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Consider a market consisting of d assets. The evolution of the market
in time is represented by a sequence of price vectors si,ss,... € Ri, where

Sp = (39), . .,ssld))
such that the 7-th component s%j ) of sn denotes the price of the j-th asset
on the n-th trading period. In order to normalize, put ng b= 1. {sn} has
exponential trend: ,

s = Wi oy WO

with average growth rate (average yield)
W,gj) = llnsg)
n

and with asymptotic average growth rate

In order to apply the usual prediction techniques for time series analysis
one has to transform the sequence price vectors {s,} into a more or less
stationary sequence of return vectors {x,} as follows:

Xy = (zﬁ}), .. ,m&d))
such that )
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Thus, the 7-th component :z:gf ) of the return vector X, denotes the amount
obtained after investing a unit capital in the j-th asset on the n-th trading

period.

The static portfolio selection is a single period investment strategy. A
portfolio vector is denoted by b = (b(1),...b(?)). The j-th component ()
of b denotes the proportion of the investor’s capital invested in asset 7. We
assume that the portfolio vector b has nonnegative components sum up to 1,
that means that short selling is not permitted. The set of portfolio vectors
is denoted by

d
Dy = {b = (6™, ..., 6@); 8) >0, S8l = 1} .
7j=1

For static portfolio selection, at time n = 0 we distribute the initial capital
Sp according to a fix portfolio vector b, i.e., if S,, denotes the wealth at the
trading period n, then

d
Sn =50 > bW,
1=1
One can show that

1 1 ; .
W := lim —InS, = lim max—lnsgf) :maXW(J).
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Thus, any static portfolio selection achieves the maximal growth rate max; w),

One can achieve even higher growth rate for long run investments, if
the tuning of the portfolio is allowed dynamically trading period after trad-
ing period. The dynamic portfolio selection is a multi-period investment
strategy, where at the beginning of each trading period we rearrange the
wealth among the assets. A representative example of the dynamic portfo-
lio selection is the constantly rebalanced portfolio (CRP), where we fix a
portfolio vector b € A4, i.e., we are concerned with a hypothetical investor
who neither consumes nor deposits new cash into his portfolio, but reinvest
his portfolio each trading period. Note that in this case the investor has to
rebalance his portfolio after each trading day to “corrigate” the daily price
shifts of the invested stocks.

Let Sy denote the investor’s initial capital. Then at the beginning of the
first trading period Sob() is invested into asset j, and it results in return



Sob(j):z:gj), therefore at the end of the first trading period the investor’s

wealth becomes J

Sl - SO Z b(J)wgJ) - SO (b: Xl) )
j=1
where (-, -) denotes inner product. For the second trading period, S; is the
new initial capital

32231'<b,X2>:SO'<b,X1>-<b,X2>.

By induction, for the trading period n the initial capital is S, 1, therefore

n

Sp="S8n_1(b,xs) =S [[ (b, xi).

=1

The asymptotic average growth rate of this portfolio selection is

.1 , 1 1
lim ~InS, = lim <n1n50+n21n(b,xi)>
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therefore without loss of generality one can assume in the sequel that the
initial capital So = 1.

If the market process {X;} is memoryless, i.e., it is a sequence of in-
dependent and identically distributed (i.i.d.) random return vectors then
we show that the best constantly rebalanced portfolio (BCRP) is the log-
optimal portfolio:

b* := argmax E{ln (b, X;)}.
bEA4
This optimality means that if S} = S,(b*) denotes the capital after day
n achieved by a log-optimum portfolio strategy b*, then for any portfolio
strategy b with finite E{(In (b, X;))?} and with capital S, = S,(b) and
for any memoryless market process {X,}*.,

1 1
lim —InS, < lim —InS; almost surely
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and maximal asymptotic average growth rate is

1
lim —InS; = W* :=E{ln (b*, X;)} almost surely.
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We show several ezamples for constantly rebalanced portfolio.

