n\|\mathbf{y}-\mathbf{f}_\lambda\|_n^2/\beta + \log q(\lambda)\right\} \\ &\asymp & \exp\left\{-n\|\mathbf{y}-\mathbf{f}_\lambda\|_n^2/\beta - C\sum_{j=1}^M \log(1+|\lambda_j|/\tau)\right\} \end{array}$$

Maximizer of this density (the MAP estimator):

$$\widehat{\lambda} = \arg\min_{\lambda \in \mathbb{R}^M} \Big\{ \|\mathbf{y} - \mathbf{f}_{\lambda}\|_n^2 + \frac{\gamma}{n} \sum_{j=1}^M \log(1 + |\lambda_j|/\tau) \Big\}.$$

Introduction Sparsity oracle inequalities(SOI) BIC and LASSO Sparse exponential weighting (SEW) Sparse exponential weighting (SEW)

Exponential weights: models with i.i.d. data

- An i.i.d. sample Z_1, \ldots, Z_n from the distribution of an abstract random variable $Z \in \mathcal{Z}$.
- $Q(Z, f_{\lambda})$ a given real-valued loss (prediction loss).

Define the probability measure S_n on \mathbb{R}^M by

$$S_n(d\lambda) = \frac{\exp\left\{-\sum_{i=1}^n Q(Z_i, f_\lambda)/\beta\right\} \pi(d\lambda)}{\int_{\mathbb{R}^M} \exp\left\{-\sum_{i=1}^n Q(Z_i, f_w)/\beta\right\} \pi(dw)}$$

with some $\beta > 0$ and some prior measure π . Generalization of the previous definition: we replace

$$\|\mathbf{y}-\mathbf{f}_{\lambda}\|_{n}^{2} \quad \rightsquigarrow \quad \sum_{i=1}^{n} Q(Z_{i},\mathbf{f}_{\lambda}).$$

Introduction Sparsity oracle inequalities(SOI) BIC and LASSO Sparse exponential weighting (SEW) A PAC-Bayesian bound SOI for the SEW estimator PAC-Bayesian bound for mirror averaging Computation of SEW estimators

Mirror averaging

Cumulative exponential weights (mirror averaging):

$$\widehat{\lambda}_{j}^{MA} = \int_{\mathbb{R}^{M}} \lambda_{j} S(d\lambda), \quad j = 1, \dots, M, \text{ with } S = \frac{1}{n} \sum_{i=1}^{n} S_{i}$$

cf. Juditsky/Rigollet/T (2005) [even more general method: Juditsky/Nazin/T/Vayatis (2005)]. In a particular case we get the "progressive mixture method" of Catoni and Yang. Choose a prior measure π supported on a convex compact $\Lambda \subset \mathbb{R}^M$ (e.g., on an ℓ_1 ball).

・ロン ・回 と ・ ヨ と ・ ヨ と

	A PAC-Bayesian bound
Introduction	Sparsity prior
Sparsity oracle inequalities(SOI)	SOI for the SEW estimator
BIC and LASSO	PAC-Bayesian bound for mirror averaging
Sparse exponential weighting (SEW)	SOI for Mirror Averaging
	Computation of SEW estimators

Assumption JRT (2005).

The mapping $\lambda \mapsto Q(Z, f_{\lambda})$ is convex for all Z and there exists $\beta > 0$ such that the function

$$\lambda \mapsto \mathbb{E} \exp\left(\frac{Q(Z, \mathsf{f}_{\lambda'}) - Q(Z, \mathsf{f}_{\lambda})}{\beta}\right)$$

is concave on a convex compact set $\Lambda \subset \mathbb{R}^M$ for all $\lambda' \in \Lambda$.

- 4 同 ト 4 ヨ ト 4 ヨ ト

Introduction Sparsity oracle inequalities(SOI) BIC and LASSO Sparse exponential weighting (SEW) Sol for Mirror Averaging SOI for Mirror Averaging SOI for Mirror Averaging SOI for Mirror Averaging

PAC-Bayesian bound for mirror averaging

Define the average risk: $A(\lambda) = \mathbb{E}Q(Z, f_{\lambda})$.

Lemma (PAC-Bayesian bound).

Let $f_{\widehat{\lambda}^{MA}}$ be a mirror averaging estimator defined with β satisfying Assumption JRT and any prior π supported on a convex compact set Λ . Then

$$\mathbb{E} A(\widehat{\lambda}^{MA}) \leq \inf_{P} \left\{ \int A(\lambda) P(d\lambda) + \frac{\beta \mathcal{K}(P, \pi)}{n+1} \right\}$$

where the infimum is taken over all probability measures P on Λ and $\mathcal{K}(P,\pi)$ is the Kullback-Leibler divergence between P and π .

