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Abstract

This note gives an very short proof of the Poisson log-Sobolev inequality, by a mixture
of what can be found in [Wu00] and [AL00].

Let (Xt)t>0 be the Markov process on Rd with infinitesimal generator L of the form

∀f ∈ C∞c (Rd, R), (Lf)(x) := b · ∇f + λ

∫
Rd

[
Dyf(x)− y

1 + |y|2
∇f

]
ν(dy),

where (b, λ) ∈ Rd × R∗
+, Dyg(x) := f(x + y) − f(x) and ν is a Lévy measure, i.e. a positive

measure such that: ∫
Rd

(|y|2 ∧ 1) ν(dy) < +∞.

The process (Xt)t>0 is nothing else but a Lévy process without Gaussian part. When ν is
a probability measure, and b = −λ

∫
Rd y(1 + |y|2)−1 ν(dy), (Xt)t>0 is a compound Poisson

process of intensity λ and jump law ν. In particular, the case ν = δ1 corresponds to the
simple Poisson process. Let us give a short and elementary proof of the following inequality:
∀f ∈ Cb(Rd, R+),

Ent(f(Xt)) := E(Φ(f(Xt)))− Φ(E(f(Xt))) 6 λtE

(∫
Rd

Θy(f)(Xt) ν(dy)

)
,

where Φ(u) := u log u for u > 0 and Φ(0) := 0 and where

Θy(f) := min

(
(Dyf)2

f
, Dyf Dy log f

)
.

In particular, this gives a modified logarithmic Sobolev inequality for infinitly divisible laws
(take t = 1). The method used is a mix of what can be found in [Wu00] and [AL00], see
also [Pri00], [Ané01] and [CHL97]. In the sequel, we denote by (Pt)t>0 the associated Markov
semi-group acting on Cb(Rd, R) and defined for any x ∈ Rd and f ∈ Cb(Rd, R) by

Pt(f) (x) := E(f(Xt) |X0 = x) = EL(Xt |X0=x)(f).
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Namely, one have Pt(Ps(f)) = Ps+t(f) for any t, s ∈ R+, and ∂tPt(f) = LPt(f) = Pt(Lf).
The key property is that L in translation invariant, and hence Dy and Pt commute. We have
for any t > 0 and any f ∈ C∞c (Rd, R+):

E(Φ(f(Xt)))− Φ(E(f(Xt))) = Pt(Φ(f))− Φ(Pt(f)) = α(t)− α(0) =

∫ t

0

α′(s) ds,

where α(s) := Ps(Φ(Pt−s(f))). But now α′(s) = Ps(L(Φ(g))− Φ′(g)Lg) where g := Pt−s(f).
At this stage, we notice that by definition of L:

L(Φ(g))− Φ′(g)Lg = λ

∫
Rd

[DyΦ(g)− Φ′(g)Dyg] ν(dy),

But DyΦ(g)− Φ′(g)Dyg = Ψ(g, Dyg), where

Ψ(u, v) : = Φ(u + v)− Φ(u)− Φ′(u)v

= (u + v) log(u + v)− u log u− (1 + log u)v,

for any (u, v) ∈ R2 with u > 0 and u + v > 0. Hence, by the Fubini Theorem,

α′(s) = λ

∫
Rd

Ps(Ψ(g, Dyg)) ν(dy).

Now, since g = Pt−s(f) and since the process have independent increments, we have Dyg =
DyPt−s(f) = Pt−s(Dyf). Then, by the Jensen inequality for the bivariate convex function Ψ
and the probability measure Pt−s(·)(x) = L(Xt−s |X0 = x):

Ψ(g, Dyg) = Ψ(Pt−s(f) ,Pt−s(Dyf)) 6 Pt−s(Ψ(f, Dyf)) ,

Hence, we have:

α′(s) 6 λ

∫
Rd

Ps(Pt−s(Ψ(f, Dyf))) ν(dy) = λ

∫
Rd

Pt(Ψ(f, Dyf)) ν(dy).

Therefore, again by the Fubini Theorem:

α′(s) 6 λPt

(∫
Rd

Ψ(f, Dyf) ν(dy)

)
.

This yields finally to:

E(Φ(f(Xt)))− Φ(E(f(Xt))) 6 λtE

(∫
Rd

Ψ(f(Xt), Dyf(Xt)) ν(dy)

)
.

This inequality gives the desired two bounds in terms of (Dyf)2/f and Dyf Dy log f since

Ψ(u, v) 6
v2

u
and Ψ(u, v) 6 v(log(u + v)− log u).
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The same argument gives the Poincaré inequality in few lines: ∀f ∈ C∞c (Rd, R),

Var(f(Xt)) = Pt

(
f 2

)
−Pt(f)2

=

∫ t

0

∂sPs

(
Pt−s(f)2) ds

=

∫ t

0

Ps

(
L(Pt−s(f)2)− 2Pt−s(f)LPt−s(f)

)
ds

=

∫ t

0

λ

∫
Rd

Ps

(
(DyPt−s(f))2

)
ν(dy) ds

=

∫ t

0

λ

∫
Rd

Ps

(
Pt−s(Dyf)2) ν(dy) ds

6
∫ t

0

λ

∫
Rd

Ps

(
Pt−s

(
(Dyf)2)) ν(dy) ds

= λtPt

(∫
Rd

(Dyf)2 ν(dy)

)
= λtE

(∫
Rd

(Dyf(Xt))
2 ν(dy)

)
.

