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Abstract

Just linear problems with positivity constraints in infinite dimensions. . .
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1 Introduction

These notes deal with the characterization or the reconstruction of probability distributions
from their lower dimensional projections.

We denote by 〈x, y〉 the Euclidean scalar product of Rd, by ‖x‖ =
√
〈x, x〉 the associated

norm, by S(Rd) = {x ∈ Rd; ‖x‖ = 1} the centered unit radius sphere, and by λ the uniform
distribution on this sphere. For any probability distribution P on Rd and any vector x ∈ Rd,
we denote by P〈x〉 the law of the projection in the direction x. In other words, if X ∼ P then

〈X,x〉 ∼ P〈x〉. For any couple P,Q of probability distributions on Rd, we define

E(P,Q) = {x ∈ Rd;P〈x〉 = Q〈x〉} and E1(P,Q) = {x ∈ S(Rd);P〈x〉 = Q〈x〉}.

Notice the identity E1(P,Q) = E(P,Q)∩S(Rd). Clearly, E(P,Q) is a closed cone fully determined
by the compact set E1(P,Q) since

E(P,Q) = {αx ; (α, x) ∈ R+ × E1(P,Q)}.
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We denote by ϕP : Rd → C the Fourier transform (i.e. characteristic function) of P defined for
any t ∈ Rd by

ϕP (t) =

∫
Rd

ei〈t,x〉 dP (x).

Remark 1.1 (Defining the set of all rays). Since P〈−x〉 is fully and uniquely determined by P〈x〉,
the set E1(P,Q) is in turn fully determined by the quotient E1(P,Q)/R where R denotes the
antipodal binary equivalence relation defined by yRx if and only if y = −x. Actually, one can
even replace the Euclidean centered unit radius sphere S(Rd) by any centered sphere of positive
radius for any norm on Rd, and one can take then a suitable antipodal quotient.

Theorem 1.2 (Cramér-Wold [CW36]). For any couple P,Q of probability distributions on Rd,
we have P = Q if and only if E1(P,Q) = S(Rd).

Proof. Well, the desired result is a reformulation of the fact that a probability distribution
is uniquely determined by its characteristic function (i.e. its Fourier transform). This classical
result is in turn a consequence of the Fourier inversion formula or of the monotone class theorem.

More generally, for a fixed d and for any 1 6 k 6 d, let Ek be the set of all k-dimensional
subspaces of Rd. This set can be identified to the collection of projections πV : Rd → V where V
is a k-dimensional subspace of Rd. The set Ek can also be seen as a collection of k-dimensional
closed subsets of S(Rd), and for instance E2 is the collection of great circles of S(R2).

Next, we define the set Ek(P,Q) = {πV ∈ Ek;πV (P ) = πV (Q)}, where πV (P ) denotes
the projection of P onto V , i.e. the image distribution of P by the map πV . Notice that if
πV ∈ Ek(P,Q), then πV ′ ∈ Ek′(P,Q) for any k′-dimensional sub-vector space V ′ of V . Clearly,
Ed(P,Q) = ∅ if P 6= Q and Ed(P,Q) = S(Rd) if P = Q. By the Cramér-Wold theorem,
Ek(P,Q) = Ek if and only if P = Q.

2 Some few moments with the problem of moments

Let P be a probability distribution on R. The sequence of absolute moments (Mn) of P is given
for every n ∈ N by

Mn =

∫
R
|x|n dP (x) ∈ [0,∞].

When Mn <∞, the associated moment mn is given by

mn =

∫
R
xn dP (x),

and we have |mn| 6Mn. The sequence of moments (mn) of P is well defined if and only if P has
finite absolute moments, in other words if and only if R[X] ⊂ L1(P ). Notice that (Mn) = (mn)
when P is supported in R+. We say that a probability distribution P on R (resp. R+) is
characterized by its moments if and only if P is the unique probability distribution on R (resp.
R+) with sequence of moments (mn). Moments problems go back probably to Tchebychev,
Markov, and Stieltjes, and can be subdivided into several subproblems including. . .

1. existence. under which condition a sequence of real numbers (mn) is the sequence of
moments of a probability distribution?

2. uniqueness. under which condition a probability distribution is characterized by its
moments?
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3. structure. how to describe the convex set of all probability distributions sharing the same
sequence of moments?

Notice that existence and uniqueness problems are in general sensitive to additional constraints.
For the moments problem, uniqueness on R+ does not imply uniqueness on R, whereas existence
on R does not imply existence on R+. Stieltjes studied moments problems on R+. He obtained
a necessary and sufficient condition for existence, and studied uniqueness. His methods involve
for instance continuous fractions, see for example [Sti93]. Later, Hamburger continued the work
of Stieltjes and studied moments problems on R, see for instance [Ham21]. Actually, moments
problems were studied by many people including among others Marcel Riesz, Krĕın, Hausdorff,
Hamburger, and Carleman. Nowadays, there is less activity around moments problems, but
[Pak01] is a counter example. As for many problems, existence is “simpler” than uniqueness.

2.1 Existence

The moments problem is a linear problem, with a positivity constraint.

Theorem 2.1 (Hamburger [Ham21]). A sequence (mn) of real numbers is the sequence of mo-
ments of a probability distribution on the real line if and only if the infinite Hankel matrix

H =


m0 m1 m2 · · ·
m1 m2 m3 · · ·
m2 m3 m4 · · ·
...

...
...

. . .


is positive definite:

∑
n,n′ mn+n′unun′ > 0 for any sequence (un) of complex numbers such that

un = 0 except for a finitely many values of n.

Notice that Hn,n′ = mn+n′ and that the condition on H means that every finite square
submatrix of H is positive definite. There exists a necessary and sufficient condition it terms of
matrices for the Stieltjes moment problem. The reader will find more details on Stietljes and
Hamburger moments problems in [ST43], [Akh65], and [KN77].

2.2 Uniqueness

One can derive sufficient conditions for uniqueness in terms of Hankel determinants. We give in
the sequel some aspects of a more general approach based on quasi-analytic functions. In the
sequel, and unless explicitly mentioned, we consider uniqueness on R, not on R+.

Theorem 2.2 (Hausdorff, [Hau23]). A probability distribution P on [0, 1] is characterized by its
moments.

Proof. The density of the polynomials for the uniform topology (Weierstass-Bernstein theorem)
implies that P is characterized by its moments among compactly supported probability measures.
It remains to remove this comapctness condition. See also [DF04].

