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Consider a market consisting of d assets. The evolution of the marketin time is represented by a sequence of price vectors s1; s2; : : : 2 Rd+, where
sn = (s(1)n ; : : : ; s(d)n )

such that the j-th component s(j)n of sn denotes the price of the j-th asseton the n-th trading period. In order to normalize, put s(j)0 = 1. fsng hasexponential trend: s(j)n = enW (j)n � enW (j) ;
with average growth rate (average yield)

W (j)n := 1n ln s(j)n
and with asymptotic average growth rate

W (j) := limn!1 1n ln s(j)n :
In order to apply the usual prediction techniques for time series analysisone has to transform the sequence price vectors fsng into a more or lessstationary sequence of return vectors fxng as follows:

xn = (x(1)n ; : : : ; x(d)n )
such that

x(j)n = s(j)ns(j)n�1 :
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Thus, the j-th component x(j)n of the return vector xn denotes the amountobtained after investing a unit capital in the j-th asset on the n-th tradingperiod.
The static portfolio selection is a single period investment strategy. Aportfolio vector is denoted by b = (b(1); : : : b(d)). The j-th component b(j)of b denotes the proportion of the investor's capital invested in asset j. Weassume that the portfolio vector b has nonnegative components sum up to 1,that means that short selling is not permitted. The set of portfolio vectorsis denoted by

�d =
8<:b = (b(1); : : : ; b(d)); b(j) � 0; dX

j=1 b(j) = 1
9=; :

For static portfolio selection, at time n = 0 we distribute the initial capitalS0 according to a �x portfolio vector b, i.e., if Sn denotes the wealth at thetrading period n, then
Sn = S0 dX

j=1 b(j)s(j)n :
One can show that

W := limn!1 1n lnSn = limn!1maxj 1n ln s(j)n = maxj W (j):
Thus, any static portfolio selection achieves the maximal growth ratemaxj W (j).

One can achieve even higher growth rate for long run investments, ifthe tuning of the portfolio is allowed dynamically trading period after trad-ing period. The dynamic portfolio selection is a multi-period investmentstrategy, where at the beginning of each trading period we rearrange thewealth among the assets. A representative example of the dynamic portfo-lio selection is the constantly rebalanced portfolio (CRP), where we �x aportfolio vector b 2 �d, i.e., we are concerned with a hypothetical investorwho neither consumes nor deposits new cash into his portfolio, but reinvesthis portfolio each trading period. Note that in this case the investor has torebalance his portfolio after each trading day to �corrigate� the daily priceshifts of the invested stocks.Let S0 denote the investor's initial capital. Then at the beginning of the�rst trading period S0b(j) is invested into asset j, and it results in return
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S0b(j)x(j)1 , therefore at the end of the �rst trading period the investor'swealth becomes
S1 = S0 dX

j=1 b(j)x(j)1 = S0 hb ; x1i ;
where h� ; �i denotes inner product. For the second trading period, S1 is thenew initial capital

S2 = S1 � hb ; x2i = S0 � hb ; x1i � hb ; x2i :
By induction, for the trading period n the initial capital is Sn�1, therefore

Sn = Sn�1 hb ; xni = S0 nY
i=1 hb ; xii :

The asymptotic average growth rate of this portfolio selection is
limn!1 1n lnSn = limn!1

 1n lnS0 + 1n
nX
i=1 ln hb ; xii

!

= limn!1 1n
nX
i=1 ln hb ; xii ;

therefore without loss of generality one can assume in the sequel that theinitial capital S0 = 1.If the market process fXig is memoryless, i.e., it is a sequence of in-dependent and identically distributed (i.i.d.) random return vectors thenwe show that the best constantly rebalanced portfolio (BCRP) is the log-optimal portfolio:
b� := argmax

b2�d Efln hb ; X1ig:
This optimality means that if S�n = Sn(b�) denotes the capital after dayn achieved by a log-optimum portfolio strategy b�, then for any portfoliostrategy b with �nite Ef(ln hb ; X1i)2g and with capital Sn = Sn(b) andfor any memoryless market process fXng1�1,

limn!1 1n lnSn � limn!1 1n lnS�n almost surely
and maximal asymptotic average growth rate is

limn!1 1n lnS�n = W � := Efln hb� ; X1ig almost surely.
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We show several examples for constantly rebalanced portfolio.
In order to decrease the computational complexity of log-optimal port-folio we introduce the semi-log-optimal portfolio, where the function ln zis replaced by its second order Taylor expansion.
For a general dynamic portfolio selection, the portfolio vector maydepend on the past data. Let b = b1 be the portfolio vector for the �rsttrading period. For initial capital S0, we get that

