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Abstract. These notes are an expanded version of short courses given at

the occasion of a school held in Université Paris-Est Marne-la-Vallée, 16–20
November 2009, by Djalil Chafäı, Olivier Guédon, Guillaume Lecué, Alain

Pajor, and Shahar Mendelson. The central motivation is compressed sensing,

involving interactions between empirical processes, high dimensional geometry,
and random matrices.

Contents

1. Singular values of deterministic matrices 1
1.1. Condition number 5
1.2. Basic relationships between eigenvalues and singular values 5
1.3. Relation with rows distances 6
1.4. Algorithm for the computation of the SVD 7
1.5. Some concrete applications of the SVD 8
2. Singular values of Gaussian random matrices 8
2.1. Matrix model 8
2.2. Unitary bidiagonalization 9
2.3. Densities 10
2.4. Orthogonal polynomials 10
2.5. Behavior of the singular values 11
3. Universality of the Gaussian case 16
4. Comments 20
References 20

The extremal singular values of a matrix are very natural geometrical quanti-
ties concentrating an essential information on the invertibility and stability of the
matrix. This chapter aims to provide an accessible introduction to the notion of
singular values of matrices and their behavior when the entries are random, includ-
ing quite recent striking results from random matrix theory and high dimensional
geometric analysis.

For every square matrix A ∈Mn,n(C), we denote by λ1(A), . . . , λn(A) the eigen-
values of A which are the roots in C of the characteristic polynomial det(A−ZI) ∈
C[Z]. We label the eigenvalues of A so that |λ1(A)| > · · · > |λn(A)|. In all this
chapter, K stands for R or C, and we say that U ∈ Mn,n(K) is K-unitary when
UU∗ = I.

1. Singular values of deterministic matrices

This section gathers a selection of classical results from linear algebra. We be-
gin with the Singular Value Decomposition (SVD), a fundamental tool in matrix
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2 DJALIL CHAFAÏ

analysis, which expresses a diagonalization up to unitary transformations of the
space.

Theorem 1.1 (Singular Value Decomposition). For every A ∈ Mm,n(K), there
exists a couple of K–unitary matrices U (m×m) and V (n×n) and a sequence of
real numbers s1 > · · · > sm∧n > 0 such that

U∗AV = diag(s1, . . . , sm∧n) ∈Mm,n(K).

This sequence of real numbers does not depend on the particular choice of U, V .

Proof. Let v ∈ Kn be such that |Av|2 = max|x|2=1 |Ax|2 = |A|2→2 = s. If |v|2 = 0
then A = 0 and the desired result is trivial. If s > 0 then let us define u = Av/s.
One can find a K-unitary matrix U of size m×m with first column equal to u, and
a K-unitary matrix V of size n× n with first column equal to v. It follows that

U∗AV =

(
s w∗

0 B

)
= A1

for some w ∈ Mn−1,1(K) and B ∈ Mm−1,n−1(K). If t is the first row of A1 then

|A1t
∗|22 > (s2 + |w|22)2 and therefore |A1|22→2 > s2 + |w|22 > |A|

2
2→2. On the other

hand, since A and A1 are unitary equivalent, we have |A1|2→2 = |A|2→2. Therefore
w = 0, and the desired decomposition follows by a simple induction. �

The numbers sk(A) := sk for k ∈ {1, . . . ,m∧n} are called the singular values of
A. The columns of U and V are the eigenvectors of AA∗ (m×m) and A∗A (n×n).
These two positive semidefinite Hermitian matrices share the same sequence of
eigenvalues, up to the multiplicity of the eigenvalue 0, and for every k ∈ {1, . . . ,m∧
n},

sk(A) = λk(
√
AA∗) =

√
λk(AA∗) =

√
λk(A∗A) = λk(

√
A∗A) = sk(A∗).

Actually, if one sees the diagonal matrix D := diag(s1(A)2, . . . , sm∧n(A)2) as an
element ofMm,m(K) orMn,n(K) by appending as much zeros as needed, we have

U∗AA∗U = D and V ∗A∗AV = D.

When A is normal (i.e. AA∗ = A∗A) then m = n and sk(A) = |λk(A)| for every
k ∈ {1, . . . , n}. For any A ∈ Mm,n(K), the eigenvalues of the (m + n) × (m + n)
Hermitian matrix

H =

(
0 A∗

A 0

)
(1)

are given by

+s1(A),−s1(A), . . . ,+sm∧n(A),−sm∧n(A), 0, . . . , 0

where the notation 0, . . . , 0 stands for a sequence of 0’s of length

m+ n− 2(m ∧ n) = (m ∨ n)− (m ∧ n).

One may deduce the singular values of A from the eigenvalues of H. Note that when
m = n and Ai,j ∈ {0, 1} for all i, j, then A is the adjacency matrix of an oriented
graph, and H is the adjacency matrix of a compagnon nonoriented bipartite graph.

For any A ∈ Mm,n(K), the matrices A, Ā, A>, A∗, WA, AW ′ share the same
sequences of singular values, for any K–unitary matrices W,W ′. If u1 ⊥ · · · ⊥
um ∈ Km and v1 ⊥ · · · ⊥ vn ∈ Kn are the columns of U, V then for every
k ∈ {1, . . . ,m ∧ n},

Avk = sk(A)uk and A∗uk = sk(A)vk (2)
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while Avk = 0 and A∗uk = 0 for k > m∧n. The SVD gives an intuitive geometrical
interpretation of A and A∗ as a dual correspondence/dilation between two orthonor-
mal bases known as the left and right eigenvectors of A and A∗. Additionally, A
has exactly r = rank(A) nonzero singular values s1(A), . . . , sr(A) and

A =

r∑
k=1

sk(A)ukv
∗
k and

{
kernel(A) = span{vr+1, . . . , vn},
range(A) = span{u1, . . . , ur}.

We have also sk(A) = |Avk|2 = |A∗uk|2 for every k ∈ {1, . . . ,m ∧ n}. It is well
known that the eigenvalues of a Hermitian matrix can be expressed in terms of
the entries of the matrix via minimax variational formulas. The following theorem
is the counterpart for the singular values, and can be deduced from its Hermitian
cousin.

Theorem 1.2 (Courant–Fischer variational formulas for singular values). For ev-
ery A ∈Mm,n(K) and every k ∈ {1, . . . ,m ∧ n},

sk(A) = max
V ∈Vk

min
x∈V
|x|2=1

|Ax|2 = min
V ∈Vn−k+1

max
x∈V
|x|2=1

|Ax|2

where Vk is the set of subspaces of Kn of dimension k. In particular, we have

s1(A) = max
x∈Kn

|x|2=1

|Ax|2 and sm∧n(A) = max
V ∈Vn,m∧n

min
x∈V
|x|2=1

|Ax|2.

We have also the following alternative formulas, for every k ∈ {1, . . . ,m ∧ n},
sk(A) = max

V ∈Vk
W∈Vk

min
(x,y)∈V×W
|x|2=|y|2=1

〈Ax, y〉.

As an exercise, one can check that if A ∈Mm,n(R) then the variational formulas
for K = C, if one sees A as an element of Mm,n(C), coincide actually with the
formulas for K = R. Geometrically, the matrix A maps the Euclidean unit ball to
an ellipsoid, and the singular values of A are exactly the half lengths of the m ∧ n
largest principal axes of this ellipsoid, see figure 1. The remaining axes have a zero
length. In particular, for A ∈ Mn,n(K), the variational formulas for the extremal
singular values s1(A) and sn(A) correspond to the half length of the longest and
shortest axes.

A

Figure 1. Largest and smallest singular values of A ∈M2,2(R).

From the Courant–Fischer variational formulas, the largest singular value is the
operator norm of A for the Euclidean norm |·|2, namely

s1(A) = |A|2→2.