Remark 2.3 (A counter-example by C.C. Heyde). The log-normal distribution is not charac-
terized by its moments. Namely, a real random variable X follows the log-normal distribution
if and only if log(X) is a standard Gaussian distribution. The associated Lebesgue density is
x 7→ (2π)−1/2x−1 exp(−(log(x))2/2)IR+(x). Now, for any fixed real number a ∈ [−1,+1], let us
consider the Lebesgue density fa defined by fa(x) = f(x)(1 + a sin(2π log(x))) for every x ∈ R.
It turns out that f and fa share the same sequence of moments, see for instance [Fel71, p. 227].
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Theorem 2.4 (Tchakaloff-Bayer-Teichmann [Tch57, BT06]). Let P be a probability distribution
on Rd with some finite absolute moments: max16k6nMn <∞ for some integer n > 1. Let Rn[X]
be the vector space of polynomial functions of total degree less than of equal to n. Then there
exists a finitely supported probability distribution Pk = p1δx1 + · · · + pkδxk with supp(Pk) =
{x1, . . . , xk} ⊂ supp(P ) and k 6 DimRn[X] such that for every f ∈ Rn[X],∫

Rd

f(x) dP (x) =

∫
Rd

f(x) dPk(x) =
k∑
i=1

pif(xi).

Proof. The proof uses basic separation properties of convex sets, the extremal points theorem
of Minkowski-Carathéodory, and the transformation of the measure into a measure on the space
of polynomials of bounded degree. This kind of result is also referred as quadrature of cubature
formulas. See also [Put97] and [CF02]. There a link between Hamburger moments problems and
the density of polynomials in Lebesgue spaces, see for instance [Sto00], [Bak01, Bak03], [Ber96],
[FP05], and [PV99].

Theorem 2.5 (Analycity of the Fourier transform and the moments problem). Let P be a
probability distribution on R with well defined moments (mn) and Fourier transform ϕP . The
following propositions are equivalent.

1. ϕP is analytic on a neighborhood of the origin;

2. ϕP is analytic on R;

3. limn

(
1
n! |mn|

) 1
n <∞.

Moreover, if they hold true, then P is characterized by its moments (mn). It is the case in
particular when P is compactly supported or when

lim
n

1

n
|mn|

1
n <∞.

.

Proof. For every n, we have Mn < ∞, and thus ϕP is n times differentiable on R. Moreover

ϕ
(n)
P is continuous on R and for every t ∈ R,

ϕ
(n)
P (t) =

∫
R
(ix)neitx dP (x).

In particular, ϕ
(n)
P (0) = inmn, and the Taylor series of ϕP at the origin is determined by the

sequence (mn). Recall that the radius of convergence r of the power series
∑

n anz
n associated

to the sequence of complex numbers (an) is given by the Hadamard formula

r−1 = lim
n
|an|

1
n ,

and consequently, 1⇔ 3 (just take an = inmn/n!). In the other hand, for any n ∈ N and any
s, t ∈ R, we have

eisx
(
eitx − 1− itx

1!
− · · · − (itx)n−1

(n− 1)!

)
6
|tx|n

n!
,

see for instance [Fel71, p. 512 and 514], and thus, for any n ∈ N and any s, t ∈ R,(
ϕP (s+ t)− ϕP (s)− t

1!
ϕ′P (s)− · · · − tn−1

(n− 1)!
ϕ
(n−1)
P (s)

)
6 mn

|t|n

n!
,
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which implies 1 ⇔ 2. By the Stirling formula, if limn
1
n |mn|

1
n <∞ then condition 3 holds true.

If P is compactly supported, then supn |mn| < ∞ and thus condition 3 holds true. Suppose
now that conditions 1-3 hold true. From condition 2, the analytic continuation principle states
that ϕP admits a maximal simply connected analytic continuation to a neighborhood of R in
C, which is thus holomorphic. Next, the sequence of moments (mn) uniquely characterizes the
Taylor series at the origin, and thus uniquely characterizes the analytic continuation of ϕP by
virtue of the isolated zeros theorem. In particular, the sequence of moments characterizes the
function ϕP on R, and thus P by virtue of the the Cramér-Wold theorem.

It turns out that a probability distribution on R can be characterized by its moments without
having an analytic Fourier transform1. Actually, in view of the moments problem, the main
useful property here regarding analycity is that an analytic function on R is uniquely determined
by its value and the values of all its derivatives at the origin. Quasi-analytic functions have this
property. These functions where introduced by Émile Borel and Hadamard, and where later
brilliantly studied by Denjoy and Carleman, see for instance the memoir of Carleman [Car26],
or [Rud87, ch. 19] and [BMR97, sec. 4.2]. The Carleman condition appearing below is strictly
weaker than the Hadamard condition.

For any sequence of positive real numbers (cn) and any bounded interval [a, b] ⊂ R, we
denote by C([a, b], (cn)) the class of infinitely differentiable functions f : [a, b] ⊂ R → C such
that sup[a,b]

∣∣f (n)∣∣ 6 rncn for any n ∈ N and for some positive real constant r which may depend
on f . The Hadamard problem consists in finding conditions on (cn) such that any couple of
functions f and g in C([a, b], (cn)) that are equal together with all their derivatives at some fixed
point of [a, b] are equal on the whole interval [a, b]. Such functions are called quasi-analytic. The
analytic functions on [a, b] correspond to the class C([a, b], (n!)).

Theorem 2.6 (Denjoy-Carleman characterization of quasi-analycity). For any sequence of posi-
tive real numbers (cn) and any bounded interval [a, b] ⊂ R, the class C([a, b], (cn)) is quasi-analytic
if and only if

∞∑
n=1

(
inf
k>n
|ck|

1
k

)−1
=∞.

Analycity implies quasi-analycity but the converse if false. The Carleman condition is satis-
fied if the Hadamard condition is satisfied.

Corollary 2.7 (Carleman condition for the moments problem). Let P be a probability distribu-
tion on R with finite absolute moments (Mn) and moments (mn). If at least one of the following
conditions is satisfied

1.
∑∞

n=1M2n
− 1

2n =∞;

2.
∑∞

n=1Mn
− 1

n =∞;

3.
∑∞

n=1 |mn|−
1
n =∞

then P is characterized by its moments.

Proof. We have |mn| 6Mn for every n ∈ N. In the other hand, the elementary bound 2|u|2n+1 6
|u|2n + |u|2n+2 valid for every u ∈ R and n ∈ N implies that 2M2n+1

2n 6 M2n +M2n+2 for every
n ∈ N. Consequently, we obtain the following cascading Carleman like conditions:

∞∑
n=1

M2n
− 1

2n =∞ ⇒
∞∑
n=1

Mn
− 1

n =∞ ⇒
∞∑
n=1

|mn|−
1
n =∞.

