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Introduction

The last decade has witnessed the apparition of applied problems typ-
ified by very high-dimensional variables, in marketing database or gene
expression studies for instance.

Graphical modelling is a form of multivariate analysis that uses graphs to
represent models.

They enable concise representations of associational and causal relations
between variables under study.
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There is two main types of graphical models:

• undirected graphical models;

• directed acyclic graphical models.

Lauritzen (1996)

We shall concentrate on undirected graphs.
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If the graph is known, the parameters of the model are easily estimated.

However, a quite challenging issue is the determination of the set of most
appropriate graphs for a given dataset.

We consider this problem and the case of decomposable Gaussian graph-
ical models

Dawid and Lauritzen (1993)
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Background on Bayesian model selection

Several models available for the same observation

Mi : x ∼ fi(x|θi), i ∈ I

where I can be finite or infinite
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Probabilise the entire model/parameter space

• allocate probabilities pi to all models Mi

• define priors πi(θi) for each parameter space Θi

• compute

P(Mi|x) =
pi

∫
Θi

fi(x|θi)πi(θi)dθi∑
j

pj

∫
Θj

fj(x|θj)πj(θj)dθj

• take largest P(Mi|x) to determine “best” model,
or use averaged predictive∑

j

P(Mj |x)
∫

Θj

fj(x′|θj , x)πj(θj |x)dθj
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Background on decomposable Gaussian graphical models

Let G = (V,E) be an undirected graph:

• V = {1, . . . , p} is the vertex set;

• E ⊆ {(i, j) : 1 ≤ i < j ≤ p} is the edge set: if (a, b) ∈ E then vertices
a and b are adjacent in G.

A graph or subgraph is complete if all its vertices are joined by an edge.

A complete subgraph that is not contained within another complete sub-
graph is called a clique.
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Let C = {C1, . . . , Ck} be the set of cliques of G.

An ordering of all the cliques (C1, . . . , Ck) is said to be perfect if the ver-
tices of each clique Ci also contained in any previous clique C1, . . . , Ci−1

are all members of one previous clique; that is ∀i = 2, 3, . . . , k,

Si = Ci ∩ ∪i−1
j=1Ci ⊆ Ch

for some h = h(i) ∈ {1, 2, . . . , i− 1}.

S = {S2, . . . , Sk} is the set of separators associated to the perfect ordering
{C1, . . . , Ck}.

If an undirected graph admits a perfect ordering it is said to be decom-
posable.
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The following graph (used as benchmark in the following) is decompos-
able.

k = 5, C1 = {1, 2, 3}, C2 = {2, 3, 5, 6}, C3 = {2, 4, 5}, C4 = {5, 6, 7} and
C5 = {6, 7, 8, 9}, S2 = {2, 3}, S3 = {2, 5}, S4 = {5, 6} and S5 = {6, 7}.
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If (2, 6) /∈ E and (3, 5) /∈ E, the graph is not decomposable any more.

k = 5, C1 = {1, 2, 3}, C2 = {2, 4, 5}, C3 = {3, 6}, C4 = {5, 6, 7} and
C5 = {6, 7, 8, 9}
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With p vertices, the number of possible edges is T = p(p−1)
2 and the total

number of graphs is 2T .

The total number of decomposable graphs with p vertices can be calcu-
lated for moderate values of p, for instance:

if p = 6 there is 32, 768 graphs and 18, 154 are decomposable
(around 55%);

if p = 8, there is 268, 435, 456 graphs and 30, 888, 596 are decomposable
(around 12%).
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A pair (A,B) of subsets of the vertex set V of an undirected graph G is
said to form a decomposition of G if

• V = A ∪B;

• A ∩B is complete;

• A ∩ B separates A from B (any path from a vertex in A to a vertex
in B goes through A ∩B).
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To each vertex v ∈ V , we associate a random variable yv.

For A ⊆ V , yA = (yv)v∈A indicates the collection of random variables
{yv : v ∈ A}. To ease the notation, let y = yV .

The probability distribution of y is said to be Markov with respect to G,
if for any decomposition (A,B) of G, yA is independent of yB given yA∩B
(global Markov property).

A graphical model is a family of distributions on y which are Markov with
respect to a graph.
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A Gaussian graphical model is such that

y|G,ΣG ∼ Np (0p,ΣG) , (1)

where ΣG is a positive definite matrix which ensures that the distribution
of y is Markov with respect to G.