The map A 7→ s1(A) is Lipschitz and convex. In the same spirit, if U, V are the
couple of K–unitary matrices from an SVD of A, then for any k ∈ {1, . . . , rank(A)},

sk(A) = min
B∈Mm,n(K)
rank(B)=k−1

|A−B|2→2 = |A−Ak|2→2 where Ak =

k−1∑
i=1

si(A)uiv
∗
i
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with ui, vi as in (2). Let A ∈ Mn,n(K) be a square matrix. If A is invertible then
the singular values of A−1 are the inverses of the singular values of A, in other
words

∀k ∈ {1, . . . , n}, sk(A−1) = sn−k+1(A)−1.

Moreover, a square matrix A ∈ Mn,n(K) is invertible iff sn(A) > 0, and in this
case

sn(A) = s1(A−1)−1 =
∣∣A−1∣∣−1

2→2
.

Contrary to the map A 7→ s1(A), the map A 7→ sn(A) is Lipschitz but is not convex.
Regarding the Lipschitz nature of the singular values, the Courant–Fischer varia-
tional formulas provide the following more general result, which has a Hermitian
couterpart.

Theorem 1.3 (Weyl additive perturbations). If A,B ∈ Mm,n(K) then for every
i, j ∈ {1, . . . ,m ∧ n} with i+ j 6 1 + (m ∧ n),

si+j−1(A) 6 si(B) + sj(A−B).

In particular, the singular values are uniformly Lipschitz functions since

max
16k6m∧n

|sk(A)− sk(B)| 6 |A−B|2→2.

From the Courant–Fischer variational formulas we obtain also the following re-
sult.

Theorem 1.4 (Cauchy interlacing by rows deletion). Let A ∈ Mm,n(K) and
k ∈ {1, 2, . . .} with 1 6 k 6 m 6 n and let B ∈ Mm−k,n(K) be a matrix obtained
from A by deleting k rows. Then for every i ∈ {1, . . . ,m− k},

si(A) > si(B) > si+k(A).

In particular we have [sm−k(B), s1(B)] ⊂ [sm(A), s1(A)]. Row deletions pro-
duce a sort of compression of the singular values interval. Another way to express
this phenomenon consists in saying that if we add a row to B then the largest
singular value increases while the smallest singular value is diminished. From this
point of view, the worst case corresponds to square matrices. Closely related, the
following result on finite rank additive perturbations can be proved by using in-
terlacing inequalities for the eigenvalues of Hermitian matrices and their principal
submatrices.

Theorem 1.5 (Interlacing for finite rank additive perturbations [Tho76]). For any
A,B ∈Mn,n(K) with rank(A−B) 6 k, we have, for any i ∈ {1, . . . , n},

si−k(A) > si(B) > si+k(A)

where sr = +∞ if r 6 0 and sr = 0 if r > n+ 1. Conversely, any sequences of non
negative real numbers which satisfy to these interlacing inequalities are the singular
values of matrices A and B with rank(A−B) 6 k.

In particular, we have [sn−k(B) , sk+1(B)] ⊂ [sn(A) , s1(A)]. It is worthwhile to
observe that the interlacing inequalities of theorem 1.5 give neither an upper bound
for the largest singular values s1(B), . . . , sk(B) nor a lower bound for the smallest
singular values sn−k+1(B), . . . , sn(B), even when k = 1.

Remark 1.6 (Hilbert-Schmidt norm). For every A ∈Mm,n(K) we set

‖A‖HS
2

:= Tr(AA∗) =

n∑
i,j=1

|Ai,j |2 = s1(A)2 + · · ·+ sm∧n(A)2.

This defines the so called Hilbert–Schmidt or Frobenius norm ‖·‖HS. We have always

|A|2→2 6 ‖A‖HS 6
√

rank(A) |A|2→2
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where equalities are achieved when rank(A) = 1 and A = I ∈Mm,n(K) respectively.
The advantage of ‖·‖HS over |·|2→2 lies in its convenient expression in terms of the
matrix entries. Actually, the Frobenius norm is Hilbertian for the Hermitian product

〈A,B〉 = Tr(AB∗).

Let us mention a result on the Frobenius Lipschitz norm of the singular values, due
to Wielandt and Hoffman [HW53], which says that if A,B ∈Mm,n(K) then

m∧n∑
k=1

(sk(A)− sk(B))2 6 ‖A−B‖HS
2
.

We end up by a result related to the Frobenius norm, due to Eckart and Young
[EY39]. We have seen that a matrix A ∈ Mm,n(K) has exactly r = rank(A) non
zero singular values. More generally, if k ∈ {0, 1, . . . , r} and if Ak ∈ Mm,n(K) is
obtained from the SVD of A by forcing si = 0 for all i > k then

min
B∈Mm,n(K)
rank(B)=k

‖A−B‖HS
2

= ‖A−Ak‖HS
2

= sk+1(A)2 + · · ·+ sr(A)2.

Remark 1.7 (Norms and unitary invariance). For every k ∈ {1, . . . ,m ∧ n} and
any real number p > 1, the map A ∈ Mm,n(K) 7→ (s1(A)p + · · · + sk(A)p)1/p is
a unitary invariant norm on Mm,n(K). We recover the operator norm |A|2→2 for
k = 1 and the Frobenius norm ‖A‖HS for (k, p) = (m ∧ n, 2). The special case
(k, p) = (m ∧ n, 1) is known as the Ky Fan norm of order k, while the special case
k = m∧n is known as the Schatten p-norm. For more material, see [Bha97, Zha02].

1.1. Condition number. The condition number of A ∈Mn,n(K) is given by

κ(A) = |A|2→2

∣∣A−1∣∣
2→2

=
s1(A)

sn(A)
.

The condition number quantifies the numerical sensitivity of linear systems involv-
ing A. For instance, if x ∈ Kn is the solution of the linear equation Ax = b then
x = A−1b. If b is known up to precision δ ∈ Kn then x is known up to precision
A−1δ. Therefore, the ratio of relative errors for the determination of x is given by

R(b, δ) =

∣∣A−1δ∣∣
2
/
∣∣A−1b∣∣

2

|δ|2/|b|2
=

∣∣A−1δ∣∣
2

|δ|2
|b|2
|A−1b|2

.

Consequently, we obtain

max
b 6=0,δ 6=0

R(b, δ) =
∣∣A−1∣∣

2→2
|A|2→2 = κ(A).

Geometrically, κ(A) measures the “spherical defect” of the ellipsoid in figure (1).

1.2. Basic relationships between eigenvalues and singular values. We know
that ifA ∈Mn,n(K) is normal (i.e.AA∗ = A∗A) then sk(A) = |λk(A)| for every k ∈
{1, . . . , n}. Beyond normal matrices, for every A ∈Mn,n(K) with rows R1, . . . , Rn,
we have, by viewing |det(A)| as the volume of a hyperparallelogram,

|det(A)| =
n∏
k=1

|λk(A)| =
n∏
k=1

sk(A) =

n∏
k=1

dist(Rk, span{R1, . . . , Rk−1}) (3)

The following result, due to Weyl, is less global and more subtle.

Theorem 1.8 (Weyl inequalities [Wey49]). If A ∈Mn,n(K), then

∀k ∈ {1, . . . , n},
k∏
i=1

|λi(A)| 6
k∏
i=1

si(A) and

n∏
i=k

si(A) 6
n∏
i=k

|λi(A)| (4)
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Moreover, for every increasing function ϕ from (0,∞) to (0,∞) such that t 7→ ϕ(et)
is convex on (0,∞) and ϕ(0) := limt→0+ ϕ(t) = 0, we have

∀k ∈ {1, . . . , n},
k∑
i=1

ϕ(|λi(A)|2) 6
k∑
i=1

ϕ(si(A)2). (5)

Observe that from (5) with ϕ(t) = t for every t > 0 and k = n, we obtain
n∑
k=1

|λk(A)|2 6
n∑
k=1

sk(A)2 = Tr(AA∗) =

n∑
i,j=1

|Ai,j |2 = Tr(AA∗) = ‖A‖HS
2
. (6)

The following result, due to Horn, constitutes a converse to Weyl inequalities 3. It
explains why so many generic relationships between eigenvalues and singular values
are consequences of (3), for instance via majorization inequalities and techniques.