Proof follows the scheme of Juditsky, Rigollet and T. (2005), cf. Rigollet and Zhao (2006), Audibert (2006), Lounici (2007).

	A PAC-Bayesian bound
Introduction	Sparsity prior
Sparsity oracle inequalities(SOI)	SOI for the SEW estimator
BIC and LASSO	PAC-Bayesian bound for mirror averaging
Sparse exponential weighting (SEW)	SOI for Mirror Averaging
	Computation of SEW estimators

SOI for Mirror Averaging

Theorem [Dalalyan, Rigollet and T., 2007]

Assume that $\sup_{|\lambda|_1 \leq 2R} \operatorname{Spec} \{\nabla^2 A(\lambda)\} < \infty$ for some R > 0. Let $f_{\widehat{\lambda}^{MA}}$ be a mirror averaging estimator satisfying assumptions of the PAC lemma, with the **sparsity prior** π truncated to $\{\lambda : |\lambda|_1 \leq 2R\}$ and $\tau \sim 1/\sqrt{M(n \vee M)}$. Then

$$\mathbb{E} A(\widehat{\lambda}^{MA}) \leq \inf_{|\lambda|_1 \leq R} \left\{ A(\lambda) + \frac{CR^2 M(\lambda)}{n} \log \left(\frac{C'R\sqrt{M(n \vee M)}}{M(\lambda)} \right) \right\}.$$

- No restrictive assumption on the dictionary.
- Leading constant 1.

Introduction Sparsity oracle inequalities(SOI) BIC and LASSO Sparse exponential weighting (SEW) Sol for the SEW estimator PAC-Bayesian bound PAC-Bayesian bound for mirror averaging SOI for Mirror Averaging Computation of SEW estimators

Comparison with SOI for the LASSO

The LASSO type estimators

$$\widehat{\lambda} = \arg\min_{\lambda \in \mathbb{R}^M} \left\{ \frac{1}{n} \sum_{i=1}^n Q(Z_i, f_\lambda) + r \sum_{j=1}^M |\lambda_j|^p \right\}, \quad 1 \le p \le 1 + \frac{1}{\log M},$$

van de Geer (2006) [p=1, $\Psi_M > 0$] and Koltchinskii (2007):

$$\mathbb{E} A(\widehat{\lambda}) \leq \inf_{|\lambda|_1 \leq R} \left(\boxed{\exists} A(\lambda) + \frac{CR^2 M(\lambda) \log M}{\left[\kappa(\lambda)\right] n} \right)$$

where $\kappa(\lambda)$ is a quantity analogous to κ in Assumption RE. To get the correct rate, we need to consider only λ such that $\kappa(\lambda) \ge c$, which is equivalent to RE. A PAC-Bayesian bound Sparsity oracle inequalities(SOI) BIC and LASSO Sparse exponential weighting (SEW) SOI for Mirror Averaging Computation of SEW estimators

Example: Gaussian regression, squared loss

• Gaussian regression with random design : $Z = (X, Y), \quad X \in \mathbb{R}^d, \quad Y \in \mathbb{R}$ such that

 $Y=f(X)+\xi,$

 $\xi | X \sim \mathcal{N}(0, \sigma^2), \ X \sim P_X, \ \|f\|_{\infty} \leq L.$

Introduction Sparsity oracle inequalities(SOI) BIC and LASSO Sparse exponential weighting (SEW) Sparse exponential weighting (SEW)

Example: Gaussian regression, squared loss

• Gaussian regression with random design : $Z = (X, Y), \quad X \in \mathbb{R}^d, \quad Y \in \mathbb{R}$ such that

 $Y=f(X)+\xi,$

 $\xi | X \sim \mathcal{N}(0, \sigma^2), \ X \sim P_X, \ \|f\|_{\infty} \leq L.$

• Assumption on the dictionary: $||f_j||_{\infty} \leq L, \ j = 1, \dots, M.$

Introduction Sparsity oracle inequalities(SOI) BIC and LASSO Sparse exponential weighting (SEW) Sparse exponential weighting (SEW)

Example: Gaussian regression, squared loss

• Gaussian regression with random design : $Z = (X, Y), \quad X \in \mathbb{R}^d, \quad Y \in \mathbb{R}$ such that

$$Y=f(X)+\xi,$$

$$\xi | X \sim \mathcal{N}(0, \sigma^2), \ X \sim P_X, \ \|f\|_{\infty} \leq L.$$