1FIXME: we want examples here!
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They imply that ϕP is quasi-analytic, and that it is characterized by the sequence (mn) since

ϕ
(n)
P (t) = (it)nmn for every n ∈ N and t ∈ R. The desired result follows then from the Denjoy-

Carleman theorem with cn = |mn| by using the bound infk>n ck 6 cn.

If ϕP is analytic on a neighborhood of the origin then the Hadamard condition limn n
−1|mn|

1
n <

∞ holds true and implies the Carleman condition
∑∞

n=1 |mn|−
1
n =∞.

Let us move now to the multivariate moment problem. We define the sequence of absolute
moments (Mn) of a probability distribution P on Rd with d > 1 by

Mn =

∫
Rd

‖x‖n dP (x) ∈ [0,∞]

for any n ∈ N. If P‖·‖ denotes the image distribution of P by the map x 7→ ‖x‖, then P‖·‖ is a
probability distribution on R+ with sequence of moments (Mn). By using Hölder inequality, if
Mn <∞ for every n ∈ N, then for any multi-index k ∈ Nd, one can define the moment mk of P
by

mk = mk1,...,kd =

∫
Rd

xk11 · · ·x
kd
d dP (x).

We say that P is characterized by its moments if and only if P is the unique probability dis-
tribution on Rd with moments (mk). Notice that when Mn < ∞ for every n ∈ N, the Fourier
transform ϕP is infinitely Fréchet differentiable on Rd and for every t ∈ Rd and k ∈ Nd,

∂k1t1 · · · ∂
kd
td
ϕP (t1, . . . , td) = ik1+···+kdtk11 · · · t

kd
d mk.

It is delicate to make use of analycity in dimension strictly bigger than 1 due to the lack of
multidimensional isolated zeros theorem (e.g. Hartog type phenomena). In some sense, the
Carleman moments condition turns out to be more flexible.

Theorem 2.8 (Multidimensional case). Let P be a probability distribution on Rd with Fourier
transform ϕP and finite absolute moments (Mn) and moments (mk). If at least one the following
propositions hold true

1. P〈x〉 is characterized by its moments for every x ∈ S(Rd);

2. P satisfies to the Carleman condition

∞∑
n=1

(Mn)−
1
n =∞;

3. for every x ∈ S(Rd), the function t ∈ R 7→ ϕP (tx) is analytic on R;

then P is characterized by its moments (mk).

Proof. For every x ∈ S(Rd), the moments of the unidimensional probability distribution P〈x〉
are uniquely determined by the sequence (mk) since for every n ∈ N,∫

R
un dP〈x〉(u) =

∫
R
〈x, y〉n dP (y) =

∑
k1+···+kd=n

(
n

k1 · · · kd

)
xk11 · · ·x

kd
d mk1,...,kd .

By the Cramér-Wold theorem, 1 ⇒ P is characterized by (mk).
2⇒1. For every x ∈ S(Rd), the unidimensional probability distribution P〈x〉 satisfies in turn

to the Carleman condition since for every n ∈ N,∫
R
|u|n dP〈x〉(u) =

∫
Rd

|〈x, y〉|n dP (y) 6 ‖x‖n
∫
Rd

‖y‖n dP (y) = Mn,

3⇒1. We have For every x ∈ S(Rd), ϕP〈x〉(t) = ϕP (tx) for every t ∈ R.
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The following results shows that the Carleman condition is sharp, for the moment charac-
terization problem and for the projection characterization problem.

Theorem 2.9 (Bélisle-Massé-Ransford [BMR97]). Let K be a closed ball of Rd not containing
the origin and let (Mn) be a sequence of positive real numbers such that

M0 = 1, M2
n 6Mn−1Mn+1 for every n > 0, and

∞∑
n=1

M
− 1

n
n <∞.

Then there exists two probability measures P and Q on Rd such that

1. P and Q are mutually singular;

2. P and Q share the same projection on every (d− 1)-dimensional subspace of Rd not con-
taining K;

3. max(M2n(P ),M2n(Q)) 6M2
n for every n > 0;

4.
∫
Rdx

k1
1 · · ·x

k
d dP (x) =

∫
Rdx

k1
1 · · ·x

kd
d dQ(x) for every multi-index k ∈ Nd.

The proof is given in [BMR97, sec. 5.3]. A slight adaptation of this proof leads to the
following result mentioned in [CAFR07, th. 2.6].

Theorem 2.10 (Cuesta-Albertos-Fraiman-Ransford [CAFR07]). Let K be a proper closed subset
of S(Rd) and let (Mn) be a sequence of positive real numbers s.t.

M0 = 1, M2
n 6Mn−1Mn+1 for every n > 0, and

∞∑
n=1

M
− 1

n
n <∞.

Then there exists two probability measures P and Q on Rd such that

1. P and Q are mutually singular;

2. K ⊂ E1(P,Q);

3. max(Mn(P ),Mn(Q)) 6M2
n for every n > 0.

3 The Rényi-Gilbert theorem and random projections

According to the Cramér-Wold theorem in R, for any couple P,Q of probability distributions
on R, we have P = Q if and only if E1(P,Q) is not empty. The aim of the sequel is to further
study such kind of characterization, in higher dimensions.

Theorem 3.1 (Rényi-Gilbert [Rén52, Gil55]). Let P and Q be two probability measures on R2.
Assume that at least one of the following properties hold true.

1. Rényi: the restrictions of the Fourier transforms ϕP and ϕQ of P and Q on every centered
circle are analytic (as functions of the angle);

2. Gilbert: P and Q have finite absolute moments and both sequences of absolute moments
satisfy to the Carleman condition.

Then P = Q if and only if E1(P,Q) is infinite. In particular, P 6= Q if and only if E1(P,Q) is
finite.
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Proof. If P = Q then E1(P,Q) = S(Rd) which is an infinite set. Conversely, we assume from
now that E1(P,Q) is infinite, and our aim is to show that P = Q.

Let consider the Rényi part. For any r > 0, we denote by S(r) the centered sphere of R2

with radius r. For each r > 0, the Fourier transforms ϕP and ϕQ coincide on an infinite set Cr
of points of S(r). Since S(r) is compact, the infinite set Cr admits an accumulation point, and
thus the two analytic functions ϕP and ϕQ coincide on the whole S(r). This holds for every
r > 0, and thus ϕP = ϕQ. The result follows then from the Cramér-Wold theorem.