Theorem 1.9 (Sherman inverse problem [Hor54]). Let (λ, s) ∈ Cn×Rn be such that
|λ1| > · · · > |λn| and s1 > · · · > sn > 0. If these numbers satisfy additionally to
all the Weyl relationships (3) then there exists A ∈ Mn,n(C) such that λi(A) = λi
and si(A) = si for every i ∈ {1, . . . , n}.

From (3) we get sn(A) 6 |λn(A)| 6 |λ1(A)| 6 s1(A) for any A ∈ Mn,n(K). In
particular, we have the following comparison between the spectral radius and the
operator norm:

ρ(A) = |λ1(A)| 6 s1(A) = |A|2→2.

In this spirit, the following result, due to Gelfand, allows to estimate the spectral
radius ρ(A) with the singular values of the powers of A.

Theorem 1.10 (Gelfand spectral radius formula [Gel41]). Let |·| be a submultiplica-
tive matrix norm on Mn,n(K) such as the operator norm |·|2→2 or the Frobenius
norm ‖·‖HS. Then for every matrix A ∈Mn,n(K) we have

ρ(A) := |λ1(A)| = lim
k→∞

k

√
|Ak|.

The eigenvalues of non normal matrices are far more sensitive to perturbations
than the singular values, and this is captured by the notion of pseudo spectrum,
which bridges eigenvalues and singular values, see for instance the book [TE05].

1.3. Relation with rows distances. The following couple of lemmas relate the
singular values of matrices to distances between rows (or columns). For square
random matrices, they provide a convenient control on the operator norm and
Frobenius norm of the inverse respectively. The first lemma can be found in the
work of Rudelson and Vershynin while the second appears in the work of Tao and
Vu.

Lemma 1.11 (Rudelson-Vershynin [RV09]). If A ∈Mm,n(K) has rows R1, . . . , Rm,
then, denoting R−i = span{Rj : j 6= i}, we have

m−1/2 min
16i6m

dist2(Ri, R−i) 6 sm∧n(A) 6 min
16i6m

dist2(Ri, R−i).

Proof. Since A and A> have same singular values, we can prove the statement for
the columns of A. For every vector x ∈ Kn and every i ∈ {1, . . . , n}, the triangle
inequality and the identity Ax = x1C1 + · · ·+ xnCn give

|Ax|2 > dist2(Ax,C−i) = min
y∈C−i

|Ax− y|2 = min
y∈C−i

|xiCi − y|2 = |xi|dist2(Ci, C−i).

If |x|2 = 1 then necessarily |xi| > n−1/2 for some i ∈ {1, . . . , n}, and therefore

sm∧n(A) = min
|x|2=1

|Ax|2 > n
−1/2 min

16i6n
dist2(Ci, C−i).
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Conversely, for any i ∈ {1, . . . , n}, there exists a vector y ∈ Kn with yi = 1 such
that

dist2(Ci, C−i) = |y1C1 + · · ·+ ynCn|2 = |Ay|2 > |y|2 min
|x|2=1

|Ax|2 > sm∧n(A)

where we used the fact that |y|22 = |y1|2 + · · ·+ |yn|2 > |yi|2 = 1. �

Lemma 1.12 (Tao-Vu [TV10]). Let 1 6 m 6 n and A ∈ Mm,n(K) with rows
R1, . . . , Rm. If rank(A) = m then, denoting R−i = span{Rj : j 6= i}, we have

m∑
i=1

s−2i (A) =

m∑
i=1

dist2(Ri, R−i)
−2.

Proof. The orthogonal projection of Ri on R−i is B∗(BB∗)−1BR∗i where B is the
(m − 1) × n matrix obtained from A by removing the row Ri. In particular, we
have

|Ri|22 − dist2(Ri, R−i)
2 =

∣∣B∗(BB∗)−1BR∗i ∣∣22 = (BR∗i )
∗(BB∗)−1BR∗i

by the Pythagoras theorem. On the other hand, the Schur bloc inversion formula
states that if M is an m×m matrix then for every partition {1, . . . ,m} = I ∪ Ic,

(M−1)I,I = (MI,I −MI,Ic(MIc,Ic)−1MIc,I)
−1.

Now we take M = AA∗ and I = {i}, and we note that (AA∗)i,j = Ri · Rj , which
gives

((AA∗)−1)i,i = (Ri ·Ri − (BR∗i )
∗(BB∗)−1BR∗i )

−1 = dist2(Ri, R−i)
−2.

The desired formula follows by taking the sum over i ∈ {1, . . . ,m}. �

1.4. Algorithm for the computation of the SVD. To compute the SVD of
A ∈ Mm,n(K) one can diagonalize both AA∗ and A∗A or diagonalize the matrix
H defined in (1). Unfortunately, this approach can lead to a loss of information
numerically. In practice, and up to machine precision, the SVD is better computed
with a two step algorithm such as (the real world algorithm is a bit more involved):

(1) Unitary bidiagonalization. Compute a couple of K–unitary matrices W,W ′

such that B = WAW ′ is bidiagonal. Both W,W ′ are product of House-
holder reflections, see [GVL96]. One can also use Gram–Schmidt orthonor-
malization of the rows. It is worthwhile to mention that a very similar
method allows also the tridiagonalization of Hermitian matrices (in this
case we have W = W ′).

(2) Iterative algorithm for bidiagonal matrices. Compute the SVD of B up to
machine precision with a variant of the QR algorithm due to Golub and
Kahan. Note that the standard QR iterative algorithm allows the iterative
numerical computation of the eigenvalues of arbitrary square matrices.

The svd command of Matlab, GNU Octave, GNU R, and Scilab allows the nu-
merical computation of the SVD. At the time of writing, the GNU Octave and
GNU R version is based on LAPACK. The GNU Scientific Library (GSL) offers an
algorithm based on Jacobi orthogonalization. There exists many other algorithm-
s/variants for the numerical computation of the SVD, see [GVL96, sections 5.4.5
and 8.6].� �
octave> A = rand ( 5 , 3 ) % Generate a random 5x3 matrix

A = 0.3479368 0.7948432 0.0011214
0.4912752 0.6836159 0.8509682
0.0315889 0.9831456 0.3328946
0.3665785 0.9985220 0.6228932
0.2481886 0.5890069 0.2542045
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octave> [U,D,V] = svd (A) % Compute SVD up to machine prec.

U = −0.351343 −0.557528 0.667944 −0.165446 −0.303643
−0.509631 0.708933 0.144001 −0.438839 −0.156123
−0.448938 −0.414874 −0.704250 −0.353062 −0.075585
−0.563423 0.084485 −0.082364 0.808135 −0.124705
−0.312799 −0.085546 0.174251 −0.048095 0.928527

D = Diagonal Matrix
2 .18534 0 0

0 0.61541 0
0 0 0.31967
0 0 0
0 0 0

V = −0.30703 0.24525 0.91956
−0.83093 −0.54016 −0.13337
−0.46400 0.80503 −0.36963

octave> norm(U∗D∗V’−A,” f r o ”) % Quality check (Frobenius)

ans = 6.0189 e−16
octave> norm(U∗U’−eye ( 5 , 5 ) , ” f r o ”) % Quality check (Frobenius)

ans = 8.2460 e−16
octave> norm(V∗V’−eye ( 3 , 3 ) , ” f r o ”) % Quality check (Frobenius)

ans = 3.3309 e−16� �
1.5. Some concrete applications of the SVD. The SVD is typically used for
dimension reduction and for regularization. For instance, the SVD allows to con-
struct the so called Moore–Penrose pseudoinverse [Moo20, Pen56] of a matrix by
replacing the non null singular values by their inverse while leaving in place the null
singular values. Generalized inverses of integral operators were introduced earlier
by Fredholm in [Fre03]. Such generalized inverse of matrices provide for instance
least squares solutions to degenerate systems of linear equations. A diagonal shift
in the SVD is used in the so called Tikhonov regularization [Tik43, Tar05] or ridge
regression for solving over determined systems of linear equations. The SVD is at
the heart of the so called principal component analysis (PCA) technique in applied
statistics for multivariate data analysis, see for instance the book [Jol02]. The par-
tial least squares (PLS) regression technique is also connected to PCA/SVD. In the
last decade, the PCA was used together with the so called kernel methods in learn-
ing theory. Certain generalizations of the SVD are used for the regularization of
ill posed inverse problems such as X ray tomography, emission tomography, inverse
diffraction and inverse source problems, and the linearized inverse scattering prob-
lem, see for instance the book [BB98]. The application of the SVD to compressed
sensing is under development and some few devoted books will appear in the near
future.