In order to decrease the computational complexity of log-optimal port-
folio we introduce the semzi-log-optimal portfolio, where the function Inz
is replaced by its second order Taylor expansion.

For a general dynamic portfolio selection, the portfolio vector may
depend on the past data. Let b = b; be the portfolio vector for the first
trading period. For initial capital S, we get that

S]_:So'<b1,X1>.

For the second trading period, S; is new initial capital, the portfolio vector
is b2 = b(Xl), and

S2 = 8o - (b1, x1) - (b(x1), X2) .

For the nth trading period, a portfolio vector is b, = b(x1,...,Xp_1) =
b(x7 1) and

n
Sn=So [T (b, xi) = Soe ()
=1
with the average growth rate

W, (B) = % iln <b(x§—1) , xi> .
=1

The fundamental limits reveal that the so-called log-optimum portfolio
B* = {b*(-)} is the best possible choice. More precisely, on trading period
n let b*(:) be such that

e {in (X7, Xa)[ X2} = e {1n (X7, Xa)[ X771}

If S} = S,(B*) denotes the capital achieved by a log-optimum portfolio
strategy B*, after n trading periods, then for any other investment strategy
B with capital S, = S,(B) and with

supE {(In (b, (X7 1), X, )2} < o0,
upE { (In (bn(XI 1), X))}
and for any stationary and ergodic process {X,}*,,

1.8
limsup —In — < 0 almost surely
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and

1
lim —InS; =W?* almost surely,
n—oo n

where

S

is the maximal possible growth rate of any investment strategy.
An empirical (data driven) portfolio strategy B is called unwversally

consistent with respect to a class C of stationary and ergodic processes
{Xn}%,, if for each process in the class,

1
lim —InS,(B)=W"* almost surely.
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For a fixed integer k > 0 large enough, let’s apply the following approx-
imation:

E{in (b(X7™), Xa) | X1} &~ E{ln (b(X}74), X ) | X374
and

b*(X7 1) ~ bp(XP ;) = argb:I;aXJE{ln <b(XZ:,lc), Xn> | X"}

Because of stationarity

be(xf) = argmaxEfln (b, Xp) | X5 = x53,
b

which is the maximization of the regression function
my(x) = E{ln (b, Xi41) | XT = x1}-

Thus, a possible way for asymptotically optimal empirical portfolio selection
is that, based on the past data, sequentially estimate the regression function
mp(x¥), and choose the portfolio vector, which maximizes the regression
function estimate.

Next briefly summarize the basics of nonparametric regression func-
tion estimation.

Introduce the kernel-based portfolio selection strategies. Define an in-
finite array of portfolio selections B(*#) = {b(%4)(.)}, where k, £ are positive



integers. For fixed positive integers k, £, choose the radius 7z, > 0 such that
for any fixed k,

lim Tkt = 0.

L—00

Then, for n > k + 1, define the expert b(¥%) by

B —agmas Y )
{k<i<nllxiTp—xThlI<re.e}

if the sum is non-void, and by = (1/d,...,1/d) otherwise.

The good, data dependent choice of £ and £ is doable borrowing current
techniques from machine learning. In machine learning setup k& and £ are
considered as parameters of the estimates, called experts. The basic idea
of machine learning is the combination of the experts, where an expert
has large weight if its past performance is good. Combine the elementary
portfolio strategies B(k4) = {b%k’l)} as follows: let {gx ¢} be a probability
distribution on the set of all pairs (k,£) such that for all k,4, gx, > O.
The combined strategy B arises from weighting the elementary portfolio
strategies B(*:4) = {bnk’l)} such that the investor’s capital becomes

Sn(B) = > gk Sa(BHFH).
k£

We prove that the portfolio scheme B is universally consistent with
respect to the class of all ergodic processes such that E{|In X()|} < oo, for
j=1,2,...d

We present some numerical results obtained by applying the kernel
based log-optimal algorithm to a NYSE data set from
www.szit.bme.hu/“oti/portfolio .