Let us consider the Gilbert part. According to the assumptions on P and Q, it is sufficient to
show that the values at the origin of all the derivatives of ϕP may be computed from {ϕP〈x〉 ;x ∈
E1(P,Q)}. Now fix n and a finite sequence of distinct points {x1, . . . , xn} ⊂ E1(P,Q). We have
by writing xk = eiθk for every 1 6 k 6 n:

ϕ
(n)
P〈xk〉

(0) =

n∑
j=0

(
n

j

)
cosn−j(θk) sinj(θk)ϕ

(n−j,j)
P (0, 0).

This gives n+1 linear equations involving the variables {ϕ(n−j,j)
P (0, 0); 0 6 j 6 n}. Let us denote

by A the matrix associated to this linear system. We may assume that 0 6 θk < π for every
1 6 k 6 n without loss of generality (just replace xk by −xk if not). Suppose for the moment
that θk 6= π/2 for every 1 6 i 6 n and set ak = tan(θk). The determinant of the linear system of
equations is a Vandermonde determinant, which is non-zero if and only if tan(θk) 6= tan(θk′) for
every 1 6 k 6= k′ 6 n. Since 0 6 θk < π for every 1 6 k 6 n, this condition writes θk 6= θk′ for
every 1 6 k 6= k′ 6 n, which is true since the points x1, . . . , xn are distinct. Now, if θk = π/2,
then the initial system matrix A has a whole row Ak,· of zeros except for the entry Ak,1 = 1,
and we may apply the argument to the cofactor of Ak,1 in A.

It seems that the Rényi-Gilbert theorem was rediscovered independently by Ferguson, ac-
cording to the abstract [Fer59] of an unpublished article.

Theorem 3.2 (Heppes [Hep56]). Let P be a probability distribution on R2. If P has a positive
Lebesgue density on a disk. Then for every finite subset F of S(Rd), there exists a probability
distribution Q 6= P on R2 such that F ⊂ E1(P,Q).

3.1 The case of finitely supported discrete probability distributions

It is natural to ask about the problem of determination by projections for discrete probability
distributions. The following theorem gives an answer.

Theorem 3.3 (Rényi-Heppes [Rén52, Hep56]). Let P be a discrete probability distribution on Rd
with a support made with exactly k distinct atoms. Assume that V1, . . . , Vk+1 are subspaces of Rd
of respective dimensions d1, . . . , dk+1 such that no couple of them is contained in a hyperplane
(i.e. no straight line is perpendicular to more than one of them). Then, for any probability
distribution Q in Rd, we have P = Q if and only if πVi ∈ Edi(P,Q) for every 1 6 i 6 k + 1.

In particular, for a probability distribution made with k atoms in Rd, we see that at most
k+1 hyperplanes are enough to characterize the distribution. This fact can be seen as a counter
example to the Rényi-Gilbert theorem where infinitely many directions are required. In some
sense, since a probability distribution on Rd is the limit of a sequence of finitely supported
discrete probability distributions, the two theorems are intuitively compatible.

The following result, taken from [BMR97, sec. 6], goes further.

Theorem 3.4 (Bélisle-Massé-Ransford [BMR97]). Let P and Q be two probability distributions
on Rd and let 1 6 i 6 d− 1.
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1. if V1, . . . , Vk are distinct elements of Ei(P,Q) then for every x ∈ Rd,

|P ({x})−Q({x})| 6 1

k
;

2. if Ei(P,Q) is infinite then P and Q share the same discrete part, and in particular, if P
or Q is discrete then P = Q.

Proof. Assume that V1, . . . , Vk are distinct elements of Ei(P,Q). Fix x ∈ Rd and put c =
P ({x}) − Q({x}) and Ai = π−1Vi ({πVi(x)}) \ {x} for every 1 6 i 6 k. Then we have for every
1 6 i 6 k,

P (Ai) = P (π−1Vi ({πVi(x)}) \ {x})− P ({x})
= Q(π−1Vi ({πVi(x)}) \ {x})−Q({x})− c
= Q(Ai)− c.

Since V1, . . . , Vk are distinct, the sets A1, . . . , Ak are disjoint, and we get

1 >
k∑
i=1

Q(Ai) >
k∑
i=1

c = kc.

The first desired result follows then by exchanging the role of P and Q in the above. The second
result is a direct consequence of the first one when k →∞.

Rényi gave in [Rén52] an example on R2 for which |P ({x})−Q({x})| = 1
k . Namely, consider

a polygon P with 2k sides, centered at the origin. Number the 2k vertices according to the
trigonometric way. Let P (resp. Q) be the probability distribution with mass 1/k at each odd
(resp. even) vertex of P. Then P and Q share the same projections on the k straight lines
orthogonal to pairs of opposite sides and going through the origin.

Remark 3.5 (Yet another generalization of Cramér-Wold in the plane). Let E be a Borel
subset of H = R+ × R of positive Lebesgue measure. It was shown by Sitaram in [Sit83] by
using elementary complex analysis that if two probability distributions P and Q on R2 satisfy
to P (T (E)) = Q(T (E)) for every translation-rotation T then P = Q. This result constitute
another generalization of the Cramér-Wold theorem in R2, and is actually probably valid on Rd.
According to Sitaram, it was obtained earlier by Hertle in [Her79] by using a Radon transform.

3.2 Gallery of counter examples

We gather here several examples and counter examples that show the complexity and some
counter intuitive aspects of the characterization by projections.

Remark 3.6 (Rényi 6= Gilbert). The probability distribution P on R2 with density reiθ 7→
π−1(1 + r2)−2 has a constant density and thus a constant Fourier transform on each circle,
and therefore satisfies to the Rényi condition. However, P has no moments, and thus does not
satisfies to the Gilbert condition. We ignore if conversely, there exists a probability distribution
on R2 which satisfies the Gilbert condition without satisfying the Rényi condition.

Remark 3.7 (When infinitely many directions are not enough). Let ϕ1 : R → R be defined by
ϕ1(t) = (1−|t|)I[−1,+1](t) for every t ∈ R, and let ϕ2 : R→ R be the periodic extension on R with
period 2 of the restriction of ϕ1 on [−1,+1]. It turns out that both ϕ1 and ϕ2 are the Fourier
transforms of univariate probability distributions. Notice that ϕ1 and ϕ2 coincide on the whole
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interval [−1,+1] ! Furthermore, the functions ϕ1 ⊗ ϕ1 and ϕ1 ⊗ ϕ2 are the Fourier transforms
of two probability distributions on R2. These Fourier transforms coincide in the directions of
angle π/4 6 θ 6 3π/4. Moreover, the associated distributions do not have any finite moment.
This example is mentioned in [Gil55]. It is attributed to Khintchine and appears in [Lév37] and
in [Fel71, p. 505-506].

