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Dynamic portfolio selection: general case

xi = (x
(1)
i , . . . x

(d)
i ) the return vector on day i

b = b1 is the portfolio vector for the first day
initial capital S0

for the first day
S1 = S0 · 〈b1 , x1〉

for the second day, S1 new initial capital, the portfolio vector
b2 = b(x1)

S2 = S0 · 〈b1 , x1〉 · 〈b(x1) , x2〉 .
nth day a portfolio strategy bn = b(x1, . . . , xn−1) = b(xn−1

1 )

Sn = S0

n∏
i=1

〈
b(xi−1

1 ) , xi

〉
= S0e

nWn(B)

with the average growth rate

Wn(B) =
1

n

n∑
i=1

ln
〈
b(xi−1

1 ) , xi

〉
.
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log-optimum portfolio

X1,X2, . . . drawn from the vector valued stationary and ergodic
process

log-optimum portfolio B∗ = {b∗(·)}

E{ln
〈
b∗(Xn−1

1 ) , Xn

〉
| Xn−1

1 } = max
b(·)

E{ln
〈
b(Xn−1

1 ) , Xn

〉
| Xn−1

1 }

Györfi Machine learning and portfolio selections. II.



log-optimum portfolio

X1,X2, . . . drawn from the vector valued stationary and ergodic
process
log-optimum portfolio B∗ = {b∗(·)}

E{ln
〈
b∗(Xn−1

1 ) , Xn

〉
| Xn−1

1 } = max
b(·)

E{ln
〈
b(Xn−1

1 ) , Xn

〉
| Xn−1

1 }

Györfi Machine learning and portfolio selections. II.



Optimality

Algoet and Cover (1988): If S∗n = Sn(B∗) denotes the capital after
day n achieved by a log-optimum portfolio strategy B∗,

then for
any portfolio strategy B with capital Sn = Sn(B) and for any
process {Xn}∞−∞,

lim sup
n→∞

(
1

n
lnSn −

1

n
lnS∗n

)
≤ 0 almost surely

for stationary ergodic process {Xn}∞−∞,

lim
n→∞

1

n
lnS∗n = W ∗ almost surely,

where

W ∗ = E

{
max
b(·)

E{ln
〈
b(X−1

−∞) , X0

〉
| X−1

−∞}
}

is the maximal growth rate of any portfolio.
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Martingale difference sequences

for the proof of optimality we use the concept of martingale
differences:

Definition

there are two sequences of random variables:

{Zn} {Xn}

Zn is a function of X1, . . . ,Xn,

E{Zn | X1, . . . ,Xn−1} = 0 almost surely.

Then {Zn} is called martingale difference sequence with respect to
{Xn}.
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A strong law of large numbers

Chow Theorem:

If {Zn} is a martingale difference sequence with
respect to {Xn} and

∞∑
n=1

E{Z 2
n }

n2
< ∞

then

lim
n→∞

1

n

n∑
i=1

Zi = 0 a.s.
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A weak law of large numbers

Lemma:

If {Zn} is a martingale difference sequence with respect
to {Xn} then {Zn} are uncorrelated.
Proof. Put i < j .

E{ZiZj} = E{E{ZiZj | X1, . . . ,Xj−1}}
= E{ZiE{Zj | X1, . . . ,Xj−1}}
= E{Zi · 0} = 0

Corollary

E


(

1

n

n∑
i=1

Zi

)2
 =

1

n2

n∑
i=1

n∑
j=1

E{ZiZj}

=
1

n2

n∑
i=1

E{Z 2
i }

→ 0

if, for example, E{Z 2
i } is a bounded sequence.
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Constructing martingale difference sequence

{Yn} is an arbitrary sequence such that Yn is a function of
X1, . . . ,Xn

Put
Zn = Yn − E{Yn | X1, . . . ,Xn−1}

Then {Zn} is a martingale difference sequence:

Zn is a function of X1, . . . ,Xn,

E{Zn | X1, . . . ,Xn−1}
= E{Yn − E{Yn | X1, . . . ,Xn−1} | X1, . . . ,Xn−1}
= 0

almost surely.
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Optimality

log-optimum portfolio B∗ = {b∗(·)}

E{ln
〈
b∗(Xn−1

1 ) , Xn

〉
| Xn−1

1 } = max
b(·)

E{ln
〈
b(Xn−1

1 ) , Xn

〉
| Xn−1

1 }

If S∗n = Sn(B∗) denotes the capital after day n achieved by a
log-optimum portfolio strategy B∗, then for any portfolio strategy
B with capital Sn = Sn(B) and for any process {Xn}∞−∞,

lim sup
n→∞

(
1

n
lnSn −

1

n
lnS∗n

)
≤ 0 almost surely
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〉
| Xn−1