ΣG ensures that the distribution of y is Markov if and only if

(i, j) /∈ E ⇐⇒
(
Σ−1
G
)

(i,j)
= 0 .

Dempster (1972) (covariance selection models)
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In a Gaussian graphical model, the global, local and pairwise Markov
properties are equivalent.

Local Markov property: every variable is conditionally independent of the
remaining, given its neighbours.

Pairwise Markov property: any non-adjacent pair of random variables are
conditionally independent given the remaning.
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The mean parameter is typically set to zero: the data we analyze will be
expressed as deviation from the sample mean.

We observe a sample y1, . . . ,yn from (1) (the data are centered).

We would like to identify the set of most relevant graphs.

For the considered multivariate random phenomenon, we are interested
in the set of most relevant conditional independence structures.

=⇒ explore huge graph space.
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Bayesian tools for Gaussian graphical models

We consider the Bayesian paradigm.

Conditionally on G, we use a Hyper-Inverse Wishart (HIW) distribution
associated to the graph G as prior distribution on ΣG :

ΣG |G, δG ,ΦG ∼ HIWG (δG ,ΦG)

where δG > 0 and ΦG is a p× p symmetric positive definite matrix.

Dawid and Lauritzen (1993), Giudici and Green (1999), Armstrong et al.
(2006)
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Conditionally on G, the HIW distribution is conjugate

ΣG |y1, . . . ,yn,G, δG ,ΦG ∼ HIWG

(
δG + n,ΦG +

n∑
i=1

yi
(
yi
)T)

. (2)

Moreover, for such a prior,

f(y1, . . . ,yn|G, δG ,ΦG) =
hG(δG ,ΦG)

(2π)np/2hG

(
δG + n,ΦG +

n∑
i=1

yi
(
yi
)T)

where hG is the normalizing constant of the HIW distribution associated
to the graph G.

Roverato (2002) extends Hyper-Inverse Wishart distribution to non-
decomposable case.
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For simplicity, we assume here a uniform prior distribution in the space
of graphs, π(G) ∝ 1:

π
(
G|y1, . . . ,yn, δG ,ΦG

)
∝ f(y1, . . . ,yn|G, δG ,ΦG) . (3)

Uniform distribution on the space of graphs typically not satisfactory:
with p vertices, the number of possible edges is equal to p(p−1)

2 and, for
an uniform prior over all graphs, the prior number of edges has mode
around p(p−1)

4 .

Wong, Carter and Kohn (2003), Jones et al. (2005), Armstrong et al.
(2006)
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An empirical Bayes procedure via the SAEM-MCMC
algorithm

(3) is sensible to the specification of the hyper-parameters δG and ΦG .

Typically, δG = δ and ΦG = Φ.

Different strategies:

Giudici and Green (1999) and others propose to use a hierarchical prior
modeling: δ and Φ are considered as random quantities and a prior dis-
tribution is assigned on δ and Φ.

The difficulty with this approach is that the prior distributions on δ and
Φ also depend on hyper-parameters...
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Jones et al. (2005) and others fix the values of δ and Φ using some
heuristics more or less justified and never completely satisfactory.

Armstrong et al. (2006) fix the value of δ and use a hierarchical prior
modeling on Φ.
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δ measures the amount of information in the prior relative to the sample
(see (2)), we propose to fix δ = 1.

The prior weight is the same as the weight of one observation.

Moreover, we propose to standardize the data and to use Φ = τIp.

This choice encourages sparse graph (on average each variable has major
interactions with a relative small number of other variables).

τ plays the role a shrinkage factor: important to choose τ to be on the
appropriate scale!
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Empirical Bayes strategy: we propose to fix τ to its maximum likelihood
estimation.

How to calculate this maximum likelihood estimation of τ?

We use a Markov Chain Monte Carlo (MCMC) version of the Stochastic
Approximation EM (SAEM) algorithm.

Delyon, Lavielle and Moulines (1999), Kuhn and Lavielle (2004)
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The maximization of f
(
y1, . . . ,yn|τ

)
can not be done in closed form.

The observed data Y =
(
y1, . . . ,yn

)
are issued from the partial observa-

tions of the complete data (Y,G,ΣG).

EM algorithm:

Q(τ |τ ′) = EΣG ,G {ln f(Y,G,ΣG |τ)|Y, τ ′} .

At iteration k, the E-step is the evaluation of Qk(τ) = Q(τ | τ̂k−1) while
the M-step updates τ̂k−1 by maximizing Qk(τ).
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For cases where the E-step is intractable, Delyon, Lavielle and Moulines
(1999) propose the SAEM algorithm.