- Assumption on the dictionary: $||f_j||_{\infty} \leq L, \ j = 1, \dots, M.$
- The loss function $Q(Z, f_{\lambda}) = (Y f_{\lambda}(X))^2$ where $f_{\lambda} = \sum_{j=1}^{M} \lambda_j f_j$.
- Then $A(\lambda) = \mathbb{E} Q(Z, f_{\lambda}) = \|f_{\lambda} f\|_X^2 + \sigma^2, \|f\|_X^2 \triangleq \int f^2 dP_X.$

イロト イポト イヨト イヨト

 Introduction
 Sparsity oracle inequalities(SOI)

 Sparsity oracle inequalities(SOI)
 SOI for the SEW estimator

 BIC and LASSO
 PAC-Bayesian bound

 Sparse exponential weighting (SEW)
 SOI for Mirror Averaging

 Computation of SEW estimators

SOI for regression with squared loss

Corollary

Under the conditions of this example, for all $\beta \ge 2\sigma^2 + 8L^2$,

$$\mathbb{E} \| \mathsf{f}_{\widehat{\lambda}^{MA}} - f \|_X^2 \leq \inf_{\lambda \in \Lambda^M} \left\{ \| \mathsf{f}_{\lambda} - f \|_X^2 + \frac{CM(\lambda)}{n} \log \left(\frac{C'\sqrt{M(n \vee M)}}{M(\lambda)} \right) \right\}.$$

Here Λ^M is the simplex:

$$\Lambda^{M} = \{\lambda \in \mathbb{R}^{M}: \ \lambda_{j} \geq 0, \ \sum_{j=1}^{M} \lambda_{j} = 1\}.$$

イロン イヨン イヨン イヨン

A PAC-Bayesian bound Sparsity oracle inequalities(SOI) BIC and LASSO Sparse exponential weighting (SEW) Soli for Mirror Averaging Computation of SEW estimators

Example: density estimation with L_2 loss

- $Z = X \in \mathbb{R}^d$ with density f, such that $||f||_{\infty} \leq L$.
- Assumption on the dictionary: f_1, \ldots, f_M are probability densities such that $||f_j||_{\infty} \leq L$.

・ロン ・回 と ・ ヨ と ・ ヨ と

Introduction Sparsity oracle inequalities(SOI) BIC and LASSO Sparse exponential weighting (SEW) Sol for Mirror Averaging SOI for Mirror Averaging SOI for Mirror Averaging Computation of SEW estimators

Example: density estimation with L_2 loss

- $Z = X \in \mathbb{R}^d$ with density f, such that $\|f\|_{\infty} \leq L$.
- Assumption on the dictionary: f_1, \ldots, f_M are probability densities such that $||f_j||_{\infty} \leq L$.
- The loss function:

$$Q(X, f_{\lambda}) = \|f_{\lambda}\|^2 - 2f_{\lambda}(X)$$
 where $\|f\|^2 = \int f^2(x)dx$.

• The associated risk:

$$A(\lambda) = \mathbb{E} Q(X, \mathsf{f}_{\lambda}) = \|f - \mathsf{f}_{\lambda}\|^2 - \|f\|^2.$$

Introduction Sparsity oracle inequalities(SOI) BIC and LASSO Sparse exponential weighting (SEW) Sol for Mirror Averaging SOI for Mirror Averaging SOI for Mirror Averaging Computation of SEW estimators

Example: density estimation with L_2 loss

- $Z = X \in \mathbb{R}^d$ with density f, such that $\|f\|_{\infty} \leq L$.
- Assumption on the dictionary: f_1, \ldots, f_M are probability densities such that $||f_j||_{\infty} \leq L$.
- The loss function:

$$Q(X, \mathbf{f}_{\lambda}) = \|\mathbf{f}_{\lambda}\|^2 - 2\mathbf{f}_{\lambda}(X)$$
 where $\|f\|^2 = \int f^2(x) dx$.

The associated risk:

$$A(\lambda) = \mathbb{E} Q(X, \mathsf{f}_{\lambda}) = \|f - \mathsf{f}_{\lambda}\|^2 - \|f\|^2.$$

• Assumption JRT holds: if $\beta > 12L$ the mapping

$$\lambda \mapsto \mathbb{E} \, \exp\left(\frac{Q(X,\mathsf{f}_{\lambda'})-Q(X,\mathsf{f}_{\lambda})}{\beta}\right)$$

is concave on the simplex Λ^M for all $\lambda' \in \Lambda^M$ [JRT (2005)].

