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Györfi Machine learning and portfolio selections. I.



Growth rate

investment in the stock market

d assets
S

(j)
n price of asset j at the end of trading period (day) n

initial price S
(j)
0 = 1, j = 1, . . . , d

S
(j)
n = enW

(j)
n ≈ enW (j)

average growth rate

W
(j)
n =

1

n
lnS

(j)
n

asymptotic average growth rate

W (j) = lim
n→∞

1

n
lnS

(j)
n

Györfi Machine learning and portfolio selections. I.



Growth rate

investment in the stock market
d assets

S
(j)
n price of asset j at the end of trading period (day) n

initial price S
(j)
0 = 1, j = 1, . . . , d

S
(j)
n = enW

(j)
n ≈ enW (j)

average growth rate

W
(j)
n =

1

n
lnS

(j)
n

asymptotic average growth rate

W (j) = lim
n→∞

1

n
lnS

(j)
n

Györfi Machine learning and portfolio selections. I.



Growth rate

investment in the stock market
d assets
S

(j)
n price of asset j at the end of trading period (day) n

initial price S
(j)
0 = 1, j = 1, . . . , d

S
(j)
n = enW

(j)
n ≈ enW (j)

average growth rate

W
(j)
n =

1

n
lnS

(j)
n

asymptotic average growth rate

W (j) = lim
n→∞

1

n
lnS

(j)
n

Györfi Machine learning and portfolio selections. I.



Growth rate

investment in the stock market
d assets
S

(j)
n price of asset j at the end of trading period (day) n

initial price S
(j)
0 = 1, j = 1, . . . , d

S
(j)
n = enW

(j)
n ≈ enW (j)

average growth rate

W
(j)
n =

1

n
lnS

(j)
n

asymptotic average growth rate

W (j) = lim
n→∞

1

n
lnS

(j)
n

Györfi Machine learning and portfolio selections. I.



Growth rate

investment in the stock market
d assets
S

(j)
n price of asset j at the end of trading period (day) n

initial price S
(j)
0 = 1, j = 1, . . . , d

S
(j)
n = enW

(j)
n ≈ enW (j)

average growth rate

W
(j)
n =

1

n
lnS

(j)
n

asymptotic average growth rate

W (j) = lim
n→∞

1

n
lnS

(j)
n

Györfi Machine learning and portfolio selections. I.



Growth rate

investment in the stock market
d assets
S

(j)
n price of asset j at the end of trading period (day) n

initial price S
(j)
0 = 1, j = 1, . . . , d

S
(j)
n = enW

(j)
n ≈ enW (j)

average growth rate

W
(j)
n =

1

n
lnS

(j)
n

asymptotic average growth rate

W (j) = lim
n→∞

1

n
lnS

(j)
n

Györfi Machine learning and portfolio selections. I.



Static portfolio selection: single period investment

the aim is to achieve maxj W (j)

static portfolio selection
a portfolio vector b = (b(1), . . . b(d))
b(j) ≥ 0,

∑
j b(j) = 1

b(j) gives the proportion of the investor’s capital invested in stock j
initial capital S0

Sn = S0

∑
j

b(j)S
(j)
n

S0 max
j

b(j)S
(j)
n ≤ Sn ≤ dS0 max

j
b(j)S

(j)
n
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we can do much better using multi-period investment
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Dynamic portfolio selection: multi-period investment

relative prices

x
(j)
i =

S
(j)
i

S
(j)
i−1

xi = (x
(1)
i , . . . x

(d)
i ) the return vector on trading period i

multi-period investment

x
(j)
i is the factor by which capital invested in stock j grows during

the market period i
Constantly Re-balanced Portfolio (CRP)

a portfolio vector b = (b(1), . . . b(d))
b(j) gives the proportion of the investor’s capital invested in stock j
b is the portfolio vector for each trading day
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for the first trading period S0 denotes the initial capital

S1 = S0

d∑
j=1

b(j)x
(j)
1 = S0 〈b , x1〉

for the second trading period, S1 new initial capital

S2 = S1 · 〈b , x2〉 = S0 · 〈b , x1〉 · 〈b , x2〉 .

for the nth trading period:

Sn = Sn−1 〈b , xn〉 = S0

n∏
i=1

〈b , xi 〉 = S0e
nWn(b)

with the average growth rate

Wn(b) =
1

n

n∑
i=1

ln 〈b , xi 〉 .
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log-optimum portfolio

