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Introduction

Introduction

Trimming methods used in Statistics as a way to robustify procedures.

Classical trimming: symmetric (trimmed mean, ...).

Alternative trimming methods:

depth: introduced by Donoho and Gasko (1992)
peeling: convex peeling (Barnett, 1976; and Bebbington, 1978) or
peeling based on ellipsoids (Titterington, 1978)
“impartial” trimming: Rousseeuw (1985) and Gordaliza (1991)

Impartial trimming methodology: location estimation (Rousseeuw, 1985; and
Gordaliza, 1991), regression problems (Rousseeuw, 1985), cluster analysis
(Cuesta-Albertos et al. 1997, 1998, 2002, 2008; and Garćıa-Escudero et al.
1999, 1999a, 1999b, 2003, 2005) and principal component analysis
(Maronna, 2005)

Data-driven trimming methods: goodness-of-fit (Alvarez-Esteban et al,
2008)

Eustasio del Barrio Trimming methods in model checking 3 / 46



Introduction Motivation

Model Validation: Similar Distributions

Does the generic drug have the same therapeutic effect as the reference drug?

Reference Drug
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Due to possible existence of subgroups with own peculiarities (ethnic, professional,
...) maybe enough if generic drug has the same effect for 95% of patients.
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Introduction Motivation

Model Validation: Goodness-of-Fit

Aim: Studying the effect of a new drug to control the cholesterol level.

Cholesterol (center 1)
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Cholesterol (center 2)
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Can this sample be obtained from a gaussian population?
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Introduction Motivation

Departures from the Model

One-sample problems: observe X ∼ P , check P = Q or P ∈ F

Two-sample problems: observe X ∼ P , Y ∼ Q, check P = Q

Often P = Q or P ∈ F not really important; instead P ' Q or P ' F

Usually we fix θ = θ(P ) and a metric, d. Rather than testing

H0 : θ(P ) = θ(Q) vs. Ha : θ(P ) 6= θ(Q)

we consider

H0 : d(θ(P ), θ(Q)) ≤ ∆ vs. Ha : d(θ(P ), θ(Q)) > ∆

H0 : d(θ(P ), θ(Q)) > ∆ vs. Ha : d(θ(P ), θ(Q)) ≤ ∆
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Introduction

The ‘Core’ of a Distribution

Removing 5% of data in first sample and 5% in second the remaining data in
both samples produce very similar histograms

Cholesterol (center 1)
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Cholesterol (center 2)
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The core of the underlying distributions are similar

Examples: trying to assess similarity of two human populations with different
inmigration patterns; checking equality in different measurements of the same
phisical magnitude

Eustasio del Barrio Trimming methods in model checking 7 / 46



Introduction

Trimming the Sample

Remove a fraction, of size at most α, of the data in the sample for a better
comparison to a pattern/other sample:

replace
1
n

n∑
i=1

δxi
with

1
n

n∑
i=1

biδxi

bi = 0 for observations in the bad set; bi/n = 1
n−k others,

k number of trimmed observations; k ≤ nα and 1
n−k ≤

1
n

1
1−α Instead

keeping/removing we could increase weight in good ranges (by 1
1−α at most);

downplay in bad zones, not necessarily removing

1
n

n∑
i=1

biδxi
, with 0 ≤ bi ≤

1
(1− α)

, and
1
n

n∑
i=1

bi = 1.
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Introduction

Examples of Trimming Techniques

Nonparametric assessment of bioequivalence: α-trimmed version of the Mallows
distance (Munk and Czado, 1998)

P ∼ F , Q ∼ G

Γα,p(F,G) =
1

1− α

{∫ 1−α/2

α/2

|F−1(s)−G−1(s)|pds

}1/p

H : Γα,p(F,G) > ∆0 vs K : Γα,p(F,G) ≤ ∆0

Trimming introduced to robustify the procedure

Trimming at tails may not work
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Introduction

Cholesterol (center 1)
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Introduction Data-driven Trimming Methods

Data-driven Trimming Methods

Old Faithfull Geyser example
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Horizontal axis: Eruption time (min.)
Vertical axis: Previous eruption time

A more flexible way to trim:
data structure itself tell us
which is the best way of
removing data.