A PAC-Bayesian bound Sparsity oracle inequalities(SOI) BIC and LASSO Sparse exponential weighting (SEW) A PAC-Bayesian bound Sol for the SEW estimator PAC-Bayesian bound Sol for the SEW estimator SOI for Mirror Averaging Computation of SEW estimators

SOI for density estimation with L_2 loss

Corollary

Under the conditions of this example, for all $\beta > 12L$,

$$\mathbb{E} \| \mathsf{f}_{\widehat{\lambda}^{MA}} - f \|^2 \leq \inf_{\lambda \in \Lambda^M} \left\{ \| \mathsf{f}_{\lambda} - f \|^2 + \frac{CM(\lambda)}{n} \log \left(\frac{C'\sqrt{M(n \vee M)}}{M(\lambda)} \right) \right\}$$

Here Λ^M is the simplex:

$$\Lambda^{M} = \{\lambda \in \mathbb{R}^{M}: \ \lambda_{j} \geq 0, \ \sum_{j=1}^{M} \lambda_{j} = 1\}.$$

イロン イヨン イヨン イヨン

Introduction Sparsity oracle inequalities(SOI) BIC and LASSO Sparse exponential weighting (SEW) Sol for the SEW estimator PAC-Bayesian bound PAC-Bayesian bound PAC-Bayesian bound PAC-Bayesian bound SOI for the SEW estimators

Computation of SEW estimators

Consider the linear regression scenario:

$$\mathbf{y} = X\lambda + W.$$

X is a $n \times M$ deterministic design matrix, $\lambda \in \mathbb{R}^M$ is an unknown vector and $W \in \mathbb{R}^M$ is a Gaussian vector with i.i.d. components, with variances σ^2 . The SEW estimator

$$\hat{\lambda}^{SEW} \triangleq \int_{\mathbb{R}^M} \mathbf{u} \, g(\mathbf{u}) \, d\mathbf{u}$$

where the posterior density

$$g(\mathbf{u}) \propto \exp(-V(\mathbf{u}))$$
$$V(\mathbf{u}) = \beta^{-1} \|\mathbf{y} - X\mathbf{u}\|^2 + 2\sum_{j=1}^M \log(\tau^2 + u_j^2).$$

	A PAC-Bayesian bound
Introduction	Sparsity prior
Sparsity oracle inequalities(SOI)	SOI for the SEW estimator
BIC and LASSO	PAC-Bayesian bound for mirror averaging
Sparse exponential weighting (SEW)	SOI for Mirror Averaging
	Computation of SEW estimators

Langevin Monte Carlo

Remark: the posterior density $g(\cdot)$ is the invariant density of the Langevin diffusion

$$\mathbf{L}_t = -\nabla V(\mathbf{L}_t) dt + \sqrt{2} d\mathbf{W}_t, \quad \mathbf{L}_0 = 0, \quad t > 0.$$

Here \mathbf{W}_t is a *M*-dimensional Brownian motion.

Let now η_1, η_2, \ldots be i.i.d. standard normal random vectors. Set

$$\overline{\mathbf{L}}_0 = 0, \quad \overline{\mathbf{L}}_{k+1} = \overline{\mathbf{L}}_k - h\nabla V(\overline{\mathbf{L}}_k) + \sqrt{2h} \eta_k, \qquad k = 0, 1, \dots.$$

Then

$$\frac{1}{[Th^{-1}]}\sum_{k=1}^{[Th^{-1}]}\overline{\mathbf{L}}_k \approx \frac{1}{T}\int_0^T \mathbf{L}_t \, dt \xrightarrow[T \to \infty]{} \int_{\mathbb{R}^M} \mathbf{u}g(\mathbf{u}) \, d\mathbf{u} = \hat{\lambda}^{SEW}.$$

Introduction Sparsity oracle inequalities(SOI) BIC and LASSO Sparse exponential weighting (SEW)	esian bound or SEW estimator ian bound for mirror averaging rror Averaging on of SEW estimators
--	--

Simulations

Example 1: model selection properties when the coherence is low

The entries of X are i.i.d. Rademacher random variables independent of the noise W.

$$\lambda_j = I(j \le S)$$
 and $\sigma^2 = \frac{S}{9n}$.

We apply the SEW estimator using Langevin Monte-Carlo with

$$\tau = 4\sigma/\sqrt{M}, \qquad \beta = 4\sigma^2, \qquad h = 0.0001.$$

向下 イヨト イヨト

Introduction Sparsity oracle inequalities(SOI) BIC and LASSO Sparse exponential weighting (SEW) A PAC-Bayesian bound Sparsity prior SOI for the SEW estimator PAC-Bayesian bound Sol for the SEW estimator SOI for Mirror Averaging Computation of SEW estimators

Simulations

Figure: Typical result for Example 1 with n = 200, M = 500, S = 10, $h = 10^{-4}$, T = 5. The estimates of first 50 coefficients are plotted. In this example, we have $\frac{1}{n} ||X(\hat{\lambda} - \lambda)||^2 = 0.0021$. The time of computation of the estimator was about 30 seconds.