The E-step is replaced by a stochastic approximation of Qk(τ).

At iteration k, the E-step is divided into a simulation step
(
G(k),Σ(k)

G

)
and a Stochastic Approximation step:

Qk(τ) = Qk−1(τ) + γk

[
ln f(Y,G(k),Σ(k)

G |τ̂k−1)−Qk−1(τ)
]
,

where (γk)k∈N is a sequence of positive numbers decreasing to zero.
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In gaussian graphical models, we can not generate directly a realization
from the conditional distribution of (G,ΣG) given Y and τ̂k−1.

For such cases, Kuhn and Lavielle (2004) suggest to replace the simulation
step by a MCMC scheme:

generate M realizations from an ergodic Markov chain with stationary
distribution G,ΣG |Y, τ̂k−1 and use the last simulation in the SAEM algo-
rithm.
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It is very easy to generate a realization from ΣG |G,Y, τ̂k−1.

Moreover, the pdf of G|Y, τ̂k−1 is available up to a normalizing constant.

In the MCMC step of the SAEM-MCMC algorithm, we will generate M
realizations from an ergodic Markov chain with stationary distribution
G|Y, τ̂k−1 and use the last simulation to generate ΣG .

Once the sequence of τ̂k converges, we use only the MCMC algorithm to
explore the space of graphs.
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A new Metropolis-Hastings sampler to explore the space of
graphs

We propose a new Metropolis-Hastings algorithm.

Let K denote the empirical correlation matrix.

At iteration t of the algorithm,

1) Choose at random to delete or add an edge to G(t−1);

a) If delete, enumerate G−G(t−1) and generate Gp using the following dis-
tribution

P(Gp = {G(t−1) \ (i, j)}|G(t−1)) =
1/|K(i, j)|∑

G−
G(t−1)

1/|K(i, j)|
;
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b) If add, enumerate G+
G(t−1) and generate Gp using the following distri-

bution

P(Gp = {G(t−1) ∪ (i, j)}|G(t−1)) =
|K(i, j)|∑

G+

G(t−1)
|K(i, j)|

;

2) Calculate the acceptance probability ρ(G(t−1),Gp);

3) With probability ρ(G(t−1),Gp), accept Gp and set G(t) = Gp, otherwise
reject Gp and set G(t) = G(t−1);
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Numerical experiments

Simulated datasets

p = 9, n = 100, δ = 1 and τ = 0.03.

γk = 1 during the first iterations 1 ≤ k ≤ 100 and γk = (k − 100)−1

during the subsequent iterations.

M = 500 during the 5 first iterations and then M = 10.
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Simulated dataset: evolution of the SAEM-MCMC τ̂ (k) estimations on 4
datasets

Journées de Statistique du Sud (17 juin 2008) Page 32



Real datasets

Fret’s heads dataset contains head measurements on the first and the
second adult son in a sample of 25 families.

The 4 variables are the head length of the first son, the head breadth of
the first son, the head length of the second son and the head breadth of
the second son.

In this case p = 4 and 61 graphes are decomposable among the 64 possibles
graphes.
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On this dataset we aim at proving that the hyper-parameter τ has to be
carefully chosen.

We consider two values of τ :

• on the one hand, following Jones et al. (2005), we set τ equal to δ+ 2
using the fact that the prior mode for each variance σii is τ

b+2 and
that the data are standardized;

• on the other hand, we use the τ∗ supplied by the SAEM algorithm
(τ∗ = 0.38).
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Fret’s heads dataset: the five most probable posterior graphs
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In the Fowl bones dataset, bone measurements are taken on n = 276
white leghorn fowl. The 6 variables are skull length, skull breadth, humer-
ous (wings), ulna (wings), femur (legs) and tibia (legs).

We aim at illustrating the fact that a careful choise of the transition kernel
in the MCMC algorithm ensures a better exploration of the support of
the posterior distribution.
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Relative Error on posterior probabilities (%)

Number of

graphes (L)

% of Represented

graphes

Standard MCMC Data Driven MCMC

1 32.4% 8.9% 4.1%

2 55.3% 9.7% 5.1%

4 77.2% 9.5% 7.0%

6 89.6% 11.6% 9.7%

8 95.8% 10.2% 8.7%

15 99.8% 33.3% 13.3%

20 99.9% 47.1% 29.0%

Fowl bones dataset: Relative Error on the posterior probabilities
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