Cuesta-Albertos, Gordaliza &
Matrán (1997) proposed this
trimming procedure to robustify
k-means

In the multivariate setting is
more clear the inexistence of a
priori directions to trim as well
as the possible existence of
“inliers”.
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Trimmed Distributions Definitions

Trimmed Distributions

(X , β) measurable space; P(X , β) prob. measures on (X , β), P ∈ P(X , β)

Definition

For 0 ≤ α ≤ 1

Rα(P ) =
{
Q ∈ P(X , β) : Q� P,

dQ

dP
≤ 1

1− α
P -a.s.

}

Equivalently, Q ∈ Rα(P ) iff Q� P and
dQ
dP = 1

1−αf with 0 ≤ f ≤ 1

If f ∈ {0, 1} then f = IA with
P (A) = 1−α: trimming reduces to P (·|A).

Trimming allows to play down the weight of some regions of the measurable
space without completely removing them from the feasible set
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Trimmed Distributions Properties

Trimmed Distributions II

Some basic properties:

Proposition

(a) α1 ≤ α2 ⇒ Rα1(P ) ⊂ Rα2(P )

(b) Rα(P ) is a convex set.

(c) For α < 1, Q ∈ Rα(P ) iff Q(A) ≤ 1
1−αP (A) for all A ∈ β

(d) If α < 1 and (X , β) is separable metric space then Rα(P ) is closed for the
topology of the weak convergence in P(X , β).

(e) If X is also complete, then Rα(P ) is compact.

Eustasio del Barrio Trimming methods in model checking 13 / 46



Trimmed Distributions Properties

Parametrizing Trimmed Distributions: X = R

Define

Cα :=
{
h ∈ AC[0, 1] : h(0) = 0, h(1) = 1, 0 ≤ h′ ≤ 1

1− α

}
Cα is the set of distribution functions of probabilities in Rα(U(0, 1))

Call h ∈ Cα a trimming function

Take P with d.f. F . Let Ph the prob. with d.f. h ◦ F : Ph ∈ Rα(P ); in fact

Proposition

Rα(P ) = {Ph : h ∈ Cα}

The parametrization need not be unique (it is not if P is discrete)

A useful fact: Cα is compact for the uniform topology
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Trimmed Distributions Properties

Parametrizing Trimmed Distributions: general X

Proposition

If T transports Q to P , then

Rα(P ) =
{
Q∗ ◦ T−1 : Q∗ ∈ Rα(Q)

}
.

If Q = U(0, 1), P ∼ F , T = F−1 we recover the Cα-parametrization

For separable, complete X we can take Q = U(0, 1); T Skorohod-Dudley-Wichura

For X = Rk, more interesting Q� `k, T the Brenier-McCann map: the unique
cyclically monotone map transporting Q to P .
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Trimming with a common patern

Measuring dissimilarities through common trimming

d a metric on F ⊂ P(Rk, β); P0 ∈ P(Rk, β); P0 � `k

T (P1, P2) = min
P∗0 ∈Rα(P0)

d(P ∗0 ◦ T−1
1 , P ∗0 ◦ T−1

2 )

Ti Brenier-McCann map from P0 to Pi

P0,α = argmin
P∗0 ∈Rα(P0)

d(P ∗0 ◦ T−1
1 , P ∗0 ◦ T−1

2 )

P0,α is a best (P0, α)-trimming for P1 and P2

On R, taking P0 = U(0, 1)

T (P,Q) = min
h∈Cα

d(Ph, Qh)

hα = argmin
h∈Cα

d(Ph, Qh)

hα is a best α-matching function for P and Q

h 7→ d(Ph, Qh) continuous in ‖ · ‖∞ for dBL,Wp,. . .⇒
a best α-matching function exists
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Trimming with a common patern

Wasserstein distance

We consider the Wasserstein metric, Wp, p ≥ 1,

Wp
p (P, Q) = inf

π∈Π(P,Q)
{

R
‖x− y‖pdπ(x, y)}

Wp a metric on Fp, probabilities with finite p-th moment

Proposition

P ∈ Fp ⇒ Rα(P ) ⊂ Fp and Rα(P ) compact in the Wp topology

On the real line

Wp
p (P,Q) =

∫ 1

0

|F−1(t)−G−1(t)|pdt, P ∼ F,Q ∼ G, P,Q ∈ Fp(R)