2. Singular values of Gaussian random matrices

In the sequel, the standard Gaussian on K is N (0, 1) if K = R and N (0, 12I2) if

K = C ≡ R2. If Z is a standard Gaussian random variable on K then

Var(Z) := E(|Z − EZ|2) = E(|Z|2) = 1.

2.1. Matrix model. Let (Gi,j)i,j>1 be an infinite matrix of i.i.d. standard Gauss-
ian random variables on K. For every m,n ∈ {1, 2, . . .}, the random m× n matrix

G := (Gi,j)16i6m, 16j6n
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has Lebesgue density, in Mm,n(K) ≡ Knm, proportional to

G 7→ exp

−β
2

m∑
i=1

n∑
j=1

|Gi,j |2
 = exp

(
−β

2
Tr(GG∗)

)
= exp

(
−β

2
‖G‖HS

2

)
where

β :=

{
1 if K = R,

2 if K = C.

The law of G is K–unitary invariant since UGV
d
= G for every deterministic K–

unitary matrices U (m×m) and V (n× n). For K = C we have

G =
1√
2

(G1 +
√
−1G2)

where G1 and G2 are i.i.d. copies of the case K = R. The law of G is also known as
the K Ginibre ensemble, see [Gin65, Meh04]. The symplectic case where K is the
quaternions (β = 4) is not considered in these notes. The columns C1, . . . , Cn of
the random matrix G are i.i.d. standard Gaussian random column vectors of Km

with i.i.d. standard Gaussian coordinates. Their empirical covariance matrix is

1

n

n∑
k=1

CkC
∗
k =

1

n
GG∗.

The strong law of large numbers gives limn→∞ n−1GG∗ = Im a.s. We are interested
in the sequel in asymptotics when both n and m tend to infinity. The random
matrix GG∗ is m×m Hermitian positive semidefinite. If m > n then the random
matrix GG∗ is singular with probability one, as a linear combination of n < m
rank one m × m matrices C1C

∗
1 , . . . , CnC

∗
n. If m 6 n then the random matrix

GG∗ is invertible with probability one (comes from the diffuse nature of Gaussian
measures), and

∀k ∈ {1, . . . ,m}, sk(G)2 = λk(GG∗) = nλk

(
1

n
GG∗

)
.

2.2. Unitary bidiagonalization. Let us consider the K–unitary bidiagonaliza-
tion of section 1.4, for the Gaussian matrix G. Assume for convenience that m 6 n.
One can find random K–unitary matrices W (m ×m) and W ′ (n × n) such that
B := WGW ′ is bidiagonal with

B =
1√
β



Sn 0 0 0 · · · 0
Tm−1 Sn−1 0 0 · · · 0

0 Tm−2 Sn−2 0 · · · 0

0 0
...

... · · · 0
...

... · · · 0
0 0 0 0 · · · 0 T1 Sn−(m−1) 0 · · · 0


.

(7)
Following Silverstein [Sil85] the random variables Sn, . . . , Sn−(m−1), Tm−1, . . . , T1
are independent with laws given by S2

k ∼ χ2(βk) for every k ∈ {n− (m− 1), . . . , n}
and T 2

k ∼ χ2(βk) for every k ∈ {1, . . . ,m − 1}. The random matrices B and G
share the same sequence of singular values. Such an explicit bidiagonalization has
an amazing consequence for the simulation of the singular values of G. It allows to
reduce the dimension from nm to 2(n ∧m)− 1.
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2.3. Densities. The random Hermitian positive semidefinite m ×m matrix GG∗

can be seen as a random vector of Rm ×K(m2−m)/2. If m 6 n, the law of GG∗ is

a Wishart distribution with Lebesgue density in Rm ×K(m2−m)/2 proportional to

W 7→ det(W β(n−m+1)/2−1) exp

(
−β

2
Tr(W )

)
(8)

on the cone of Hermitian positive semidefinite matrices. This Wishart law is also
known as the β–Laguerre ensemble or Laguerre Orthogonal Ensemble (LOE) for
β = 1 and Laguerre Unitary Ensemble (LUE) for β = 2. The correlation between
the entries is captured by the determinental term, which surprisingly vanishes when
n = m+2β−1−1. In the SVD of G, one can take U, V distributed according to the
normalized Haar measure on the K–unitary group, and independent of the singular
values. As a consequence, the same holds true for the K–unitary diagonalization of
the positive semidefinite Hermitian matrixGG∗. Whenm 6 n, this diagonalization,
seen as a change of variable, followed by the partial integration over the K–unitary
group of (8) with respect to the eigenvectors, gives the expression of the density of
λ1(GG∗), . . . , λm(GG∗), which turns out to be proportional to

λ 7→ exp

(
−β

2

m∑
i=1

λi

)
m∏
i=1

λ
β(n−m+1)/2−1
i

∏
16i<j6m

|λi − λj |β (9)

on {λ ∈ [0,∞)m : λ1 > · · · > λn}. The normalizing constant is a Selberg integral,
and can be explicitly computed [Meh04]. The (repulsive) correlation is captured
by the Vandermonde determinant, which comes from the Jacobian of the change of
variable (unitary diagonalization). If m = n = 1 then (8,9) are identical (χ2 law).
The formulas (8,9) were considered by e.g. Wishart [Wis28] and James [Jam60].
For a modern presentation, see e.g. Edelman and Rao [ER05] or Haagerup and
Thorbjørnsen [HT03].

2.4. Orthogonal polynomials. Set K = C. If m 6 n then the density (9) of the
eigenvalues of the m×m random matrix GG∗ turns out to be proportional to

λ 7→ det [(S(λi, λj))16i,j6m] with S(x, y) :=
√
g(x)g(y)

m−1∑
k=0

Pk(x)Pk(y) (10)

where (Pk)k>0 are the Laguerre orthonormal polynomials [Sze75] relative to the
Gamma law on [0,∞) with density g proportional to x 7→ xn−m exp (−x). Both g
and (Pk)k>0 depend on m,n. These determinental/polynomial formulas appear
in various works, see e.g. Deift [Dei99], Forrester [For10], and Mehta [Meh04],
Haagerup and Thorbjørnsen [HT03] and Ledoux [Led04]. When m 6 n, and at
the formal level, it follows from this determinental/polynomial expression of the
density that for any Borel symmetric function F : [0,∞)m → R, the expectation

E[F (λ1(GG∗), . . . , λm(GG∗))]

can be expressed in terms of the determinant (10). The behavior of such averaged
symmetric functions when n and m tend to infinity is related to the asymptotics of
the Laguerre polynomials (Pk)k>0. Useful symmetric functions of the eigenvalues
include

(1) F (λ1, . . . , λm) = f(λ1) + · · ·+ f(λm) for some fixed f : [0,∞)→ R;
(2) F (λ1, . . . , λm) = min(λ1, . . . , λm);
(3) F (λ1, . . . , λm) = max(λ1, . . . , λm).