Remark 3.8 (Finitely many directions are not enough for Gaussians). A Gaussian distribution
on R2 satisfies to both Rényi and Gilbert conditions, and is thus characterized by the prescription
of its projections on an infinite number of directions. It is tempting to ask if a finite number
of directions is enough to characterize a Gaussian distribution of R2. Let us consider a random
vector (X,Y ) of R2 with distribution P with Lebesgue density f given for every (x, y) ∈ R2 by

f(x, y) =
1

2π
e−

1
2
(x2+y2)

(
1 + xy(x2 + y2)e−

1
2
(x2+y2+2u)

)
,

where u is some arbitrary real number u such that∣∣∣xy(x2 − y2)e−
1
2
(x2+y2+2u)

∣∣∣ 6 1.

This condition ensures that f is a density. The Fourier transform of P is given for any (t1, t2) ∈
R2 by

ϕP (t1, t2) = e−
1
2
(t21+t

2
2) +

1

32
t1t2(t

2
1 − t22)e−u−

1
4
(t21+t

2
2).

It is immediate to check that X ∼ N (0, 1), Y ∼ N (0, 1), X + Y ∼ N (0, 2), X − Y ∼ N (0, 2),
despite the fact that (X,Y ) is not Gaussian. One can additionally check that X and Y are
uncorrelated. More generally, for an arbitrary finite sequence of directions (a1, b1), . . . , (an, bn)
in the plane R2, it can be shown that for suitable real numbers u and v, the function ϕ : R2 → R
defined for any (t1, t2) by

ϕ(t1, t2) = e−
1
2
(t21+t

2
2) + e−u−

v
2
(t21+t

2
2)

n∏
k=1

(b2kt
2
1 − a2kt22)

is the Fourier transform of a probability distribution P on R2. One can immediately check that
P〈(ak,bk)〉 = N (0, a2k + b2k) for every 1 6 k 6 n, despite the fact that P is not Gaussian. These
families of counter examples where given in [HT75]. Later, Hamedani provided in [Ham84] the
Lebesgue density f : Rd → R defined for any x ∈ Rd by

f(x1, . . . , xd) = (2π)−
1
2
d

(
e−

1
2
‖x‖2 + w(x21 − x22)

d∏
k=1

xkI[−1,+1](xk)

)

where w is an arbitrary real number such that∣∣∣∣∣w(x21 − x22)
d∏

k=1

xkI[−1,+1](xk)e
1
2
‖x‖2

∣∣∣∣∣ 6 1.

Now it can be shown that if (X1, . . . , Xd) ∼ P where P has density f , then X1, . . . , Xd are
Gaussians. Moreover, the variables X1, . . . , Xr are independent for any 1 6 r < d. In particular,
any linear combination of X1 + · · · + Xr is Gaussian. Furthermore, if U = X1 ±X2 and V is
any linear combination of X3, . . . , Xd, then U + V is Gaussian. However, (X1, . . . , Xd) is not
Gaussian!
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Remark 3.9 (A counter example by Ferguson). This counter example is presented in [BMR97,
ex. 5.1], see also [Fer59]. Let P be a probability distribution on a random vector of the form
(U,U) where U follows the Cauchy distribution of Lebesgue density u 7→ π−1(1+u2)−1. Let Q be
a tensor product of two Cauchy distributions (the two components are thus independent). Then,
for any (t1, t2) ∈ R2, we have ϕP (t1, t2) = exp(−|t1 + t2|) and ϕQ(t1, t2) = exp(−|t1| − |t2|).
It follows that ϕP (t1, t2) = ϕQ(t1, t2) if t1 and t2 have the same sign, and therefore E1(P,Q)
contains the whole first and the third quadrant directions, but P 6= Q. Or course neither the
Rényi condition nor the Gilbert condition are satisfied by P or Q. This counter example have
strong similarities with the counter example of Gilbert given in remark 3.6 and the counter
example of Lévy-Khintchine-Gilbert given in remark 3.7.

Remark 3.10 (Periodic perturbations on the square). Let H : R→ R be a C1 even and periodic
function of period 1. Notice that H is thus symmetric with respect to the axis x = 1/2. If h = H ′,
we have

∫ 1
0 h(x− y) dx = H(1− y)−H(−y) = 0 for every y ∈ [0, 1] and

∫ 1
0 h(x− y) dy = H(x−

0)−H(x− 1) = 0 for every x ∈ [0, 1]. Moreover,
∫
(x,z−x)∈[0,1]2h(2x− z) dz = H(z)−H(−z) = 0

for every z ∈ [0, 2]. Now, let P be some probability distribution on [0, 1]2 with Lebesgue density
f . If ε =

∫
[0,1]2 f > 0 then (x, y) 7→ f(x, y) + uh(x − y) is the Lebesgue density of a probability

distribution Q on [0, 1]2, provided that the real number u satisfies u inf [0,1] h > −ε. We have

P 6= Q if uh 6≡ 0, but {e1, e2, 12(e1 + e2)} ⊂ E1(P,Q) where {e1, e2} is the canonical basis of
R2. More generally, the method of construction of this counter example may be used in finite
discrete settings. Recall that the set of probability distributions on the finite discrete square
{1, . . . , 2n+ 1}2 can be identified with the set of bistochastic matrices of size (2n+ 1)× (2n+ 1).
For any real number α > 0, let Mα be the (2n+ 1)× (2n+ 1) antisymmetric matrix with entries
in {−α,+α} and constant diagonals with alternating sign. Then for any bistochastic matrix P
of size (2n + 1) × (2n + 1) such that ε = min16i,j62n+1 Pi,j > 0, and for any 0 < α < ε, the
(2n + 1) × (2n + 1) matrix P + Mα is bistochastic. Moreover, if (X,Y ) ∼ P and (X ′, Y ′) ∼
P +Mα then L(X + Y ) = L(X ′ + Y ′). We ignore if one can do something useful here with the
Birkhoff-von Neumann theorem that says that every bistochastic matrix is a convex combination
of permutation matrices. Notice that knowing the probability distributions of X, Y , and X + Y
implies the knownledge of the covariance of X and Y . There is thus a unique Gaussian on R2

with prescribed compatible Gaussian projections on the two axis and on the main diagonal (the
same holds true for any proper diagonal actually).