For Wp, hα easy to compute: P ∼ F , Q ∼ G

W2
2 (Ph, Qh) =

Z 1

0

`
F−1 ◦ h−1 −G−1 ◦ h−1´2

=

Z 1

0

(F−1 −G−1)2h′
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Trimming with a common patern

Define LF,G(x) = `{t ∈ (0, 1) : |F−1(t)−G−1(t)| ≤ x}, x ≥ 0

Then h′α(t) = 1
1−αI(|F

−1(t)−G−1(t)| ≤ L−1
F,G(1− α))

In general, (mild assumptions)

W2
2 (P ∗0 ◦ T−1

1 , P ∗0 ◦ T−1
2 ) =

∫
‖T1(x)− T2(x)‖2dP ∗0 (x),

dP0,α

dP0
=

1
1− α

I{‖T1−T2‖≤cα(P1,2)}

and

T 2(P1, P2) =
∫
‖T1(x)− T2(x)‖2dP0,α(x)
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Trimming with a common patern

Matching functions: P = (1− β)U(0, 1) + βU(γ, γ + δ), Q = U(0, 1)

hα = argmin
h∈Cα

W2(Ph, Qh)
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Trimming with a common patern

Trimmed comparisons

Using trimmings for tests about the core of the distribution of the data

One sample problems:
Assume X1, . . . , Xn i.i.d. P and fix Q. We are interested in testing

H1 : T (α)(P,Q) = 0 against K1 : T (α)(P,Q) > 0

H2 : T (α)(P,Q) > ∆ against K2 : T (α)(P,Q) ≤ ∆

Two sample problems:
Assume X1, . . . , Xn i.i.d. P and Y1, . . . , Ym i.i.d. Q. Still interested in testing Hi

against Ki, but here Q is unknown

In the one sample case we reject H1/H2 for large/small T
(α)
n = T (α)(Pn, Q)

In the two sample case we reject H1/H2 for large/small T
(α)
n,m = T (α)(Pn, Qm)

Pn, Qm empirical measures

In general, T
(α)
n , T

(α)
n,m not distribution free; tests use asymptotics, bootstrap,. . .
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Trimming with a common patern

Asymptotics for T
(α)
n (d = W2, T (α)(P,Q) = 0)

hn,α = argmin
h∈Cα

d((Pn)h, Qh) is the α-trimmed empirical matching function

T
(α)
n = d((Pn)hn,α , Qhn,α)

Define Cα(P,Q) = {h ∈ Cα : d(Ph, Qh) = 0}

Cα(F, F ) = Cα; F 6= G ⇒ Cα(F,G)  Cα; Cα(F,G) 6= ∅ iff T (α)(P,Q) = 0

The size of Cα(F,G) depends on `{t ∈ (0, 1) : F−1(t) 6= G−1(t)}

Cα(F,G) compact for ‖ · ‖∞

Theorem

n(T (α)
n )2 →

w
min

h∈Cα(F,G)

∫ 1

0

B(t)2

f2(F−1(t))
h′(t) dt =

∫ 1

0

B(t)2

f2(F−1(t))
h′α,F,G(t) dt

hn,α →
w
hα,F,G
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Trimming with a common patern

Asymptotics for T
(α)
n (d = W2, T (α)(P,Q) > 0)

Theorem
√
n((T (α)

n )2 − (T (α)(P,Q))2) →
w
N(0, σ2

α(P,Q))

σ2
α(P,Q) = 4

(∫ 1

0
l2(t)dt−

(∫ 1

0
l(t)dt

)2
)
,

where
l(t) =

∫ F−1(t)

F−1(1/2)
(x−G−1(F (x)))h′α(F (x))dx,

and h′α(t) = 1
1−αI(|F

−1(t)−G−1(t)| ≤ L−1
F,G(1− α))

σ2
α(P,Q) consistently estimated by

s2n,α(G) = 4
(1−α)2

1
n

∑n−1
i,j=1(i ∧ j −

ij
n )an,ian,j ,

an,i = (X(i+1)−X(i))((X(i+1)+X(i))/2−G−1(i/n))I
(|X(i)−G−1

“
i
n

”
|≤`−1

Fn,G(1−α))
.
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Trimming with a common patern