The real case K = R is similar but trickier due to β = 1 in (9), see [For10].
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2.5. Behavior of the singular values. We begin our tour of horizon with the
behavior of the counting probability measure of the eigenvalues of n−1GG∗. It is
customary in random matrix theory to speak about the “bulk behavior”, in contrast
with the “edge behavior” which concerns the extremal eigenvalues. When m 6 n,
this corresponds to the counting probability measure of the squared singular values
of n−1/2G. The first version of the following theorem is due to Marchenko and
Pastur [MP67].

Theorem 2.1 (Bulk behavior). If m = mn →∞ with limn→∞mn/n = y ∈ (0,∞)
then a.s. the spectral counting probability measure

µn−1GG∗ :=
1

m

m∑
k=1

δλk(n−1GG∗)

converges narrowly to the Marchenko–Pastur law

LMP =

(
1− 1

y

)+

δ0 +
1

2πy

√
(b− x)(x− a)

x
1[a,b](x) dx

where
a = (1−√y)2 and b = (1 +

√
y)2.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1  2  3  4  5

x

rho=1.5

rho=1.0

rho=0.5

rho=0.1

Figure 2. Density of the limiting law of the empirical singu-
lar values distribution 1

m

∑m
k=1 δsk(n−1/2G) when m = mn with

limn→∞mn/n = y, for different values of y (theorem 2.1). This
is nothing else but the density of the absolutely continuous part
of the image law of LMP by the map x 7→

√
x. The case y = 1

corresponds to the so called quartercircular law. This graphics was
obtained by using the wxMaxima software.

Idea of the proof. When K = C, the result can be obtained by using the deter-
minental/polynomial approach. Namely, following Haagerup and Thorbjørnsen
[HT03] or Ledoux [Led04], for every Borel function f : [0,∞)→ R, we have,∫

f(x) dµn−1GG∗(x) =
(

1− n

m

)+
f(0) +

∫ ∞
0

f(x)
1

m
S(x, x) dx

where S is as in (10). Note that the left hand side is a symmetric function of
the eigenvalues. The Dirac mass at point 0 in the first term of the right hand
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side above comes from the fact that if m > n then m − n eigenvalues of GG∗ are
necessarily zero (the remaining eigenvalues are the square of the singular values
of G). The convergence to LMP is a consequence of the behavior of m−1S(x, x)
related to classical equilibrium measures of orthogonal polynomials, see [Led04,
pages 191–192]. In this approach, LMP is recovered as a mixture of uniform and
arcsine laws.

Another approach is the so called trace/moments method, based on the identity∫
xr dµn−1GG∗(x) =

1

nmr
Tr((GG∗)r)

valid for every r ∈ {0, 1, 2, . . .}. The expansion of the right hand side in terms of the
entries of G allows to show that the moments of µn−1GG∗ converge to the moments
of LMP. The Gaussian nature of the entries allows to use the Wick formula in order
to simplify the computations. There is also an approach based on the Cauchy–
Stieltjes transform, or equivalently the trace–resolvent, see [HP00] or [Bai99]. This
gives a recursive equation obtained by bloc matrix inversion, which leads to a fixed
point problem. Here again, the Gaussian integration by parts may help. The
trace/moment and the Cauchy–Stieltjes trace/resolvent methods are “universal” in
the sense that they are still available when G is replaced by a random matrix with
non Gaussian i.i.d. entries. The determinental/polynomial approach is rigid, and
relies on the determinental nature of the law of G, which comes from the unitary
invariance of G. It remains available beyond the Gaussian case, provided that G has
a unitary invariant density proportional to G 7→ exp(−Tr(V (GG∗))) for a potential
V : R→ R.

There is finally a more original approach based on large deviations via a Varad-
han like lemma, which exploits the explicit expression of the law of the eigenvalues.
We recover LMP as a minimum of the logarithmic energy with Laguerre external
field. �

The limiting distribution is a mixture of a Dirac mass at zero (when y > 1)
with an absolutely continuous compactly supported distribution known as the
Marchenko–Pastur law. The presence of this Dirac mass is due to the fact that
if y > 1 then a.s. the random matrix n−1GG∗ is not of full rank for large enough n.
The a.s. weak convergence in theorem 2.1 says that for any x ∈ R, x 6= 0 if y > 1,
denoting I = (−∞, x],∣∣{k ∈ {1, . . . ,m} such that λk(n−1GG∗) ∈ I

}∣∣
m

a.s.−→
n→∞

LMP(I).

This convergence implies immediately the following corollary.

Corollary 2.2 (Edge behavior implied by bulk behavior). If m = mn → ∞ with
limn→∞mn/n = y ∈ (0,∞) then a.s.

lim inf
n→∞

λ1(n−1GG∗) > (1 +
√
y)2.

Moreover, if y 6 1 then a.s.

lim sup
n→∞

λmn(n−1GG∗) 6 (1−√y)2.

In particular, if mn = n then y = 1 and a.s.

1√
n
sn(G) =

√
λn(n−1GG∗)

a.s.−→
n→∞

0.

It is then natural to ask about the convergence of the extremal eigenvalues of
n−1GG∗ to the edge of the limiting support. In a sense, the left edge a is “soft” if
y < 1 and “hard” if y = 1. The term “soft” means that the fluctuation may hold in
both sides while “hard” means that the fluctuation is confined in a single side. The
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right edge b is “soft” regardless of y. We will see that the nature of the fluctuations
of the extremal singular values depends on the hard/soft nature of the edge.

Theorem 2.3 (Convergence of smallest singular value). If m = mn → ∞ with
mn 6 n and limn→∞mn/n = y ∈ (0, 1] then(

1√
n
smn

(G)

)2

= λmn
(n−1GG∗)

a.s.−→
n→∞

(1−√y)2.

Idea of the proof. Corollary 2.2 reduces immediately the problem to show that a.s.

lim inf
n→∞

λm(n−1GG∗) > (1−√y)2.

Following Silverstein [Sil85], we have λm(GG∗) = λm(BB∗) where B is as in (7).
Observe that BB∗ is tridiagonal. One can then control λm(BB∗) by using the law
of B and the Geršgorin disks theorem which states that if A ∈Mn,n(K) then

{λ1(A), . . . , λn(A)} ⊂
n⋃
i=1

{z ∈ C; |z −Ai,i| 6 ri} where ri :=
∑
j 6=i

|Ai,j |.

When K = C, an alternative approach is based on the determinental/polynomial
formula for the density of the eigenvalues of GG∗, and can be found in [Led04]. �

Theorem 2.4 (Fluctuation of smallest singular value for hard edge). Assume that
m = n.

• If K = C then for every n ∈ {1, 2, . . .}, the random variable (
√
n sn(G))2

follows an exponential law of unit mean with Lebesgue density x 7→ exp(−x).
In other words, for every n ∈ {1, 2, . . .} and any real number t > 0,

P
(√
n sn(G) > t

)
= exp

(
−t2

)
.

• If K = R then the random variable (
√
n sn(G))2 converges in distribution

as n→∞ to the law with Lebesgue density density

x 7→ 1 +
√
x

2
√
x

exp

(
−1

2
x−
√
x

)
.

In other words, for every real number t > 0,

lim
n→∞

P
(√
n sn(G) > t

)
= exp

(
−1

2
t2 − t

)
.