1 }

If S∗n = Sn(B∗) denotes the capital after day n achieved by a
log-optimum portfolio strategy B∗, then for any portfolio strategy
B with capital Sn = Sn(B) and for any process {Xn}∞−∞,

lim sup
n→∞
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1

n
lnSn −
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n
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Proof of optimality

1

n
lnSn =

1

n

n∑
i=1

ln
〈
b(Xi−1

1 ) , Xi

〉

=
1

n

n∑
i=1

E{ln
〈
b(Xi−1

1 ) , Xi

〉
| Xi−1

1 }

+
1

n

n∑
i=1

(
ln
〈
b(Xi−1

1 ) , Xi

〉
− E{ln

〈
b(Xi−1

1 ) , Xi

〉
| Xi−1

1 }
)
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1

n
lnS∗n =

1

n

n∑
i=1

E{ln
〈
b∗(Xi−1

1 ) , Xi

〉
| Xi−1

1 }

+
1

n

n∑
i=1

(
ln
〈
b∗(Xi−1

1 ) , Xi

〉
− E{ln

〈
b∗(Xi−1

1 ) , Xi

〉
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1 }
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Universally consistent portfolio

These limit relations give rise to the following definition:

Definition

An empirical (data driven) portfolio strategy B is called
universally consistent with respect to a class C of stationary
and ergodic processes {Xn}∞−∞, if for each process in the class,

lim
n→∞

1

n
lnSn(B) = W ∗ almost surely.
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Empirical portfolio selection

E{ln
〈
b∗(Xn−1

1 ) , Xn

〉
| Xn−1

1 } = max
b(·)

E{ln
〈
b(Xn−1

1 ) , Xn

〉
| Xn−1

1 }

b∗(xn−1
1 ) = arg max

b(·)
E{ln

〈
b(Xn−1

1 ) , Xn

〉
| Xn−1

1 = xn−1
1 }

= arg max
b(·)

E{ln
〈
b(xn−1

1 ) , Xn

〉
| Xn−1

1 = xn−1
1 }

= arg max
b

E{ln 〈b , Xn〉 | Xn−1
1 = xn−1

1 },

fixed integer k > 0

E{ln
〈
b(Xn−1

1 ) , Xn

〉
| Xn−1

1 } ≈ E{ln
〈
b(Xn−1

n−k) , Xn

〉
| Xn−1

n−k}

and

b∗(Xn−1
1 ) ≈ bk(Xn−1

n−k) = arg max
b(·)

E{ln
〈
b(Xn−1

n−k) , Xn

〉
| Xn−1

n−k}
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because of stationarity

bk(xk
1) = arg max

b(·)
E{ln

〈
b(Xn−1

n−k) , Xn

〉
| Xn−1

n−k = xk
1}

= arg max
b(·)

E{ln
〈
b(xk

1) , Xn

〉
| Xn−1

n−k = xk
1}

= arg max
b(·)

E{ln
〈
b(xk

1) , Xk+1

〉
| Xk

1 = xk
1}

= arg max
b

E{ln 〈b , Xk+1〉 | Xk
1 = xk

1},

which is the maximization of the regression function

mb(x
k
1) = E{ln 〈b , Xk+1〉 | Xk

1 = xk
1}
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Regression function

Y real valued
X observation vector

Regression function

m(x) = E{Y | X = x}

i.i.d. data: Dn = {(X1,Y1), . . . , (Xn,Yn)}
Regression function estimate

mn(x) = mn(x ,Dn)

Kernel regression estimate with window kernel
Bandwidth r > 0

mn(x) =

∑n
i=1 Yi I{‖x−Xi‖≤r}∑n
i=1 I{‖x−Xi‖≤r}

L. Györfi, M. Kohler, A. Krzyzak, H. Walk (2002) A
Distribution-Free Theory of Nonparametric Regression,
Springer-Verlag, New York.
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Correspondence

X ∼ Xk
1

Y ∼ ln 〈b , Xk+1〉
m(x) = E{Y | X = x} ∼ mb(x

k
1) = E{ln 〈b , Xk+1〉 | Xk

1 = xk
1}
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Kernel-based portfolio selection

choose the radius rk,` > 0 such that for any fixed k,

lim
`→∞

rk,` = 0.