Asymptotics for T
(α)
n,m (d = W2, T (α)(P,Q) > 0)

Theorem

If n
n+m → λ ∈ (0,∞)√

n

n+m
((T (α)

n,m)2 − (T (α)(P,Q))2) →
w
N(0, (1− λ)σ2

α(P,Q) + λσ2
α(Q,P ))

(1− λ)σ2
α(P,Q) + λσ2

α(Q,P )) consistently estimated by

s2n,m,α = m
n+ms

2
n,α(Gm) + n

n+ms
2
m,α(Fn)
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Trimming with a common patern

Data Example: Cholesterol and fibrinogen levels

Data: Cholesterol and fibrinogen levels in two sets of patients (of sizes 116 and
141) in two clinical centers

Center 1 (α= 0.05)

Cholesterol

0 200 400 600 800

Center 2 (α= 0.05)

Cholesterol

0 200 400 600 800

For fibrinogen data, data-driven trimming ' symmetric trimming (α = 0.05)

For cholesterol data, significant trimming also at central regions in both
samples; this improves the level of similarity

Impartial trimming useful as descriptive tool to detect ranges of dissimilarity
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Trimming with a common patern

Data Example: GPA

Data: College Grade Point Average ∈ [0, 4], 234 students
Students classified by the Gender and Major (1 = CS, 2 = Eng, 3 = Other)
Distributional similarity males (n = 117) vs females (m = 117); CS (n = 78) vs
Eng (m = 78)
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Trimming with a common patern

Test p-value
GPA by gender GPA by major

Shapiro-Wilks (Sample 1) 0.0176 0.0360
Shapiro-Wilks (Sample 2) 0.0217 0.0001
Kolmogorov-Smirnov 0.0028 0.0040
Wilcoxon-Mann-Whitney 0.0004 0.0175
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Trimming with a common patern

p-value curves

Test H0 : T (α)(F,G) > ∆2
0 against Ha : T (α)(F,G) ≤ ∆2

0

We use the statistic

Zn,m,α =
√

nm

n+m

(T (α)
n,m −∆2

0)
sn,m,α

.

Asymptotic p-value curve:

P (∆0) := sup
{(F,G):(F,G)∈H0}

lim
n,m→∞

PF,G (Zn,m,α ≤ z0) = Φ
(√

nm
n+m

T (α)
n,m−∆2

0
sn,m,α

)
,

z0 = observed value of Zn,m,α (sup attained when distance = ∆0)
Use of asymptotic p-value curves:

For a fixed ∆0 (controlling degree of dissimilarity), we can find the level of
significance at which F and G cannot be assumed similar

For a fixed test level (p-value), we can find the value of ∆0 such that for
every ∆ ≥ ∆0 we should reject the hypothesis H0 : T (α)(F,G) ≥ ∆2
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Trimming with a common patern
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p-value curves using impartial trimming and Munk & Czado (MC)

(For F and G different only in location, Wasserstein distance = absolute
difference of locations)

GPA points of males and females show similarity up to ∆0 = 0.32 to
0.36 (between 11.4% to 12.8% of the average of the medians of the samples)

using symmetrical trimmings cutpoint for ∆0 = 0.56 to 0.59 (20% to
21% of the average of the medians of the samples)
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Trimming with a common patern

Data-driven common trimming is a useful tool for checking model adequacy
in noisy sets of data

It works for other applications (e.g., robust normality testing,
Álvarez-Esteban et al. (2008c))

It works for multivariate data, functional data (open problems)

Other trimming patterns can be of interest (maybe much more interesting)

T1(P1, P2) := min
P∗2 ∈Rα(P2)

d(P1, P
∗
2 ),

T2(P1, P2) := min
P∗1 ∈Rα(P1),P∗2 ∈Rα(P2)

d(P ∗1 , P
∗
2 ),

T1 removes contamination: P2 = (1− ε)P1 + εQ, ⇒ P1 ∈ Rα(P2) (α ≥ ε)

(1− α)P1(A) ≤ (1− ε)P1(A) + εQ(A) ∀A ∈ β

Hence,
T1(P1, P2) = 0
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Trimming with a common patern

One-sided/two-sided/common trimming
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Optimal incomplete transportation of mass

Optimal incomplete transportation of mass

Setup

Supply: Mass (pile of sand, some other good) located around X

Demand: Mass needed at several locations scattered around Y

Assume total supply exceeds total demand (demand=(1−α)× supply, α ∈ (0, 1))

We don’t have to move all the initial mass; some α- fraction can be dismissed

Find a way to complete this task with a minimal cost.