3.3 Random projections

The Rényi-Gilbert theorem is false in dimension d > 2 since a 2-dimensional subvector space
may contain an infinite number of unidimensional directions! This makes us able to add by
various ways some mass in an orthogonal direction to construct several distributions which
agree for an infinite number of unidimensional projections. One can get rid of this phenomenon
by considering i.i.d. random directions in S(Rd). The argument works as soon as the common
distribution of the random directions in S(Rd) has full support. We start with our own simple
result, which does not need any assumption regarding moments or analycity.

Theorem 3.11 (No assumptions but random projections). Let P and Q be two probability
distributions on Rd. Then we have P = Q if and only if λ(E1(P,Q)) = 1. In particular, if (Xn)
is a sequence of i.i.d. random variables on S(Rd) with common distribution λ, then P = Q if
and only if P(Card{n;Xn ∈ E1(P,Q)} = ∞) = 1 and P 6= Q if and only if P(Card{n;Xn ∈
E1(P,Q)} =∞) = 0.

Proof. If P = Q then E1(P,Q) = S(Rd) and thus λ(E1(P,Q)) = 1. Conversely, assume that
λ(E1(P,Q)) = 1 and suppose that P 6= Q. Since P 6= Q, by virtue of the Cramér-Wold
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theorem, one can then pick x ∈ S(Rd) \ E1(P,Q). Now the set E1(P,Q) is closed and thus
there exists an open neighborhood Vx of x in S(Rd) such that Vx ⊂ S(Rd) \ E1(P,Q). But since
λ is the uniform distribution on S(Rd), we have λ(Vx) > 0, which contradicts the hypothesis
λ(E1(P,Q)) = 1. We therefore conclude that P = Q if and only if λ(E1(P,Q)) = 1. For the
last statement of the theorem, we notice that for any measurable subset A of S(Rd), we have
P(Card{n;Xn ∈ A} =∞) ∈ {0, 1}, and this probability is equal to 1 if and only if λ(A) = 1. It
is a trivial case of the Borel-Cantelli Lemma or of the zero-one law of Kolmogorov. Just take
now A = E1(P,Q) to conclude the proof.

Under some additional hypotheses on P regarding moments or analycity, our following the-
orem reduces the random projections theorem above from infinite random directions to one
random direction.

Theorem 3.12 (Characterization by a unique random projection). Let P and Q be two proba-
bility distribution on Rd with d > 2. Assume that at least one of the following properties holds
true.

1. Rényi like: the restriction of the Fourier transform ϕP and ϕQ of P and Q on every
centered circle2 of Rd is analytic (as functions of the angle);

2. Gilbert like: the absolute moments of P and Q are finite and both sequences of absolute
moments satisfy to the Carleman condition (implies that P and Q are characterized by
their moments).

Then λ(E1(P,Q)) > 0 implies P = Q. More precisely, if E1(P,Q) is not contained in a projective
hypersurface of S(Rd) then E1(P,Q) = 1 and thus P = Q.

Proof. Let P 6= Q be two different probability distributions on Rd. Since P 6= Q, we have
E1(P,Q) < 1 and there exists y ∈ S(Rd) \ E1(P,Q). If E1(P,Q) = ∅, then λ(E1(P,Q)) = 0. If
E1(P,Q) 6= ∅, then pick x ∈ E1(P,Q). Now, let Vx,y = Vect{x, y} be the 2-dimensional subvector
space of Rd containing both x and y. The projection of P (respectively Q) onto any element v
of Vx,y is equal to the projection onto v of the projection of P (respectively Q) on Vx,y. By the
Rényi-Gilbert theorem applied to the projections of P and Q on Vx,y, we get that E1(P,Q)∩Vx,y
is finite. Since this hold for any x ∈ E1(P,Q), we get that E1(P,Q) is a projective hypersurface
of S(Rd), and also that λ(E1(P,Q)) = 0.

The proof of theorem 3.12 above is quite geometric since it reduces directly the proof to
the Rényi-Gilbert theorem by considering 2-dimensional slices. Notice that P and Q play a
symmetric role in theorem 3.12, and it particular, for the Gilbert case, the Carleman condition
is required for both P and Q. Recently, Cuesta-Albertos, Fraiman, and Ransford showed in
[CAFR07] that one can relax the Gilbert type assumption on P or Q (say Q). They call their
result “Sharp Cramér-Wold theorem”. Notice that one can extract the argument regarding Q
from the proof of theorem 3.13 below and simply plug it inside the proof of theorem 3.12 above.
However, the rest of the two proofs will remain completely different.

Theorem 3.13 (Cuesta-Albertos-Fraiman-Ransford [CAFR07]). Let P be a probability distri-
bution on Rd with d > 2 with finite absolute moments satisfying to the Carleman condition
(implies that P is characterized by its moments). If Q is a probability measure on Rd such
that λ(E1(P,Q)) > 0 then P = Q. More precisely, if E1(P,Q) is not contained in a projective
hypersurface of Rd then E1(P,Q) = 1 and thus P = Q.

2A “centered circle” of Rd is the intersection of a 2-dimensional subspace of Rd with a centered sphere of Rd.
In other words, a centered circle of Rd is a great circle of a centered sphere.
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Proof. We begin by showing that Q has finite absolute moments. Define the set V of Rd by

V =

{
x ∈ Rd;

∫
Rd

|〈x, y〉|n dQ(y) <∞
}
.

By convexity, V is a subspace of Rd. Moreover, if x ∈ E(P,Q), then∫
Rd

|〈x, y〉|n dQ(y) =

∫
Rd

|u|n dQ〈x〉(y) =

∫
Rd

|u|n dP〈x〉(y)

∫
Rd

|〈x, y〉|n dP (y) <∞,

and thus E(P,Q) ⊂ V . Assume from now that E(P,Q) is not included is a projective hypersurface
of Rd. Then necessarily V = Rd otherwise we can pick a non-zero z ∈ V ⊥ and for such a vector
E(P,Q) is included in the set of zeros of the polynomial x 7→ 〈x, z〉. Since V = Rd, and if
e1, . . . , ed denotes the canonical basis of Rd, we have for any n ∈ N

∫
Rd

‖y‖n dQ(y) =

∫
Rd

(
d∑
i=1

|〈ei, y〉|2
)n

2

dQ(y) 6 cd,n

d∑
i=1

∫
Rd

|〈ei, y〉|n dQ(y) <∞.

Therefore, Q has all its absolute moments finite as announced. Now, for every n ∈ N, define the
homogeneous polynomial pn : x ∈ Rd 7→ p(x) ∈ R by

pn(x) =

∫
Rd

〈x, y〉n dP (y)−
∫
Rd

〈x, y〉n dQ(y).

