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The last decade has witnessed the apparition of applied problems typified by very high-dimensional
variables, in marketing database or gene expression studies for instance. Graphical models (Lauritzen
(1996)) enable concise representations of associational relations between variables. If the graph is known,
the parameters of the model are easily estimated. However, a quite challenging issue is the selection of
the most appropriate graph for a given dataset. We consider this problem and the case of decomposable
Gaussian graphical models (Dawid and Lauritzen (1993)).

Let G = (V,E) be an undirected graph with vertices V = {1, . . . , p} and set of edges E. We suppose
that G is decomposable. To each vertex v ∈ V of the graph, we associate a random variable yv. Let
y = (y1, . . . , yp), a graphical model is a family of distributions on y which are Markov with respect to a
graph. A Gaussian graphical model is such that

y|G,ΣG ∼ Np (0p,ΣG) , (1)

where ΣG is a positive definite matrix which ensures that the distribution of y is Markov with respect
to G. ΣG ensures that the distribution of y is Markov iff (i, j) /∈ E ⇐⇒

(
Σ−1
G
)
(i,j)

= 0.
We observe a sample y1, . . . ,yn from (1) (the data are centered). We would like to identify the set of
most relevant graphs. For the considered multivariate random phenomenon, we are interested in the set
of most relevant conditional independence structures.

We consider the Bayesian paradigm. Conditionally on G, we use a Hyper-Inverse Wishart (HIW) dis-
tribution associated to the graph G as prior distribution on ΣG : ΣG |G, δG ,ΦG ∼ HIWG (δG ,ΦG) where
δG > 0 and ΦG is a p× p symmetric positive definite matrix. Conditionally on G, the HIW distribution
is conjugate

ΣG |G,y1, . . . ,yn, δG ,ΦG ∼ HIWG

(
δG + n,ΦG +

n∑
i=1

yi
(
yi
)T)

. (2)

Moreover, for such a prior, f(y|G, δG ,ΦG) =
hG(δG ,ΦG)

(2π)np/2hG

(
δG + n,ΦG +

n∑
i=1

yi
(
yi
)T) where hG is the

normalizing constant of the HIW distribution associated to the graph G. Finally, we assume a uniform
prior distribution in the space of graphs: π(G) ∝ 1. In that case,

π
(
G|y1, . . . ,yn, δG ,ΦG

)
∝ f(y|G, δG ,ΦG) . (3)

It is well-known that (3) is sensible to the specification of the hyper-parameters δG and ΦG (Giudici
and Green (1999), Jones et al. (2005)). In this work, we address this problem and present different
strategies. Then, we introduce a new sampling scheme to explore the space of graphs and conclude with
some experiments on simulated and real datasets.
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