Rescale to represent the target distribution by Q, p.m. on Y

Represent the initial distribution by 1
1−αP , P p.m. on X

c(x, y) cost of moving a unit of mass from x to y

(Incomplete) transportation plan: a way to move part of the mass in 1
1−αP to Q

represented by π, a joint probability measure on X × Y
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Optimal incomplete transportation of mass

Optimal incomplete transportation of mass

Target distribution = Q ⇔

π(X ×B) = Q(B), B ⊂ Q

Amount of mass taken from a location in X cannot exceed available mass:

π(A× Y ) ≤ 1
1− α

P (A), A ⊂ X

π transportation plan ⇔ π ∈ Π(Rα(P ), Q)
Now

inf
π∈Π(Rα(P ),Q)

∫
X×Y

c(x, y)dπ(x, y)

is the optimal incomplete transportation problem

If X = Y Banach separable and c(x, y) = ‖x− y‖2 then

W2
2 (Rα(P ), Q) = inf

π∈Π(Rα(P ),Q)

∫
X×Y

c(x, y)dπ(x, y)

Eustasio del Barrio Trimming methods in model checking 32 / 46



Optimal incomplete transportation of mass

Dual problem

Write I[π] =
∫
X×Y c(x, y)dπ(x, y) and

Jα(ϕ,ψ) =
1

1− α

∫
X

ϕdP +
∫
Y

ψdQ

(ϕ,ψ) ∈ Cb(X)× Cb(Y ) such that

ϕ(x) ≤ 0 and ϕ(x) + ψ(y) ≤ c(x, y), x ∈ X, y ∈ Y

For π ∈ Π(Rα(P ), Q)

1
1− α

∫
X

ϕdP +
∫
Y

ψdQ ≤
∫
X×Y

(ϕ(x)+ψ(y))dπ(x, y) ≤
∫
X×Y

c(x, y)dπ(x, y)

Therefore
sup

(ϕ,ψ)∈Φc

Jα(ϕ,ψ) ≤ inf
π∈Π(Rα(P ),Q)

I[π]
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Optimal incomplete transportation of mass

Theorem

sup
(ϕ,ψ)∈Φc

Jα(ϕ,ψ) = min
π∈Π(Rα(P ),Q)

I[π]

and the min in the right-hand side is attained.

X, Y complete, separable; c lower semicontinuous

For X and Y compact, c continuous, duality follows from general duality
(Fenchel-Rockafellar): E normed space, E∗ dual, A, B convex then

inf
x∈E

(A(x) +B(x)) = max
y∈E∗

(−A∗(−y)−B∗(y))

provided A(x0) <∞, B(x0) <∞ and A is continuous at x0

A∗(y) = sup
x∈E

(〈y, x〉 −A(x)), y ∈ E∗ Legendre-Fenchel transform

For c unif. continuous, bounded the sup is also attained in Φc; without
boundedness enlarged Φc required
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Optimal incomplete transportation of mass

Incomplete transportation with quadratic cost

X = Y = Rk, c(x, y) = ‖x− y‖2

Φ̃c class of pairs (ϕ,ψ) ∈ L1(P )× L1(Q) such that

ϕ(x) ≤ 0 P − a.s. and ϕ(x) + ψ(y) ≤ c(x, y), P ×Q− a.s..