Notice that pn(x) is the difference between the moment of order n or P〈x〉 and the moment of
order n of Q〈x〉. A simple computation shows that pn vanishes on E(P,Q). Since E(P,Q) is not

included is a projective hypersurface of Rd we get that pn ≡ 0 for every n ∈ N. This implies
that P〈x〉 and Q〈x〉 share the same sequence of moments for every x ∈ Rd. Now since P satisfies
to the Carleman condition, then the sequence of absolute moments of P〈x〉 satisfies also to the

Carleman condition for every x ∈ Rd. Consequently, P〈x〉 = Q〈x〉 for every x ∈ Rd, and thus
P = Q by virtue of the Cramér-Wold theorem.

Remark 3.14 (Rényi type condition). By using remark 3.6, one can easily cook up an exam-
ple for which the Rényi type assumption of theorem 3.12 is satisfied whereas the Gilbert type
assumption of theorem 3.12 and the assumption of theorem 3.13 are not. More generally, if R
is a probability distribution on R which is not characterized by its moments, then the probability
distribution P on Rd defined for every bounded measurable function h : Rd → R by∫

Rd

h(z) dP (z) =

∫
S(Rd)

(∫
R
h(rx) dR(r)

)
dλ(x)

is not characterized by its moments in Rd. However, its Fourier transform is constant on each
centered circle of Rd since P is invariant by rotation. Thus, P satisfies to the Rényi type as-
sumptions but does not satisfies to the Gilbert type assumptions. This kind of examples shows
the gap between characterization by projections and characterization by moments in multivari-
ate settings. It is interesting to reinterpret these theorems and examples in terms of Radon
transform.

As mentioned in [CAFR07], theorem 3.13 has very interesting statistical applications, since it
allows the construction of distribution-free multivariate statistical tests, for instance of Kolmogorov-
Smirnov type. The general idea of considering a unique random projection as a discriminative
tool in high dimensional problems was put forward in the recent years by Candès and Tao for
the development of their “compressive sampling theory”.
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Remark 3.15 (The conditions are sharp). The reader may find in [CAFR07] and [BMR97]
several examples showing that the Gilbert moment condition and the projective hypersurface
condition are sharp in some sense. In particular, one can find in [CAFR07], for any projective
hypersurface S of Rd, an explicit couple of mutually singular probability distributions on Rd,
compactly supported, such that E1(P,Q) is contained in S.

Equivalently, one can express part of theorem 3.12 and theorem 3.13 as a sort of zero-one
law regarding E1(P,Q).

Theorem 3.16 (Zero-one law for unidimensional random projections). Under the assumptions
of theorem 3.12 or 3.13 for P and Q on Rd, we have λ(E1(P,Q)) ∈ {0, 1}. In other words,
λ(E1(P,Q)) = 1 if and only if P = Q and λ(E1(P,Q)) = 0 if and only if P 6= Q.

3.4 A threshold phenomenon?

Let Q be the set of probability distributions on Rd (d > 1) with finite absolute moments which
satisfy the Carleman condition, and let P be some probability distribution on Q, for instance
the trace of the Dirichlet distribution whose intensity measure is the Lebesgue measure Λ on
Rd. Let (Xn) be a sequence of i.i.d. random variables with uniform distribution λ on S(Rd).
Now fix P ∈ Q and define the random subset Qn(P ) of of Q by

Qn(P ) = {Q ∈ Q; {X1, . . . , Xn} ⊂ E1(P,Q)}.

Since d > 1, the set Q1(P ) is infinite for any value of X1. Moreover, for any value of the sequence
(Xn), the sequence of sets n 7→ Qn(P ) is non-increasing. Furthermore, if Q ∈ ∩n>0Qn(P ), then
(Xn) ⊂ E1(P,Q) and thus λ(E1(P,Q)) = 1 which gives P = Q. Consequently, if P has no atoms,
then the sequence n 7→ P(Qn(P )) is non-increasing and limn→∞ P(Qn(P )) = 0 by inferior limit.
One can ask if there exists an integer n(P ) such that P(Qn(P )) = 0 for every n > n(P ). It is
true for finitely supported discrete distributions according to the Rényi-Heppes theorem. Notice
that a.-s. the directions X1, . . . , Xk+1 fulfils the assumptions of Rényi and Heppes.

4 Other projection problems

We studied the characterization of probability distributions from one dimensional projections.
Here is a small collection of related problems.

4.1 Projections on subspaces of two or more dimensions

Prescribing k-dimensional projections with k > 1 instead of 1-dimensional projections simplifies
the problem, since higher dimensional projections provide in some sense more informations about
the projected probability distribution. The problem was studied for instance in [BMR97] and
in [CAFR07]. In particular, a sort of Rényi-Gilbert holds true for k = d − 1, as expressed by
the following theorem. Notice that the k = d − 1 case corresponds to the X-Ray transform
mentioned below.

Theorem 4.1 (Rényi [Rén52]). Let P and Q be two probability distributions on Rd with d > 1.
Then P = Q if and only if E1(P,Q) ∪ · · · ∪ Ed−1(P,Q) = S(Rd).

The following result appears as a corollary of theorem 3.13, since a projective hypersurface
of Rd can contain at most finitely many hyperplanes.
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Theorem 4.2 (Bélisle-Massé-Ransford [BMR97, CAFR07]). Let P and Q be two probability
distributions on Rd with d > 2. If P or Q has finite absolute moments which satisfies the
Carleman condition, then P = Q if and only if Ed−1(P,Q) is infinite.

However, it is shown in [CAFR07, th. 3.5] that for every projective hypersurface S of Rd,
there exists two mutually singular probability distributions P and Q on Rd such that both P
and Q are supported by bounded subsets of Rd and E(P,Q) = S. This couple of distribution is
constructed by using some harmonic analysis, involving Plancherel and Paley-Wiener theorems.
Recall that the Paley-Wiener theorem states that an entire function f : Cd → C is the Fourier
transform of a compactly supported Schwartz distribution if and only if |f(z)| 6 c(1+|z|)aebIm(z)

for every z ∈ Cd and some constants a, b, c.

4.2 Infinite dimensional extensions

The random projection approach can be generalized without much difficulties to Hilbert spaces,
by considering for example a Wiener measure (in the sense of Gross) to produce random direc-
tions, see for instance [CAFR07].