Special market process: X1,X2, . . . is independent and identically
distributed (i.i.d.)

log-optimum portfolio b∗

E{ln 〈b∗ , X1〉} = max
b

E{ln 〈b , X1〉}

Best Constantly Re-balanced Portfolio (BCRP)
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Optimality

If S∗n = Sn(b∗) denotes the capital after trading period n achieved
by a log-optimum portfolio strategy b∗,

then for any portfolio strategy b with capital Sn = Sn(b) and for
any i.i.d. process {Xn}∞−∞,

lim
n→∞

1

n
lnSn ≤ lim

n→∞

1

n
lnS∗n almost surely

and

lim
n→∞

1

n
lnS∗n = W ∗ almost surely,

where
W ∗ = E{ln 〈b∗ , X1〉}

is the maximal growth rate of any portfolio.
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Proof

1

n
lnSn =

1

n

n∑
i=1

ln 〈b , Xi 〉

=
1

n

n∑
i=1

E{ln 〈b , Xi 〉}

+
1

n

n∑
i=1

(ln 〈b , Xi 〉 − E{ln 〈b , Xi 〉})

and

1

n
lnS∗n =

1

n

n∑
i=1

E{ln 〈b∗ , Xi 〉}

+
1

n

n∑
i=1

(ln 〈b∗ , Xi 〉 − E{ln 〈b∗ , Xi 〉})
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History

gambling, horse racing, information theory

Kelly (1956)
Latané (1959)
Breiman (1961)
Finkelstein and Whitley (1981)
Barron and Cover (1988)

Chapter 15 of D. G. Luenberger, Investment Science. Oxford
University Press, 1998.
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Example 1: 1 stock + cash

d = 2, X = (X (1),X (2))
Stock:

X (1) =

{
2 with probability 1/2,
1/2 with probability 1/2.

E{X (1)} = 1/2 · (2 + 1/2) = 5/4 > 1

E{S (1)
n } = E

{
n∏

i=1

X
(1)
i

}
= (5/4)n

What about S
(1)
n or W (1)?

W (1) = lim
n→∞

1

n
lnS

(1)
n = lim

n→∞

1

n

n∑
i=1

lnX
(1)
i = E{lnX (1)}

= 1/2 ln 2 + 1/2 ln(1/2) = 0

zero growth rate
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Cash:
X (2) = 1

zero growth rate

portfolio
b = (b, 1− b)

E{ln 〈b , X〉} = 1/2 (ln(2b + (1− b)) + ln(b/2 + (1− b))

= 1/2 ln[(1 + b)(1− b/2)]

log-optimal portfolio
b∗ = (1/2, 1/2)

asymptotic average growth rate

E{ln 〈b∗ , X〉} = 1/2 ln(9/8) = 0.059 = W ∗

positive growth rate
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Example 2: 2 stocks + cash

d = 3, X = (X (1),X (2),X (3))

Stocks:

X (1) =

{
2 with probability 1/2,
1/2 with probability 1/2.

X (2) =

{
2 with probability 1/2,
1/2 with probability 1/2.

Cash:
X (3) = 1

log-optimal portfolio

b∗ = (0.46, 0.46, 0.08)

asymptotic average growth rate

E{ln 〈b∗ , X〉} = 0.112 = W ∗

Györfi Machine learning and portfolio selections. I.
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Example 3: 3 stocks + cash

d = 4, X = (X (1),X (2),X (3),X (4))

log-optimal portfolio

b∗ = (1/3, 1/3, 1/3, 0)

the cash has zero weight
asymptotic average growth rate

E{ln 〈b∗ , X〉} = 0.152 = W ∗

Györfi Machine learning and portfolio selections. I.



Example 3: 3 stocks + cash

d = 4, X = (X (1),X (2),X (3),X (4))
log-optimal portfolio

b∗ = (1/3, 1/3, 1/3, 0)

the cash has zero weight
asymptotic average growth rate

E{ln 〈b∗ , X〉} = 0.152 = W ∗

Györfi Machine learning and portfolio selections. I.



Example 3: 3 stocks + cash

d = 4, X = (X (1),X (2),X (3),X (4))
log-optimal portfolio

b∗ = (1/3, 1/3, 1/3, 0)

the cash has zero weight

asymptotic average growth rate

E{ln 〈b∗ , X〉} = 0.152 = W ∗

Györfi Machine learning and portfolio selections. I.