Theorem

max
(ϕ,ψ)∈Φ̃c

Jα(ϕ,ψ) = min
π∈Π(Rα(P ),Q)

I[π].

max attained at (ϕ,ψ) with ϕ(x) = ‖x‖2 − a0(x) and ψ(y) = ‖y‖2 − 2a∗0(y)

a0 convex, lower semicontinuous, P -integrable with a0(x) ≥ ‖x‖2/2, x ∈ Rn
such that

1
1− α

∫
a0dP +

∫
a∗0dQ = min

a

[
1

1− α

∫
adP +

∫
a∗dQ

]
,

a∗ convex-conjugate of a
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Optimal incomplete transportation of mass

Characterization of optimal incomplete t.p.’s

P and Q p.m. on Rk with finite second moment

Theorem

(i) π ∈ Π(Rα(P ), Q) optimal incomplete t.p. iff there exists a convex, lower

semicontinuous satisfying a(x) ≥ ‖x‖2
2 , x ∈ Rk, such that y ∈ ∂a(x) π-a.s.

and 1
1−α

∫
(‖x‖2 − 2a(x))dP (x) =

∫
(‖x‖2 − 2a(x))dπ(x, y).

ϕ̃(x) = ‖x‖2 − 2a(x), ψ̃(y) = ‖y‖2 − 2a∗(y) maximize Jα(ϕ,ψ).

(ii) Q absolutely continuous, a as in (i) ⇒ a∗ Q-a.s. diferentiable and there is a
unique optimal incomplete t.p.: π = Q ◦ (∇a∗ × Id)−1

(iii) P with density f , Pα optimal α-trimming ⇒ Pα has density fα, a as P -a.s.
differentiable and π = Pα ◦ (Id×∇a)−1 is an optimal t.p.

Further
(
a(x)− ‖x‖2

2

) (
1

1−αf(x)− fα(x)
)

= 0, a.e.
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Optimal incomplete transportation of mass

Characterization of optimal incomplete t.p.’s (II)

Corollary

If Q is absolutely continuous there is a unique Pα ∈ Rα(P ) such that

W2
2 (Pα, Q) = min

R∈Rα(P )
W2

2 (R,Q).

More precisely, Pα = Q ◦ (∇a∗)−1 and

min
R∈Rα(P )

W2
2 (R,Q) =

∫
Rn

‖y −∇a∗(y)‖2dQ(y).

Corollary (Trim or move)

If P absolutely continuous, Pα ◦ (∇a)−1 = Q and

‖x−∇a(x)‖2
(

1
1−αf(x)− fα(x)

)
= 0, a.e.

min
R∈Rα(P )

W2
2 (R,Q) =

1
1− α

∫
Rn

‖x−∇a(x)‖2 dP (x).
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Optimal incomplete transportation of mass

Monge-Ampère equation in incomplete transportation

Theorem

If P and Q absolutely continuous, Pα = argminR∈Rα
W2(R,Q) then

(fα(x)− 1
1−αf(x))(fα(x)− g(x)) = 0 a.e..

If ∇a(x) is the optimal incomplete transportation plan then

‖x−∇a(x)‖2
(

1
1−αf(x)− g(∇a(x)) detD2a(x)

)
= 0, a.e..
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Optimal incomplete transportation of mass

Doubly incomplete transportation of mass

Assume now we only have to satisfy a fraction of the demand, 1− α2

Total amount of demand to be served only a fraction of the total supply, 1− α1

Try to minimize the transportation cost.

This is the doubly incomplete transportation problem:

min
π∈Π(Rα1 (P ),Rα2 (Q))

I[π] = min
π∈Π(Rα1 (P ),Rα2 (Q))

∫
X×Y

c(x, y)dπ(x, y).

The min is attained if X,Y complete, separable

If X = Y Banach separable, c(x, y) = ‖x− y‖2 then

W2
2 (Rα1(P ),Rα2(Q)) = min

π∈Π(Rα1 (P ),Rα2 (Q))

∫
X×Y

c(x, y)dπ(x, y)
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Optimal incomplete transportation of mass

Dual problem

Jα1,α2(ϕ,ψ) =
1

1− α1

∫
ϕdP +

1
1− α2

∫
ψdQ− α1

1− α1
ϕ̄− α2

1− α2
ψ̄

(ϕ,ψ) ∈ Ψ, class of pairs in Cb(Rk)× Cb(Rk) s.t. ϕ(x) + ψ(y) ≤ ‖x− y‖2

ϕ̄ = supx ϕ(x), ψ̄ = supy ψ(y)

Theorem

max
(ϕ,ψ)∈Φ

Jα1,α2(ϕ,ψ) = min
π∈Π(Rα1 (P ),Rα2 (Q))

I[π]

and the max in the left-hand is attained.