for n > k + 1, define the expert b(k,`) by

b(k,`)(xn−1
1 ) = arg max

b

∑
{k<i<n:‖xi−1

i−k−xn−1
n−k‖≤rk,`}

ln 〈b , xi 〉 ,

if the sum is non-void, and b0 = (1/d , . . . , 1/d) otherwise.
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Combining elementary portfolios

for fixed k, ` = 1, 2, . . .,
B(k,`) = {b(k,`)(·)}, are called elementary portfolios

How to choose k, `

small k or large rk,`: large bias

large k and small rk,`: few matching, large variance

Machine learning: combination of experts

N. Cesa-Bianchi and G. Lugosi, Prediction, Learning, and Games.
Cambridge University Press, 2006.
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Cambridge University Press, 2006.
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Exponential weighing

combine the elementary portfolio strategies B(k,`) = {b(k,`)
n }

let {qk,`} be a probability distribution on the set of all pairs (k, `)
such that for all k, `, qk,` > 0.
for η > 0 put

wn,k,` = qk,`e
η ln Sn−1(B(k,`))

for η = 1,

wn,k,` = qk,`e
ln Sn−1(B(k,`)) = qk,`Sn−1(B

(k,`))

and
vn,k,` =

wn,k,`∑
i ,j wn,i ,j

.

the combined portfolio b:

bn(x
n−1
1 ) =

∑
k,`

vn,k,`b
(k,`)
n (xn−1

1 ).
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Sn(B) =
n∏

i=1

〈
bi (x

i−1
1 ) , xi

〉

=
n∏

i=1

∑
k,` wi ,k,`

〈
b

(k,`)
i (xi−1

1 ) , xi

〉
∑

k,` wi ,k,`

=
n∏

i=1

∑
k,` qk,`Si−1(B

(k,`))
〈
b

(k,`)
i (xi−1

1 ) , xi

〉
∑

k,` qk,`Si−1(B(k,`))

=
n∏

i=1

∑
k,` qk,`Si (B

(k,`))∑
k,` qk,`Si−1(B(k,`))

=
∑
k,`

qk,`Sn(B
(k,`)),
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The strategy B then arises from weighing the elementary portfolio

strategies B(k,`) = {b(k,`)
n } such that the investor’s capital becomes

Sn(B) =
∑
k,`

qk,`Sn(B
(k,`)).
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Theorem

The kernel-based portfolio scheme is universally consistent with
respect to the class of all ergodic processes such that
E{| lnX (j)|} < ∞, for j = 1, 2, . . . , d .

L. Györfi, G. Lugosi, F. Udina (2006) ”Nonparametric kernel-based
sequential investment strategies”, Mathematical Finance, 16, pp.
337-357
www.szit.bme.hu/ g̃yorfi/kernel.pdf
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Proof

We have to prove that

lim inf
n→∞

Wn(B) = lim inf
n→∞

1

n
lnSn(B) ≥ W ∗ a.s.

W.l.o.g. we may assume S0 = 1, so that

Wn(B) =
1

n
lnSn(B)

=
1

n
ln

∑
k,`

qk,`Sn(B
(k,`))


≥ 1

n
ln

(
sup
k,`

qk,`Sn(B
(k,`))

)
=

1

n
sup
k,`

(
ln qk,` + lnSn(B

(k,`))
)

= sup
k,`

(
Wn(B

(k,`)) +
ln qk,`

n

)
.
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Thus

lim inf
n→∞

Wn(B) ≥ lim inf
n→∞

sup
k,`

(
Wn(B

(k,`)) +
ln qk,`

n

)

≥ sup
k,`

lim inf
n→∞

(
Wn(B

(k,`)) +
ln qk,`

n

)
= sup

k,`
lim inf
n→∞

Wn(B
(k,`))

= sup
k,`

εk,`

Because of lim`→∞ rk,` = 0, we have that

sup
k,`

εk,` = lim
k→∞

lim
l→∞

εk,` = W ∗.
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Semi-log-optimal portfolio

empirical log-optimal:

b(k,`)(xn−1
1 ) = arg max

b

∑
i∈Jn

ln 〈b , xi 〉

Taylor expansion: ln z ≈ h(z) = z − 1− 1
2(z − 1)2 empirical

semi-log-optimal:

b̃(k,`)(xn−1
1 ) = arg max

b

∑
i∈Jn

h(〈b , xi 〉) = arg max
b

{〈b , m〉−〈b , Cb〉}

smaller computational complexity: quadratic programming

L. Györfi, A. Urbán, I. Vajda (2007) ”Kernel-based
semi-log-optimal portfolio selection strategies”, International
Journal of Theoretical and Applied Finance, 10, pp. 505-516.
www.szit.bme.hu/∼gyorfi/semi.pdf
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Conditions of the model:

Assume that

the assets are arbitrarily divisible,

the assets are available in unbounded quantities at the current
price at any given trading period,

there are no transaction costs,

the behavior of the market is not affected by the actions of
the investor using the strategy under investigation.
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NYSE data sets

At www.szit.bme.hu/~oti/portfolio there are two benchmark
data set from NYSE:

The first data set consists of daily data of 36 stocks with
length 22 years.