Example 3: 3 stocks + cash

d = 4, X = (X (1),X (2),X (3),X (4))
log-optimal portfolio

b∗ = (1/3, 1/3, 1/3, 0)

the cash has zero weight
asymptotic average growth rate

E{ln 〈b∗ , X〉} = 0.152 = W ∗

Györfi Machine learning and portfolio selections. I.



Example 4: many stocks

d is large

log-optimal portfolio

b∗ = (1/d , . . . , 1/d)

asymptotic average growth rate

E{ln 〈b∗ , X〉} = 0.223 = W ∗
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Example 5: horse racing

d horses in a race

horse j wins with probability pj

payoff oj : investing 1$ on horse j results in oj if it wins, otherwise
0$

X = (0, . . . , 0, oj , 0, . . . , 0)

if horse j wins
repeated races

E{ln 〈b , X〉} =
d∑

j=1

pj ln(b(j)oj) =
d∑

j=1

pj ln b(j) +
d∑

j=1

pj ln oj

therefore

arg max
b

E{ln 〈b , X〉} = arg max
b

d∑
j=1

pj ln b(j)
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arg max
b

d∑
j=1

pj ln b(j)

Kullback-Leibler divergence:

KL(p,b) =
d∑

j=1

pj ln
pj

b(j)

basic property:
KL(p,b) ≥ 0

Proof:

KL(p,b) = −
d∑

j=1

pj ln
b(j)

pj
≥ −

d∑
j=1

pj

(
b(j)

pj
− 1

)

= −
d∑

j=1

b(j) +
d∑

j=1

pj = 0
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arg max
b

d∑
j=1

pj ln b(j) = p

independent of the payoffs

W ∗ =
d∑

j=1

pj ln(pjoj)

usual choice of payoffs:

oj =
1

pj

W ∗ = 0

any gambling strategy has negative growth rate
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Consequences

Corollary: with large probability

Sn(b) is not close to E{Sn(b)}

Proof: {
−δ <

1

n
lnSn(b)− E{ln 〈b , X1〉} < δ

}
{
−δ + E{ln 〈b , X1〉} <

1

n
lnSn(b) < δ + E{ln 〈b , X1〉}

}
{

en(−δ+E{ln〈b , X1〉}) < Sn(b) < en(δ+E{ln〈b , X1〉})
}
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Sn(b) is close to enE{ln〈b , X1〉}

E{Sn(b)} = E{
n∏

i=1

〈b , Xi 〉} =
n∏

i=1

〈b , E{Xi}〉 = en ln〈b , E{X1}〉

by Jensen inequality

ln 〈b , E{X1}〉 > E{ln 〈b , X1〉}

therefore
Sn(b) is much less than E{Sn(b)}
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Naive approach

arg max
b

E{Sn(b)}

because of
E{Sn(b)} = 〈b , E{X1}〉n

arg max
b

E{Sn(b)} = arg max
b

〈b , E{X1}〉

arg maxb 〈b , E{X1}〉 is a portfolio vector having 1 at the position,
where E{X1} has the largest component
it is a dangerous portfolio
Markowitz:

arg max
b:Var(〈b , X1〉)≤λ

〈b , E{X1}〉
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Semi-log-optimal portfolio

log-optimal:
arg max

b
E{ln 〈b , X1〉}

Taylor expansion: ln z ≈ h(z) = z − 1− 1
2(z − 1)2

semi-log-optimal:

arg max
b

E{h(〈b , X1〉)} = arg max
b

{〈b , m〉 − 〈b , Cb〉}

Connection to the Markowitz theory.
Gy. Ottucsák and I. Vajda, ”An Asymptotic Analysis of the
Mean-Variance portfolio selection”, Statistics and Decisions, 25,
pp. 63-88, 2007.
http://www.szit.bme.hu/ õti/portfolio/articles/marko.pdf
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http://www.szit.bme.hu/ õti/portfolio/articles/marko.pdf

Györfi Machine learning and portfolio selections. I.



Semi-log-optimal portfolio

log-optimal:
arg max

b
E{ln 〈b , X1〉}

Taylor expansion: ln z ≈ h(z) = z − 1− 1
2(z − 1)2

semi-log-optimal:

arg max
b

E{h(〈b , X1〉)} = arg max
b

{〈b , m〉 − 〈b , Cb〉}

Connection to the Markowitz theory.
Gy. Ottucsák and I. Vajda, ”An Asymptotic Analysis of the
Mean-Variance portfolio selection”, Statistics and Decisions, 25,
pp. 63-88, 2007.
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