S1 = S0 � hb1 ; x1i :
For the second trading period, S1 is new initial capital, the portfolio vectoris b2 = b(x1), and

S2 = S0 � hb1 ; x1i � hb(x1) ; x2i :
For the nth trading period, a portfolio vector is bn = b(x1; : : : ;xn�1) =
b(xn�11 ) and

Sn = S0 nY
i=1
D
b(xi�11 ) ; xiE = S0enWn(B)

with the average growth rate
Wn(B) = 1n

nX
i=1 ln

D
b(xi�11 ) ; xiE :

The fundamental limits reveal that the so-called log-optimum portfolio

B� = fb�(�)g is the best possible choice. More precisely, on trading periodn let b�(�) be such that
En lnDb�(Xn�11 ) ; XnE���Xn�11 o = max

b(�) E
n lnDb(Xn�11 ) ; XnE���Xn�11 o :

If S�n = Sn(B�) denotes the capital achieved by a log-optimum portfoliostrategy B�, after n trading periods, then for any other investment strategy
B with capital Sn = Sn(B) and with

supn En(lnDbn(Xn�11 ) ; XnE)2o <1;
and for any stationary and ergodic process fXng1�1,

lim supn!1 1n ln SnS�n � 0 almost surely
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and limn!1 1n lnS�n = W � almost surely,
where W � := E(max

b(�) E
n lnDb(X�1�1) ; X0E���X�1�1o

)
is the maximal possible growth rate of any investment strategy.

An empirical (data driven) portfolio strategy B is called universallyconsistent with respect to a class C of stationary and ergodic processesfXng1�1, if for each process in the class,
limn!1 1n lnSn(B) = W � almost surely.

For a �xed integer k > 0 large enough, let's apply the following approx-imation:
EflnDb(Xn�11 ) ; XnE j Xn�11 g � EflnDb(Xn�1n�k) ; XnE j Xn�1n�kg

and
b�(Xn�11 ) � bk(Xn�1n�k) = argmax

b(�) EflnDb(Xn�1n�k) ; XnE j Xn�1n�kg:
Because of stationarity

bk(xk1) = argmax
b

Efln hb ; Xk+1i j Xk1 = xk1g;
which is the maximization of the regression function

mb(xk1) = Efln hb ; Xk+1i j Xk1 = xk1g:
Thus, a possible way for asymptotically optimal empirical portfolio selectionis that, based on the past data, sequentially estimate the regression functionmb(xk1), and choose the portfolio vector, which maximizes the regressionfunction estimate.

Next brie�y summarize the basics of nonparametric regression func-tion estimation.
Introduce the kernel-based portfolio selection strategies. De�ne an in-�nite array of portfolio selections B(k;`) = fb(k;`)(�)g, where k; ` are positive
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integers. For �xed positive integers k; `, choose the radius rk;` > 0 such thatfor any �xed k, lim`!1 rk;` = 0:
Then, for n > k + 1, de�ne the expert b(k;`) by

b(k;`)(xn�11 ) = argmax
b2�d

X
fk<i<n:kxi�1i�k�xn�1n�kk�rk;`g ln hb ; xii ;

if the sum is non-void, and b0 = (1=d; : : : ; 1=d) otherwise.
The good, data dependent choice of k and ` is doable borrowing currenttechniques from machine learning. In machine learning setup k and ` areconsidered as parameters of the estimates, called experts. The basic ideaof machine learning is the combination of the experts, where an experthas large weight if its past performance is good. Combine the elementaryportfolio strategies B(k;`) = fb(k;`)n g as follows: let fqk;`g be a probabilitydistribution on the set of all pairs (k; `) such that for all k; `, qk;` > 0.The combined strategy B arises from weighting the elementary portfoliostrategies B(k;`) = fb(k;`)n g such that the investor's capital becomes

Sn(B) =X
k;` qk;`Sn(B(k;`)):

We prove that the portfolio scheme B is universally consistent withrespect to the class of all ergodic processes such that Efj lnX(j)jg <1, forj = 1; 2; : : : d.
We present some numerical results obtained by applying the kernelbased log-optimal algorithm to a NYSE data set fromwww.szit.bme.hu/�oti/portfolio .
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