	A PAC-Bayesian bound
Introduction	Sparsity prior
Sparsity oracle inequalities(SOI)	SOI for the SEW estimator
BIC and LASSÓ	PAC-Bayesian bound for mirror averaging
Sparse exponential weighting (SEW)	SOI for Mirror Averaging
	Computation of SEW estimators

Simulations

Example 2: Comparison with the LASSO/LARS

Choose X_1, \ldots, X_n i.i.d. uniformly distributed in $[0, 1]^2$ and set

$$f_j(t) = I\{[0, j_1/k] \times [0, j_2/k]\}(t), \ j = (j_1, j_2) \in \{1, \ldots, k\}^2, \ t \in [0, 1]^2.$$

We get a matrix X which has k^2 columns some of which are nearly collinear. The number of covariates is $M = k^2$. Set $\sigma = 1$, k = 15, n = 100, $\lambda_j^* = 0$ for every $j \in \{1, \ldots, k\} \setminus \{87, 110, 200\}$ and $\lambda_j^* = 1$ for $j \in \{87, 110, 200\}$.

Applying SEW estimator with Langevin Monte-Carlo and

$$\tau = \frac{4\sigma}{\sqrt{\sum_{j,i} f_j^2(X_i)}}, \qquad \beta = 4\sigma^2, \qquad h = 0.0005.$$

Introduction Sparsity oracle inequalities(SOI) BIC and LASSO Sparse exponential weighting (SEW) A PAC-Bayesian bound SOI for the SEW estimator PAC-Bayesian bound for mirror averaging SOI for Mirror Averaging Computation of SEW estimators

Simulations

Figure: Typical result for Example 2 with n = 100, M = 225, $M(\lambda^*) = 3$, $h = 5 \cdot 10^{-4}$, T = 2. In this example, we have $\frac{1}{n} ||X(\hat{\lambda} - \lambda^*)||^2 = 0.28$ for our estimator and $\frac{1}{n} ||X(\hat{\lambda} - \lambda^*)||^2 = 1.72$ for the LASSO. The time of computation of the SEW estimator was about 5 seconds.

A PAC-Bayesian bound Sparsity oracle inequalities(SOI) BIC and LASSO Sparse exponential weighting (SEW) A PAC-Bayesian bound Sol for the SEW estimator PAC-Bayesian bound Sol for the SEW estimator PAC-Bayesian bound Sol for Mirror Averaging Computation of SEW estimators

Simulations

Figure: Typical result for Example 2 with n = 100, M = 225, $M(\lambda^*) = 3$, $h = 5 \cdot 10^{-4}$, T = 2. In this example, we have $\frac{1}{n} ||X(\hat{\lambda} - \lambda^*)||^2 = 0.28$ for our estimator and $\frac{1}{n} ||X(\hat{\lambda} - \lambda^*)||^2 = 1.72$ for the LASSO. The time of computation of the SEW estimator was about 5 seconds.

イロト イヨト イヨト イヨト

A PAC-Bayesian bound
Sparsity prior
SOI for the SEW estimator
PAC-Bayesian bound for mirror averaging
SOI for Mirror Averaging
Computation of SEW estimators

BICKEL, P.J., RITOV, Y. and TSYBAKOV, A.B. (2007) Simultaneous analysis of Lasso and Dantzig selector. *Annals of Statistics*, to appear.

BUNEA, F., TSYBAKOV, A.B. and WEGKAMP, M.H. (2007) Aggregation for Gaussian regression. *Annals of Statistics*, v.35, 1674-1697.

 $\label{eq:BUNEA} BUNEA, F., TSYBAKOV, A.B. \mbox{ and } WEGKAMP, M.H. \mbox{ (2007) Sparsity oracle inequalities for the Lasso.$ *Electronic Journal of Statistics*, v.1, 169-194.

DALALYAN, A. and TSYBAKOV, A.B. (2007) Aggregation by exponential weighting and sharp oracle inequalities. *COLT-2007*, 97-111.

DALALYAN, A. and TSYBAKOV, A.B. (2008) Aggregation by exponential weighting, sharp PAC-Bayesian bounds and sparsity. *Machine Learning*, published on-line.

 $JUDITSKY,\,A.,\,RIGOLLET,\,P.$ and $TSYBAKOV,\,A.B.$ Learning by mirror averaging. Annals of Statistics, to appear.

소리가 소문가 소문가 소문가