It can be also recovered from the modified logarithmic Sobolev inequality applied to 1 +
εf by letting ε tends to 0+. Notice that the natural “carré du champ” is given by Γf :=
1
2
(L(f 2)−2fLf) = λ

2

∫
Rd(Dyf)2 ν(dy). Finally, the modified logarithmic Sobolev and Poincaré

inequalities derived above may be simply extended to cylindrical functions of the process by
using the tensoriation property and the independence of the increments. Namely, for any
smooth function F of (Xt1 , . . . , Xtn) where 0 = t0 < t1 < · · · < tn:

E(Φ(F ))− Φ(E(F )) 6 λ

n∑
i=1

(ti − ti−1)E

(∫
Rd

Ψ(F, Di···n
y F ) ν(dy)

)
,

where
Di···nF (x) := (F ◦ τi(y))(x)− F (x),

and where
(F ◦ τi(y))(x) := F (x1, . . . , xi−1, xi + y, . . . , xn + y).

This gives an inequality on the paths space by letting n tends to +∞ as soon as a suitable
Malliavin derivative makes sense (this holds for example for the simple Poisson process).
Namely, if F is a smooth function of (Xt)06t6T :

E(Φ(F ))− Φ(E(F )) 6 λE

(∫ T

0

∫
Rd

Ψ(F, Dt
yF ) ν(dy) dt

)
,

where
Dt

yF ((xs)06s6T ) := F ((xs + y I[t,T ](s))06s6T )− F ((xs)06s6T ).

Moreover, a tensorisation with inequalities of the same type satisfied by the Brownian motion
yields to similar inequalities at time t and on the paths space for Lévy processes.
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1 Reversed inequalities

Pt

(
f 2

)
−Pt(f)2 =

∫ t

0

λ

∫
Rd

Ps

(
Pt−s(Dyf)2) ν(dy) ds

>
∫ t

0

λ

∫
Rd

Ps(Pt−s(Dyf))2 ν(dy) ds

= λt

∫
Rd

Pt(Dyf)2 ν(dy).

Pt(Φ(f))− Φ(Pt(f)) > λt

∫
Rd

Ψ(Pt(f) ,Pt(Dyf)) ν(dy).

2 An F.K.G. inequality

The F.K.G. inequality. Let f, g : Rd → R such that Dyf > 0 and Dyg > 0 for all y in
supp(ν), then

Cov(f(Xt), g(Xt)) > 0.

When −supp(ν) ⊂ supp(ν), the hypothesis is satisfied only by constant functions and the
result is void, whereas for supp(ν) ⊂ (R+)d, the hypothesis is satisfied by non decreasing
functions.

Cov(f(Xt), g(Xt)) = Pt(fg)−Pt(f)Pt(g) =

∫ t

0

α′(s) ds,

where α(s) := Ps(Pt−s(f)Pt−s(g)). Let F := Pt−s(f) and G := Pt−s(g), then

α′(s) = Ps(L(FG)− (LF )G− F (LG)) ,

and by definition of L

L(FG)− (LF )G− F (LG) =

∫
Rd

(DyF )(DyG) ν(dy).

But now F = DyPt−s(f) = Pt−s(Dyf) and G = DyPt−s(g) = Pt−s(Dyg) and hence

Pt(fg)−Pt(f)Pt(g) =

∫ t

0

∫
Rd

Ps(Pt−s(Dyf)Pt−s(Dyg)) ν(dy) ds.

This expression is non negative since Pt−s(Dyf) > 0 and Pt−s(Dyg) > 0 for y in supp(ν).

3 Martingale

Let us explain how the following formula can be viewed as a result of a martingale repre-
sentation.

Pt(Φ(f))− Φ(Pt(f)) =

∫ t

0

Ps(−Φ′(g)Lg + LΦ(g)) ds.

For any smooth h : [0, t]× Rd → R, the Itô formula gives that the process (Mu)06u6t defined
by

Mu := h(u, Xu)− h(0, X0)−
∫ u

0

[∂sh(s, Xs) + Lh(s, Xs)] ds.
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is a martingale. At this step, we get by taking h(s, x) = Φ(Pt−s(f)) and g = Pt−s(f):

Mt = Φ(f)(Xt)− Φ(Pt(f))−
∫ t

0

[−Φ′(g)Lg + LΦ(g)](Xs) ds.

The desired result follows since

0 = E(M0) = E(Mt) = Pt(Φ(f))− Φ(Pt(f))−
∫ t

0

Ps(−Φ′(g)Lg + LΦ(g)) ds.
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