The second data set contains 23 stocks and has length 44
years.

Our experiment is on the second data set.
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Experiments on average annual yields (AAY)

Kernel based semi-log-optimal portfolio selection with

k = 1, . . . , 5 and l = 1, . . . , 10

r2
k,l = 0.0002 · d · k + 0.00002 · d · k · `,

AAY of kernel based semi-log-optimal portfolio is 116%
double the capital
MORRIS had the best AAY, 20%
the BCRP had average AAY 24%
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The average annual yields of the individual experts.

k 1 2 3 4 5
`

1 68% 54% 23% 21% 16%

2 87% 73% 46% 29% 17%

3 94% 77% 40% 39% 19%

4 94% 90% 46% 42% 32%

5 108% 91% 63% 58% 29%

6 118% 99% 75% 53% 38%

7 122% 100% 81% 71% 54%

8 128% 95% 89% 75% 55%

9 131% 102% 94% 87% 53%

10 131% 108% 107% 97% 65%
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Model conditions?

Transaction costs: ongoing project
Integer multiple of assets: ongoing project
the assets are available in unbounded quantities?
four assets (SHERW, KODAK, COMME, KINAR) have small
capitalization (less than 1010 dollars)
left out
for the remaining 19 large assets, AAY of kernel based
semi-log-optimal portfolio is 31%

Györfi Machine learning and portfolio selections. II.



Model conditions?

Transaction costs: ongoing project

Integer multiple of assets: ongoing project
the assets are available in unbounded quantities?
four assets (SHERW, KODAK, COMME, KINAR) have small
capitalization (less than 1010 dollars)
left out
for the remaining 19 large assets, AAY of kernel based
semi-log-optimal portfolio is 31%

Györfi Machine learning and portfolio selections. II.



Model conditions?

Transaction costs: ongoing project
Integer multiple of assets: ongoing project

the assets are available in unbounded quantities?
four assets (SHERW, KODAK, COMME, KINAR) have small
capitalization (less than 1010 dollars)
left out
for the remaining 19 large assets, AAY of kernel based
semi-log-optimal portfolio is 31%

Györfi Machine learning and portfolio selections. II.



Model conditions?

Transaction costs: ongoing project
Integer multiple of assets: ongoing project
the assets are available in unbounded quantities?

four assets (SHERW, KODAK, COMME, KINAR) have small
capitalization (less than 1010 dollars)
left out
for the remaining 19 large assets, AAY of kernel based
semi-log-optimal portfolio is 31%

Györfi Machine learning and portfolio selections. II.



Model conditions?

Transaction costs: ongoing project
Integer multiple of assets: ongoing project
the assets are available in unbounded quantities?
four assets (SHERW, KODAK, COMME, KINAR) have small
capitalization (less than 1010 dollars)

left out
for the remaining 19 large assets, AAY of kernel based
semi-log-optimal portfolio is 31%

Györfi Machine learning and portfolio selections. II.



Model conditions?

Transaction costs: ongoing project
Integer multiple of assets: ongoing project
the assets are available in unbounded quantities?
four assets (SHERW, KODAK, COMME, KINAR) have small
capitalization (less than 1010 dollars)
left out

for the remaining 19 large assets, AAY of kernel based
semi-log-optimal portfolio is 31%

Györfi Machine learning and portfolio selections. II.



Model conditions?

Transaction costs: ongoing project
Integer multiple of assets: ongoing project
the assets are available in unbounded quantities?
four assets (SHERW, KODAK, COMME, KINAR) have small
capitalization (less than 1010 dollars)
left out
for the remaining 19 large assets, AAY of kernel based
semi-log-optimal portfolio is 31%

Györfi Machine learning and portfolio selections. II.



The average annual yields of the individual experts, for the
19 large assets.

k 1 2 3 4 5
`

1 31% 30% 24% 21% 26%

2 34% 31% 27% 25% 22%

3 35% 29% 26% 24% 23%

4 35% 30% 30% 32% 27%

5 34% 29% 33% 24% 24%

6 35% 29% 28% 24% 27%

7 33% 29% 32% 23% 23%

8 34% 33% 30% 21% 24%

9 37% 33% 28% 19% 21%

10 34% 29% 26% 20% 24%
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