Idea of the proof. When K = C, it suffices to integrate (9) over all but the smallest
eigenvalue. This gives that the random variable nλn(GG∗) = nsn(G)2 follows an
exponential law with unit mean. This is immediate when n = 1 from (9). When
K = R, one can proceed as for the complex case, but with this time β = 1. This

makes the computations non explicit for a fixed n due to the factors λ
−1/2
i which

were not present for K = C. However, following Edelman [Ede88], for every n,

λn(GG∗) = sn(G)2 has density proportional to x 7→ 1√
x
Un

(x
2

)
exp

(
−1

2
nx

)
where Un is the Tricomi function, unique solution of the Kummer differential equa-
tion

2xU ′′n (x)− (1 + 2x)U ′n(x)− (n− 1)Un(x) = 0

with boundary conditions 2Un(0)Γ(1 + n/2) =
√
π and Un(∞) = 0. The Tricomi

function admits an integral representation, and is also known as the Gordon func-
tion or the confluent hypergeometric function of the second kind, see [AS64, Chapter
13.6]. The behavior of the Tricomi function gives the limiting law of

√
n sn(G). �
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Theorem 2.5 (Convergence of largest singular value). If m = mn → ∞ with
limn→∞mn/n = y ∈ (0,∞) then(

1√
n
s1(G)

)2

=
1

n
λ1(GG∗)

a.s.−→
n→∞

(1 +
√
y)2.

Idea of the proof. Corollary 2.2 reduces the problem to show that

lim sup
n→∞

λ1(n−1GG∗) 6 (1 +
√
y)2.

This was proved in turn by Geman [Gem80], following an idea of Grenander. The
method, which can be seen as an instance of the so called power method, consists in
the control of the expected operator norm of a power of n−1GG∗ with the expected
Frobenius norm, and then in the usage of expansions in terms of the matrix entries
via the trace formula for the Frobenius norm. This method does not rely on explicit
Gaussian computations. When K = C, one can use the determinental/polynomial
formula for the density of the eigenvalues of GG∗ as in the work of Ledoux [Led04].

�

Gaussian exponential bounds for the tail of the singular values of G are also
available, and can be found for instance in the work of Szarek [Sza91], Davidson
and Szarek [DS01], Haagerup and Thorbjørnsen [HT03], and Ledoux [Led04].

The fluctuation of the smallest singular value in the hard edge case given by
theorem 2.4 can be also expressed in terms of a Bessel kernel, see for instance
the work of Forrester [For10]. Let us consider now the fluctuation of the largest
singular value around its limit. The famous Tracy–Widom laws TW1 and TW2

are known to describe the fluctuation of the largest eigenvalue in the ensembles
of square Hermitian Gaussian random matrices (GOE for K = R and GUE for
K = C), see [TW02]. One can ask if these laws still describe the fluctuations of the
largest singular values of the Gaussian matrix G. By definition, TW1 and TW2 are
the probability distributions on R with cumulative distribution functions F1 and
F2 given for every s ∈ R by

F2(s) = exp

(
−
∫ ∞
s

(x− s)q(x)2 dx

)
and F1(s)2 = F2(s) exp

(
−
∫ ∞
s

q(x) dx

)
where q is the solution of the Painlevé II differential equation

q′′(x) = xq(x) + 2q3(x)

with boundary condition q(x) ∼ Ai(x) as x→∞, where Ai is the Airy function

Ai(x) :=
1

π

∫ ∞
0

cos

(
1

3
t3 + xt

)
dt.

The Airy function Ai is also uniquely defined by the properties

Ai′′(x) = xAi(x) and Ai(x) ∼x→∞
1

2
√
πx1/4

exp

(
−2

3
x3/2

)
.

The function F2 can be expressed as a Fredholm determinant: F2(s) = det(I −As)
where As is the Airy operator on square integrable functions on (s,∞), with kernel

As(x, y) :=
Ai(x)Ai′(y)−Ai′(x)Ai(y)

x− y
.

See for instance [Dei99, Dei07] and [For10] for more information, and [ER05] and
[Joh01] for the numerical evaluation of F1 and F2.
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Theorem 2.6 (Fluctuation of largest singular value). If m = mn → ∞ with
mn 6 n and limn→∞mn/n = y ∈ (0, 1] then, by denoting

µβ,n :=
(√

n+ β − 2 +
√
m
)2

and σβ,n :=
√
µβ,n

(
1√

n+ β − 2
+

1√
m

)1/3

,

the random variable
s1(G)2 − µβ,n

σβ,n
converges narrowly as n → ∞ to the Tracy–Widom law TWβ. Moreover, if y > 1
then the result remains true up to the swap of the roles of m and n in the formulas
(recall that G and G∗ have same singular values).

For K = C and m = n, we have β = 2 and µ2,n = 4n while σ2,n = (16n)1/3. The
Tracy–Widom fluctuation based on the Airy kernel describes also the fluctuation
of the smallest singular value in the soft edge regime (y < 1), see for instance the
book by Forrester [For10] and the approach of Ledoux [Led04].

−4 −2 0 2 4

0
.0

0
.1

0
.2

0
.3

0
.4

−4 −2 0 2 4

0
.0

0
.1

0
.2

0
.3

0
.4

Figure 3. Density of TWβ for β = 1 (blue) and β = 2 (red),
obtained by using the GNU-R package RMTstat.

Idea of the proof. The proofs of Johnstone [Joh01] and Johansson [Joh00] are based
on the determinental/polynomial approach. Let us give the first steps when K = C.
If S is as in (10), then for every Borel function f : [0,∞)→ R,

E

[
m∏
k=1

(1 + f(λk(GG∗)))

]
= cn,m det(I + Sf)

where cn,m is a normalizing constant. Here one must see S as an integral operator.
For the particular choice f = −1[t,∞) for some fixed t > 0, this gives

P
(

max
16k6m

λk(GG∗) > t

)
= cn,m det(I − S1[t,∞)).

Now the Tracy and Widom [TW02] heuristics says that the determinant in the
right hand side satisfies to a differential equation, which is Painlevé II as n → ∞.
See also the work of Borodin and Forrester [BF03, For10], and the work of Ledoux
[Led04] inspired from the work of Haagerup and Thorbjørnsen [HT03].
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An alternative approach, based on the bidiagonalization trick (7), was provided
by Ramı́rez, Rider, and Virág [RRV09]. This can be viewed as the β–Laguerre (LUE
and LOE) analogue of the work of Edelman and Sutton [ES05] for β–Hermite en-
sembles (GUE and GOE). In particular, it provides the convergence of the rescaled
extremal singular values to a Schrödinger operator. �

The largest eigenvalue of such matrices can be seen as the maximum of a random
vector with correlated coordinates (Vandermonde repulsion). Here the asymptotic
fluctuation is not captured by classical extreme values theory for i.i.d. samples
(Gnedenko–Fréchet–Fisher–Tippett–Gumbel theorem, see [Res08]). The laws TW1

and TW2 are unimodal, asymmetric, with exponentially light tails. For instance,
TW1 has a left tail ≈ exp

(
− 1

24 |x|
3
)

and a right tail ≈ exp
(
− 2

3 |x|
3/2
)
, see [Joh01].

The study of the extremal singular values s1(G), sn(G) and the condition number
κ(G) = s1(G)/sn(G) of the random Gaussian matrix G was motivated at the origin
by the behavior of numerical algorithms with random inputs. This goes back at least
to von Neumann and his collaborators [vN63, vNG47], Smale [Sma85], Demmel
[Dem88], and Kostlan [Kos88]. Note that if m = n then

κ(G) =
s1(G)

sn(G)
=

√
λ1(GG∗)

λn(GG∗)
=
√
κ(GG∗) =

√
nκ

(
1

n
GG∗

)
.

An elementary result on κ(G) is captured by the following corollary. For sharp
estimates on the tails of κ(G), see for instance the work of Edelman and Sutton
[ES05], Szarek [Sza91], Azäıs and Wschebor [AW05], and also Chen and Dongarra
[CD05]. These sharp bounds involve the control of the joint law of the extremal
singular values. This joint law can be expressed with zonal polynomials and hy-
pergeometric functions [Mui82, RVA05]. This expression is difficult to exploit. The
approach of Azäıs and Wschebor [AW05] is based on Rice formulas for Gaussian
processes extrema, see [AW09]. For the case β 6∈ {1, 2}, see for instance [DK08]
and references therein.