No need to enlarge Ψ to have the max attained

max attained at ϕ(x) = ‖x‖2 − 2a(x), ψ(y) = ‖y‖2 − 2a∗(y) with a finite convex
s.t.

‖x‖2

2
−M ≤ a(x) ≤ ‖x‖2

2
+M

as a consequence, a∗ finite convex s.t. ‖y‖2
2 −M ≤ a∗(y) ≤ ‖y‖2

2 +M
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Optimal incomplete transportation of mass

Characterization of optimal doubly incomplete t.p.’s

Theorem

(i) π ∈ Π(Rα1(P ),Rα2(P )) is an optimal incomplete t.p. iff there exists a
finite, convex s.t. ϕ(x) = ‖x‖2 − 2a(x) bounded for which

a(x) + a∗(y) = x · y π − a.s.

1
1− α1

∫
(ϕ(x)− ϕ̄)dP (x) =

∫
(ϕ(x)− ϕ̄)dπ(x, y)

1
1− α2

∫
(ψ(y)− ψ̄)dQ(y) =

∫
(ψ(y)− ψ̄)dπ(x, y)

(ii) If P absolutely continuous, π, a as in (i), then π = Pα1 ◦ (Id×∇a)−1,
Qα2 = Pα1 ◦ (∇a)−1 and

‖x−∇a(x)‖2(fα1(x)− 1
1−α1

f(x)) = 0 a.s.

Also, W2
2 (Rα1(P ),Rα2(Q)) =

1
1− α1

∫
Rn

‖x−∇a(x)‖2dP (x).
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Optimal incomplete transportation of mass

Uniqueness in doubly incomplete optimal transportation

P 7→ W2
2 (P,Q) is stricly convex if Q abs. continuous

(P,Q) 7→ W2
2 (P,Q) is not stricly convex in general, in fact

Theorem

If Q1 6= Q2 and there is no common o.t.p. T such that Q1 = P1 ◦ T−1 and
Q2 = P2 ◦ T−1, then

W2
2 (γP1 + (1− γ)P2, γQ1 + (1− γ)Q2) < γW2

2 (P1, Q1) + (1− γ)W2
2 (P2, Q2).

Strict convexity gives uniqueness of minimizer in W2(Rα(P ), Q); from duality:

Theorem

There exists a unique π0 ∈ Π(Rα1(P ),Rα2(Q)) such that

I[π0] = min
π∈Π(Rα1 (P ),Rα2 (Q))

I[π]

provided minπ∈Π(Rα1 (P ),Rα2 (Q)) I[π] > 0 and P or Q is absolutely continuous.

Eustasio del Barrio Trimming methods in model checking 42 / 46



Optimal incomplete transportation of mass

Optimal incomplete transportation plans: Examples
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Optimal incomplete transportation of mass

Consistency of best trimmed approximations/matchings

{Xn}n, {Yn}n sequences of i.i.d. r.v.’s; L(Xn) = P , L(Yn) = Q, P,Q ∈ F2(Rk)

Pn, Qn empirical distributions

Theorem

(a) If Q� `k and Pn,α := arg min
P∗∈Rα(Pn)

W2(P ∗, Q), then

W2(Pn,α, Pα) → 0 a.s., where Pα := arg min
P∗∈Rα(P )

W2(P ∗, Q).

(b) If P � `k and Qn,α ∈ Rα(Q) minimizes W2(Pn,Rα(Q)), then

W2(Qn,α, Qα) → 0 a.s., where Qα := arg min
Q∗∈Rα(Q)

W2(P,Q∗).

(c) If P or Q� `k then W2(Pn,α, Pα) → 0 and W2(Qn,α, Qα) → 0 a.s.,

where (Pα, Qα) := arg min{W2(P ∗, Q∗) : P ∗ ∈ Rα(P ), Q∗ ∈ Rα(Q)}.
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Conclusions

Conclusions/Future work

Data-driven trimming methods are a very powerful tool in Statistics

Even for model checking

Different trimming patterns can be of interest

A correct understanding of them (and use of the related tools) leads to some
probabilistic and computational challenges

Optimal transportation metric is a very useful choice

Lots of open problems!
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