4.3 The Radon problem

As mentioned by Rényi in [Rén52], the characterization of two dimensional probability distri-
butions in terms of one dimensional projections in related to a problem studied by Radon at
the beginning of the twentieth century. Radon showed in [Rad17] that if a continuous function
f : K ⊂ R2 → R defined in a bounded domain K with integral equal to zero along every chord
of the domain K then f is identically equal to zero. The continuity of f is required otherwise
one may construct counter examples by modifying f . This result by Radon solved a conjecture
by Tarski, who asked about the uniqueness when it exists of a function f : R2 → R such that
its integral is constant along every chord of K. The bounded support hypothesis on f can be
replaced by an integrability condition on R2, and it can be shown that the result is false with-
out this integrability condition. Several authors proposed alternative proofs of this theorem by
Radon, like for instance [Rén52] and [Gre58].

The Radon theorem mentioned above produced a great amount of work around the so called
Radon transform. The Radon transform of a function f : Rd → R is a function R(f) : S(Rd)×
R→ R defined for any (x, y) ∈ S(Rd)× R by

R(f)(x, y) =

∫
〈x,z〉=y

f(z) dz.

In other words, R(f)(x, y) is the value of the integral of f over the hyperplane of equation
〈x, z〉 = y in z. This hyperplane is orthogonal to x. When f is a Lebesgue density of a probability
distribution P on Rd, then y 7→ R(f)(x, y) is the density of the probability distribution P〈x〉
on R. Thus, R(f)(x, ·) characterizes P〈x〉. We thus understand clearly the link between Radon
transform and the characterization by projections of probability distributions problem.

Armitage and Goldstein have shown in [AG93] that there exists for each d > 2 a nonconstant
harmonic function f on Rd such that f is integrable over each hyperplane, and the Radon
transform of f is zero. In the case d = 2 this result has been obtained by Zalcman in [Zal82].
However, for any function f ∈ L1(Rd) ∩ L2(Rd), we have

R̂(f)(x, y) = f̂(yx)

for evey (x, y) ∈ S(Rd)×R where f̂ is the Fourier transform of f and where R̂(f) is the Fourier
transform of R(f) with respect to its second argument. In particular, the Radon transform
restricted to L1(Rd) ∩ L2(Rd) is injective.
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The Radon transform of a probability distribution P on Rd is the function R(P ) which as-
sociate to every x ∈ S(Rd) the probability distribution P〈x〉 on R. Notice that the Craḿer-Wold
theorem can be seen as an injectivity result for the Radon transform of probability distribu-
tions, based on harmonic analysis (Fourier transforms). The injectivity of the Radon transform
restricted to L1(Rd) ∩ L2(Rd) mentioned above is the function version of the Cramér-Wold the-
orem.

There is a huge litterature on Radon transforms of functions, dealing with regularity proper-
ties, supports, inversion formulas, etc. These aspects involve harmonic analysis, like in [Jen04].
The Radon transform of functions is used for the mathematical modeling of tomography in R2

and R3, see [Nat01]. It should not be confused with the X-Ray transform of f : Rd → R which
associate to every x ∈ S(Rd) the integral of f over the straight line Rx. In R2, these two trans-
forms are identical up to parameterization. Tomography consists in reconstructing bodies from
their lower dimensional projections, and is a useful tool in medicine and industry (e.g. Positon
Emission Tomography).

The reconstruction of probability densities and more generally of probability distributions
from partial informations on their Radon transform has been studied by the Statisticians Tsy-
bakov, Natterer, Korostelev, and Donoho among others. See for instance [Cav00] and references
therein. More precisely, they consider for example the inverse problem of the estimation of a
Lebesgue density f on Rd from n i.i.d. observations drawn from a Lebesgue density propor-
tional to the Radon transform R(f) (each observersation is a random realisation of a random
projection).

The reader may find in [HQ85] and [HHK83] very interesting results regarding Radon trans-
forms of probability distributions. In particular, [HQ85] is entitled “Distances between measures
from 1-dimensional projections as implied by continuity of the inverse Radon transform”! Some
sort of speed of convergence in the Central Limit Theorem associated to Cramér-Wold theorem.

Radon transforms can be seen as the collection of integrals of a function or the collection
of projections of a probability distribution over the set of proper subspaces of fixed dimension.
One can thus define Radon transforms more generally on Grassmannian manifolds. The reader
may find more material on Radon transforms, integral geometry, and tomography in the books
[Hel99], [Dea83], [Ehr03], [Nat01], [MQ06] for instance. The reader may find for instance in
[KRZ04] and [GZ98] some aspects of the geometric problem of reconstructing a convex body
from lower dimensional projections.

The Radon transform considered in the above should not be confused with the spherical
Radon transform, which corresponds to an integral over centered spheres:

(
f : Rd → R

)
7→

(
r ∈ R+ 7→

∫
S(Rd)

f(rx) dλ(x)

)
.

4.4 The Strassen problem

Strassen studied in [Str65] the problem of finding a probability distribution on a product E×F
of Polish spaces, with prescribed closed support S and prescribed marginals on E and F . His
method makes use of Choquet capacities and involves stochastic domination. This problem was
studied by many authors. See for instance the article [Sho83] by Shortt and references therein,
where the results of Strassen are generalized to countable products of more general measurable
factor spaces, and beyond the context of product spaces.

Here are some connected problems: construction of Markovian coupling with prescribed
marginals, construction of martingales with prescribed marginals, graphical models and G-
Markov distributions, IPF algorithm, etc.
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An interesting problem is graphical constraints on projections. More precisely, let S be a
finite subset of S(Rd), and consider the problem of finding probability distributions on Rd with
prescribed marginals on a subset of the collection of subspaces of various dimensions generated
by finite subsets of S. The Rényi-Gilbert and Rényi-Heppes theorems and the Gaussian counter
examples of Hamedani suggest that this problem is not trivial for finitely many directions, at
least for probability distributions with infinite support. How about existence, uniqueness, and
construction?

FIXME: add more details here!

4.5 Final remark

The following themes where studied by Mathematicians and are still active. They are deeply
connected, but the connectivity of the citation graph does not reproduce well these connections.

• Radon transforms, integral geometry, statistical aspects of reconstruction by tomography;

• Strassen problems, couplings, and stochastic domination;

• Rény-Gilbert problems and the Cramér-Wold theorem;

• Copula in Statistics (laws on cubes with uniform marginals);

• Graphical models and marginal constraints in Statistics;

• Reconstruction of bodies from their lower dimensional projections in high dimensional
convex geometry;

• Stieltjes-Hamburger moments problems and Denjoy-Carleman quasi-analycity;

• Random projections and Candès-Tao compressive sampling in Statistics.

To summarize, all these themes deal with linear problems in infinite dimensions, with often
some kind of positivity constraints.
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