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Growth rate

investment in the stock market
d assets
S,g') price of asset j at the end of trading period (day) n

initial price SY) =1,/ =1,....d
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average growth rate
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asymptotic average growth rate
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Static portfolio selection: single period investment

the aim is to achieve max; wo)

static portfolio selection

a portfolio vector b = (b(1), ... b(9))

pU) >0, Zj pU) =1

b gives the proportion of the investor’'s capital invested in stock j
initial capital S

Sn="50Y bWSY
J
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assume that bU) > 0

1 In (maxSob(j)S,(,j)> < %In S, < %In <max50db(j)5,(,j)>

n J J

max <1 In(SobW)) + 1 In S,(,j)> < E InS,
i \n n n

< max <1 In(Sodb")) + E In S,(,j)>
Jio\n n

1 1 ; .
lim =InS, = lim max—In 5,(71) = max WV
n—oo N n—oo j n J

we can do much better using multi-period investment
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Dynamic portfolio selection: multi-period investment

relative prices
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Xj = (x.(l) x(d)) the return vector on trading period i

S X
multi-period investment
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Dynamic portfolio selection: multi-period investment

relative prices

()
0) _ Si
X = 5
Sith
X; = (x,.(l), .. .x,.(d)) the return vector on trading period i
multi-period investment
()

x;”’ is the factor by which capital invested in stock j grows during
the market period i

Constantly Re-balanced Portfolio (CRP)

a portfolio vector b = (b(1), ... b(9))
bU) gives the proportion of the investor’s capital invested in stock j
b is the portfolio vector for each trading day
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for the first trading period Sy denotes the initial capital
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for the first trading period Sy denotes the initial capital

d
S1=5Y b =S (b, x1)
j=1

for the second trading period, S1 new initial capital
S2=51-(b, x2) =50 (b, x1) (b, x2).

for the nth trading period:

S, =5,_1 <b, Xn> =5 H <b, X,‘> = SoenW"(b)
i=1

with the average growth rate

W,(b) = %Zln (b, x;).
i=1
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log-optimum portfolio

Special market process: X1, Xp, ... is independent and identically
distributed (i.i.d.)

log-optimum portfolio b*
E{lIn(b*, X1)} = max E{In(b, X1)}

Best Constantly Re-balanced Portfolio (BCRP)
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Optimality

If Sy = Sp(b*) denotes the capital after trading period n achieved
by a log-optimum portfolio strategy b*,

then for any portfolio strategy b with capital S, = S,(b) and for
any i.i.d. process {X,}>,

.1 .1
lim =InS, < lim =InS;; almost surely

n—oo n n—oo n
and 1
lim —InS; = W* almost surely,
n—oo n
where

W* = E{In (b*, X;)}

is the maximal growth rate of any portfolio.
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1 1 <
~InS, = n;|n<b,x,>
1 n
= n;E{|”<baxi>}
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1 1 Z
;lnSn - ;i:l In <baxl>
1 n
. Ei_le{m (b, Xi)}

+ ,lvi(ln (b, X;) —E{In(b, X;)})
i=1
and
TR S
i=1

n ,112 (In (b*, X;) — E{In (b*, X;}})
i=1
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gambling, horse racing, information theory

Kelly (1956)

Latané (1959)

Breiman (1961)

Finkelstein and Whitley (1981)
Barron and Cover (1988)
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gambling, horse racing, information theory

Kelly (1956)

Latané (1959)

Breiman (1961)

Finkelstein and Whitley (1981)
Barron and Cover (1988)

Chapter 15 of D. G. Luenberger, Investment Science. Oxford
University Press, 1998.
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Example 1: 1 stock + cash

d=2, X = (x(l),x(2))
Stock:
@) _ 2 with probability 1/2,
~ | 1/2 with probability 1/2.
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Example 1: 1 stock + cash

d=2, X = (x(l),x(2))
Stock:
X1 _ with probability 1/2,
1/2 with probability 1/2.

E{XMY=1/2.(24+1/2)=5/4>1

E{s{ = {Hx } (5/4)"
What about 5,(,1) or w2

1 1
w lim —1InS, nhlnoo - Eﬁ In X; E{ln X'"}

n—oo N

1/2In2+1/2In(1/2) =

zero growth rate
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Cash:

zero growth rate
portfolio
b=(b1-0b)

E{ln(b, X)} = 1/2(In(2b+ (1 — b)) + In(b/2 + (1 — b))
= 1/2In[(1+ b)(1 — b/2)]
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Cash:

zero growth rate
portfolio
b=(b1-0b)

E{ln(b, X)} = 1/2(In(2b+ (1 — b)) + In(b/2 + (1 — b))
= 1/2In[(1+ b)(1 — b/2)]

log-optimal portfolio
b* =(1/2,1/2)

asymptotic average growth rate
E{ln(b*, X)} =1/2In(9/8) = 0.059 = W*

positive growth rate
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Example 2: 2 stocks -+ cash

d=3, X = (x(l),x(2),x(3))

Stocks:
@) _ 2 with probability 1/2,
~ | 1/2 with probability 1/2.
x@ _ 2 with probability 1/2,
~ | 1/2 with probability 1/2.
Cash:

XG) =1
log-optimal portfolio
b* = (0.46,0.46,0.08)
asymptotic average growth rate

E{In (b*, X)} = 0.112 = W*
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log-optimal portfolio

b* = (1/3,1/3,1/3,0)
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Example 3: 3 stocks + cash

d =4, X = (XMW, x@ x6) x*)
log-optimal portfolio

b* = (1/3,1/3,1/3,0)

the cash has zero weight
asymptotic average growth rate

E{In (b*, X)} = 0.152 = W*
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Example 4: many stocks
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Example 4: many stocks

d is large
log-optimal portfolio

b*=(1/d,...,1/d)
asymptotic average growth rate

E{In (b*, X)} = 0.223 = W*
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horse j wins with probability p;
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Example 5: horse racing

d horses in a race
horse j wins with probability p;
payoff o;: investing 1$ on horse j results in o; if it wins, otherwise

0%

X =(0,...,0,0;,0,...,0)

if horse j wins
repeated races

E{ln(b, X)} = ijln (V) oj) ijlnb(’ —I—ijlnoj

j=1

therefore

argmax E{ln(b, X)} = argmaXZp In bU)
b
Jj=1
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arg max p;iIn pU)
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d
arg max p;iIn pU)

Kullback-Leibler divergence:

d
f§: P
KL(pvb) - — pJ In b(J)
J:
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d
arg max p;iIn pU)

Kullback-Leibler divergence:
d p;
_ Z ) i
KL(p7 b) - — pJ In b(J)
J:

basic property:
KL(p,b) > 0
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d
arg max p;iIn pU)

Kullback-Leibler divergence:
d p;
_ Z ) i
KL(p7 b) - — pJ In b(J)
J:

basic property:

KL(p,b) > 0
Proof:
d .
pU)
KL(p,b) =—> pjln—
=1 Pi
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d
arg max p;iIn pU)

Kullback-Leibler divergence:
d .
KL(p.b) = _pjln %
Jj=1
basic property:

KL(p,b) > 0
Proof:

d ; d ;
pU) pU)
KL(p,b) =—> pjln— —Zm(_—l
j=1 Pi =1 Pi
d d
— Y =0
j=1 j=1

v
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argmaprj In bU) = p
b ‘
j=1
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d
argmaprj In bU) = p
b ‘
j=1

independent of the payoffs

d
W* =" pjin(pjo)
=1
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d
argmaprj In bU) = p
b ‘
j=1

independent of the payoffs
d
W* =" pjin(pjo)
j=1

usual choice of payoffs:

0 — —
)
Pj
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d
argmaprj In bU) = p
b ‘
j=1

independent of the payoffs
d
W* =" pjin(pjo)
j=1

usual choice of payoffs:

o1
g) pj
W*=0

any gambling strategy has negative growth rate

Gyorfi Machine learning and portfolio selections. I.
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Consequences

Corollary: with large probability

Sn(b) is not close to E{S,(b)}
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Consequences

Corollary: with large probability
Sn(b) is not close to E{S,(b)}

Proof:
{—5 < % InSy(b) — E{In (b, X1)} < 5}

{—5+ E{in(b, X1)} < %msn(b) <5+E{n(b, x1>}}

{en(—5+E{In(b,X1)}) < Sn(b) < en(5+E{|n<b,x1>})}
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Sp(b) s close to enElin(b, X1)}

n

E{S,(b)} = E{ﬁ (b, X))} = H (b, E{X;}) = enin(b, E{X:})
i=1

i=1
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Sp(b) s close to enElin(b, X1)}

n

E{S,(b)} = E{ﬁ (b, X))} = H (b, E{X;}) = enin(b, E{X:})
i=1

i=1
by Jensen inequality

In(b, E{X1}) > E{In (b, X1)}
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Sp(b) s close to  e"E{In(b. X}

n

E{S,(b)} = E{ﬁ (b, X))} = H (b, E{X;}) = enin(b, E{X:})
i=1

i=1
by Jensen inequality
In <b7 E{X1}> > E{ln <b7 X1>}

therefore
Sp(b) is much less than E{S,(b)}

Gyorfi Machine learning and portfolio selections. I.



Naive approach

arg max E{S,(b)}
b

Gyorfi Machine learning and portfolio selections. I.



Naive approach

arg max E{S,(b)}
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Naive approach

arg max E{S,(b)}
b

because of

E{Sn(b)} = (b, E{X1})"

arg max E{S,(b)} = arg max (b, E{X1})
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Naive approach
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arg max E{S,(b)} = arg max (b, E{X1})

argmaxy, (b, E{X1}) is a portfolio vector having 1 at the position,
where E{X;} has the largest component
it is a dangerous portfolio

Markowitz:
argmax (b, E{X1})
b:Var((b, X1))<\
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Gy. Ottucsadk and I. Vajda, "An Asymptotic Analysis of the
Mean-Variance portfolio selection”, Statistics and Decisions, 25,
pp. 63-88, 2007.

http://www.szit.bme.hu/ oti/portfolio/articles/marko.pdf
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