Corollary 2.7 (Condition number, m = n). If m = n then n−1 κ(G) converges in
distribution as n→∞ to a law with Lebesgue density

x 7→


2(x+ 1)

x3
exp

(
− 1

2x2
− 1

x

)
if K = R,

4

x3
exp

(
− 1

x2

)
if K = C.

Proof. Theorem 2.5 gives that a.s. s1(G) = (2 + o(1))
√
n as n→∞. We conclude

by using the Slutsky lemma and the limiting law of
√
n sn(G) (theorem 2.4). �

3. Universality of the Gaussian case

Gaussian random matrices with i.i.d. entries such as G have the advantage to
allow explicit computations. But one can ask if such Gaussian matrices are good
enough for the modelling of random inputs of algorithms. For instance, the support
of such random matrices is essentially concentrated on a centered Frobenius ball,
which can be seen as a drawback. More generally, let us consider a sample of n i.i.d.
random column vectors of Km. One can ask about the behavior of the eigenvalues
of their empirical covariance matrix in the situation where the common law of the
vectors. . .

• is not centered
• is not a tensor product
• has only few finite moments (heavy tails)
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• does not have a density (for instance Bernoulli or Rademacher entries).

It is rather difficult to give a comprehensive account on the available literature in
few pages. Regarding independent column vectors, a whole line of research is based
on tools and concepts from high dimensional geometric analysis, such as the work
of Mendelson and Pajor [MP06] and the work of Adamczak, Guédon, Litvak, Pajor,
and Tomczak-Jaegermann [AGL+08]. In the sequel, we restrict our attention on
some few results regarding the singular values of random matrices with i.i.d. entries.

Many results for random matrices with i.i.d. Gaussian entries remain valid for
non Gaussian entries when the moments match the Gaussian moments up to some
order. This is referred as “universality”. Let (Xi,j)i,j>1 be an infinite matrix with
i.i.d. entries in K. We consider in the sequel the m× n random matrix

X := (Xi,j)16i6m, 16j6n.

When X1,1 is a standard Gaussian random variable then X
d
= G where G is the

Gaussian random matrix of the preceding section. Note that if the law of X1,1 has
atoms, then XX∗ is singular with positive probability, even if m 6 n. Moreover, if
X1,1 is not standard Gaussian, the law of X is no longer K–unitary invariant, and
the law of the eigenvalues ofXX∗ is not explicit in general. One of the first universal
version of theorem 2.1 is due to Wachter [Wac78]. See also the review article of Bai
[Bai99]. For the version given below, see the book of Bai and Silverstein [BS10],
and the article by Bai and Yin [BY93] on the behavior at the edge.

Theorem 3.1 (Universality for bulk and edges convergence). If X1,1 has mean
E[X1,1] ∈ K and variance E[|X1,1 − E[X1,1]|2] = 1, and if m = mn → ∞ with
mn/n→ y ∈ (0,∞), then the conclusion of theorem 2.1 remain valid if we replace
G by X. Moreover, if E[X1,1] = 0 and E[|X1,1|4] < ∞ then the conclusion of
theorem 2.3 (when y ∈ (0, 1)) and theorem 2.5 remain valid if we replace G by X.
If however E[|X1,1|4] =∞ or E[X1,1] 6= 0 then a.s.

lim sup
n→∞

λ1(n−1XX∗) =∞.

The bulk behavior is not sensitive to the mean E[X], and this can be understood
from the decomposition X = X−E[X]+E[X] where E[X] = E[X1,1](1⊗1) has rank
at most 1, by using the Thompson theorem 1.5. Regarding empirical covariance
matrices, many other situations are considered in the literature, for instance in the
work of Bai and Silverstein [BS98], Dozier and Silverstein [DS07a, DS07b], Hachem,
Loubaton, and Najim [HLN06], with various concrete motivations ranging from
asymptotic statistics to information theory and signal processing.

The universality of the fluctuation of the smallest and largest eigenvalues of
empirical covariances matrices was studied for instance by Soshnikov [Sos02], Baik,
Ben Arous, and Péché [BBAP05], Ben Arous and Péché [BAP05], El Karoui [EK07],
Féral and Péché [FP09], Péché [Péc09], Tao and Vu [TV09b], and by Feldheim and
Sodin [FS10]. The following theorem on the soft edge case, due to Feldheim and
Sodin [FS10], includes partly the results of Soshnikov [Sos02] and Péché [Péc09].

Theorem 3.2 (Universality for soft edges). If the law of X1,1 is symmetric about
0, with sub-Gaussian tails, and first two moments identical to the ones of G1,1, and
if m = mn → ∞ with mn 6 n and limn→∞mn/n = y ∈ (0,∞), then s1(X)2 has
the Tracy–Widom rates and fluctuations of s1(G)2 as in the Gaussian theorem 2.6.
If moreover y < 1 then the same holds true for the smallest singular value smn(X)2.

The following theorem concerns the universality of the fluctuations of the small-
est singular value in the hard edge regime, recently obtained by Tao and Vu
[TV09b].
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Theorem 3.3 (Universality for hard edge). If m = n and if X1,1 has first two
moments identical to the ones of G1,1, and if E[|X1,1|10000] <∞, then the random
variable (

√
n sn(X))2 converges as n→∞ to the limiting law of the Gaussian case

which appears in theorem 2.4.

Actually, a stronger version of theorems 3.2 and 3.3 is available, expressing the
fact that for every fixed k, the top and bottom k singular values are identical in
law asymptotically to the corresponding quantities for the Gaussian model.

Following [TV09b], theorem 3.3 implies in particular that if X1,1 follows the
symmetric Rademacher law 1

2δ−1 + 1
2δ1 then, for m = n, for all t > 0,

P(
√
n sn(X) 6 t) =

∫ t2

0

1 +
√
x

2
√
x
e−

1
2x−
√
x dx+ o(1) = 1− e− 1

2 t
2−t + o(1).

In [TV09b], the o(1) error term is shown to be of the form O(n−c) uniformly over
t. This is close to the statement of a conjecture by Spielman and Teng on the
invertibility of random sign matrices stating the existence of a constant c ∈ (0, 1)
such that

P(
√
n sn(X) 6 t) 6 t+ cn (11)

for every t > 0. The cn is due to the fact that X has a positive probability of being
singular (e.g. equality of two rows). In 2008, Spielman and Teng were awarded
the Gödel Prize for their work on smoothed analysis of algorithms [ST03, ST02].
Actually, it has been conjectured years ago that

P(sn(X) = 0) =

(
1

2
+ o(1)

)n
.

This intuition comes from the probability of equality of two rows, which implies
that P(sn(X) = 0) > (1/2)n. Many authors contributed to this difficult non-
linear discrete problem, such as Komlós [Kom67], Kahn, Komlós, and Szemerédi
[KKS95], Rudelson [Rud08], Bruneau and Germinet [BG09], Tao and Vu [TV06,
TV07, TV09a], and Bourgain, Vu, and Wood [BVW10] who proved that

P(sn(X) = 0) 6

(
1√
2

+ o(1)

)n
for large enough n.

Back to theorem 3.1, the bulk behavior when X1,1 has an infinite variance was
recently investigated by Belinschi, Dembo, and Guionnet [BDG09], using (1). They
considered heavy tailed laws similar to α–stable laws (0 < α 6 2), with polynomial
tails. For simulations, if U and ε are independent random variables with U uniform
on [0, 1] and ε Rademacher 1

2δ−1 + 1
2δ1, then the random variable T = ε(U−1/α−1)

has a symmetric bounded density and P(|T | > t) = (1 + t)−α for any t > 0.
In this situation, the normalization n−1 in n−1XX∗ must be replaced by n−2/α.
The limiting spectral distribution is no longer a Marchenko–Pastur distribution,
and has heavy tails. In the case where X1,1 is Cauchy distributed, it is known
that the largest eigenvalues are distributed according to a Poisson statistics, see
the work of Soshnikov and Fyodorov [SF05] and the review article by Soshnikov
[Sos06]. On can ask about the invertibility of such random matrices with heavy
tailed i.i.d. entries. The following lemma gives a rather crude lower bound on the
smallest singular value of random matrices with i.i.d. entries with bounded density.
However, it shows that the invertibility of these random matrices can be controlled
without moments assumptions. Arbitrary heavy tails are therefore allowed, but
Dirac masses are not allowed.

Lemma 3.4 (Polynomial lower bound on sn for bounded densities). Assume that
X1,1 is absolutely continuous with bounded density f . If m = n then there exists
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an absolute constant c > 0 such that for every n ∈ {1, 2, . . .} and u > 0,

P(
√
n sn(X) 6 u) 6 cn

3
2 |f |∞u

β .

From the first Borel–Cantelli lemma, it follows that there exists b > 0 such that
a.s. for large enough n, we have sn(X) > n−b.

Proof. Let R1, . . . , Rn be the rows of X. From lemma 1.11 we have

min
16i6n

dist2(Ri, R−i) 6
√
n sn(X).

Consequently, by the union bound and the exchangeability, for any u > 0,

P(
√
n sn(X) 6 u) 6 nP(dist2(R1, R−1) 6 u).

Let Y be a unit normal vector to R−1. Such a vector is not unique, but we just
pick one which is measurable with respect to R2, . . . , Rn. This defines a random
variable on the unit sphere S2(Kn) = {x ∈ Kn : |x|2 = 1}, independent of R1. By
the Cauchy–Schwarz inequality, we have |R1 · Y | 6 |p(R1)|2|Y |2 = dist2(R1, R−1)
where p(·) is the orthogonal projection on the orthogonal space of R−1. Actually,
since the law of X1,1 is diffuse, the matrix X is a.s. invertible, the subspace R−1 is
a hyperplane, and |R1 · Y | = dist2(R1, R−1), but this is useless in the sequel. Let
ν be the distribution of Y on S2(Kn). Since Y and R1 are independent, for any
u > 0,

P(dist2(R1, R−1) 6 u) 6 P(|R1 · Y | 6 u) =

∫
S2(Kn)

P(|R1 · y| 6 u) dν(y).

Consider some y ∈ S2(Kn). Since |y|2 = 1, there exists some i ∈ {1, . . . , n}
such that |yi| > 0 and |yi|−1 6

√
n. The random variable Xi,i yi is absolutely

continuous with density |yi|−1f(yi
−1 · ). Now, the random variable R1 · y is a sum

of independent random variables X1,1 y1, . . . , X1,n yn, and one of them is absolutely
continuous with a density bounded above by

√
n |f |∞. Consequently, by a basic

property of convolutions of probability distributions, the random variable R1 · y is
itself absolutely continuous with a density ϕ bounded above by

√
n |f |∞. Therefore,

we have,

P(|R1 · y| 6 u) =

∫
{z∈K;|z|6u}

ϕ(s) ds 6

{
2u
√
n |f |∞ if K = R,

πu2
√
n |f |∞ if K = C.

�

The proof of lemma 3.4 above is quite instructive. Let us focus on the control
of P(|R1 · y| 6 u) when u is small. In the case where L is Gaussian, the rotational
invariance of the distribution of R1 implies that the quantity P(|R1 · y| 6 u) does
not depend on y and is of order u (take for y an element of the canonical basis
and use the fact that L has a bounded density). However, when L is not Gaussian,
the quantity P(|R1 · y| 6 u) depends heavily on L. Recall that the simple lemma
above does not allow atoms in L. In particular, it does not cover the case where L
is Rademacher 1

2δ−1 + 1
2δ+1. Such discrete matrices have a positive probability of

being singular. In this discrete case, the quantity P(|R1 ·y| 6 u) depends heavily on
the arithmetic and sparsity structure of the coordinates of y. For instance, if y =
n−1/2(e1 + · · ·+ en), then by the central limit theorem, the quantity P(|R1 · y| 6 u)
is of order u as n → ∞, whereas if y = 2−1/2(e1 + e2) then we get a completely
different behavior:

P(|R1 · y| 6 u) > P(X1,1 = 0) = 1/2.

Also, one should restart from sn(X) = min|x|2=1 |Xx|2 and partition the unit sphere
into “compressible” and “incompressible” vectors. This leads to the use of ε–nets
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techniques and to the consideration of Littlewood–Offord type problems for the
control of small balls probabilities. In this direction, an important step was first
made by Rudelson [Rud06]. Later, Rudelson and Vershynin [RV08b, RV08a] have
shown that if X1,1 has zero mean, unit variance, and finite fourth moment, then
for any fixed t > 0 (recall that m = n),

P(
√
n sn(X) 6 t) 6 f(t) + o(1) and P(

√
n sn(X) > t) 6 g(t) + o(1)

where f, g do not depend on n and f(t), g(t) → 0 as t → 0, and where o(1) is
relative to n → ∞. Moreover, if the entries are additionally sub-Gaussian then
there exist constants C > 0, c ∈ (0, 1) depending only on the moments such that
for any t > 0,

P(
√
n sn(X) 6 t) 6 C t+ cn. (12)

Since the Rademacher law is sub-Gaussian, the remarkable bound (12) proves, up
to the multiplicative constant C, the conjecture of Spielman and Teng (11). The
proof of Rudelson and Vershynin has many ingredients, including an upper bound
on the right tail of the largest singular value and a lower bound on the smallest
singular value of rectangular matrices obtained in [LPRTJ05] (see also the more
recent work [RV09]). Regarding moments, Tao and Vu have shown [TV08, TV09a]
that under the sole assumption that X1,1 has non zero finite variance then for any
constants a, c > 0 there exists b > 1/2 depending on a, c and the law of X1,1 such
that for any n× n deterministic matrix Y with |Y |2→2 6 n

c,

P(
√
n sn(X + Y ) 6 n−b) 6 n−a. (13)

Actually, one can find in [TV09c] many bounds of this flavor. For instance, under
the sole assumptions that X1,1 has zero mean and unit variance, for any fixed a > 0,

P(
√
n sn(X) 6 n−

1
2−

5
2a−a

2

) 6 n−a+o(1). (14)

The bounds (13–14) are less precise than the bound (12) but do not rely on moments
assumptions beyond the finite variance. With lemma 3.4 in mind, one can ask if the
finite moment assumption in (13) can be weakened in order to allow for instance
heavy tailed non centered discrete laws such as the Zipf type law

ζ(s)−1
∞∑
n=0

n−sδn

where s > 0, and where ζ is the Riemann zeta function.

4. Comments

The singular values of deterministic matrices are studied in many books such as
[HJ90, HJ94], [Bha97], and [Zha02]. For the algorithmic aspects, we recommend
[GVL96] and [CG05]. The singular values of random matrices are studied in the
books [Meh04], [Dei99], [For10], [AGZ09].
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[Péc09] Sandrine Péché, Universality results for the largest eigenvalues of some sample covari-

ance matrix ensembles, Probab. Theory Related Fields 143 (2009), no. 3-4, 481–516.

MR MR2475670 (2009m:60013)
[Pen56] R. Penrose, On best approximation solutions of linear matrix equations, Proc. Cam-

bridge Philos. Soc. 52 (1956), 17–19. MR MR0074092 (17,536d)

[Res08] Sidney I. Resnick, Extreme values, regular variation and point processes, Springer
Series in Operations Research and Financial Engineering, Springer, New York, 2008,

Reprint of the 1987 original. MR MR2364939 (2008h:60002)
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