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B Coulomb kernel in RY, d>1,

lo L if d=2

J— 1 =2,

eR — g(x) = Six

X £V = 1 "
W IT not.

B Fundamental solution of Poisson’s equation

d—1 2715d/2
Ag=-c40p where cy=1S""=dwy= m
B Repulsion for charges of same sign, singular when d =2
B Riesz kernel |x|7%, if s=d — a then fractional Laplacian A,
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Coulomb potential and Coulomb energy

B Coulomb potential of a probability measure y at point x

Uu(x) = [ 0= )duy) = (g *1)(x)
B Inversion formula (g = —c4A™?)
AUy =—cqp.

B Coulomb energy of probability measure u

&(u) = % f f g(x—y)u(dx)u(dy)

B Integration by parts and “carré du champ”, n=pu—v,
&) 1fUd —1fUAUd —1f|VU|2d
= — = — X = X.
P=3) = "o, ) T T o, !
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lim (V(x)-loglx|14=2) > —oo0.

[x]—00

B External electric field -VV
B Coulomb energy with (external) confining potential

8v(1) =5 [[ (6le=y)+ V) + Vi) utax)u(ay)

= 6v(w) =)+ [ Vau

B Equilibrium probability measure (electrostatics)

=arg min &
133% gg(Rd) 1%

B Aka “O. Frostman measure” (PhD student of M. Riesz)
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Convexity and Bochner positivity

B Convexity/Positivity for probability measures u and v

t&y(n)+(1-t)8y(v)-8v(tu+(1-t)v)
t(1-t)

1
=&(u—-v)= E[I;%d VU, [%dx.

B If d=2 and u, = uniform law on {x eR2:|x| =r}, then

log(r)

U,Jr(X):—|og(r)1|x|5r—|og|x|1|x\>r and  &(p,)=- 5
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Equilibrium measure

B 8y is strictly convex on its domain
B &y is lower semi-continuous with compact level sets
B inf&y <oco and there exists a unique uy € 2(RY) with

Ev(uy)=min8y

B supp(uy) is compact if limjx—oco( V(x) —loglx|14=2) = 400
B Euler-Lagrange: if cy =<‘5’(,uv)—f Vduy then g.e.

=cy  on supp(uy)

U,, +V
Hv {2 cy outside
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Examples of equilibrium measures

Dimension d | Potential V Equilibrium measure uy
=1 [ oolysr Uniform on sphere of radius r
>1 | <oo and €2 cglAV on interior of support
>1 %I-I2 Uniform on unit ball
(Ginibre) 2 | 31+ Uniform on unit disc
(Spherical) 2 | $log(1+-?) Heavy-tailed m

Not that simple if V infinite: Saff-Totik book for d =2, ...
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Dimension d | Potential V Equilibrium measure uy
=1 [ oolysr Uniform on sphere of radius r
>1 | <oo and €2 cglAV on interior of support
>1 %I-I2 Uniform on unit ball
(Ginibre) 2 | 31+ Uniform on unit disc
(Spherical) 2 | $log(1+-?) Heavy-tailed m
(CUE) 2 | ool [a,p]x(0}) Arcsine s — %\/%
(GUE) 2 %IRX{O} +00L(px(op)e | Semicircle s — %155[—2,2]

Not that simple if V infinite: Saff~Totik book for d =2, ...
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Coulomb gas or one component plasma
B We suppose that for all >0 and for n large enough

fd e MB(V(x)—log(1+1x)1d=2) 1 < 0.
R

B Using g=0ifd=3 and [x—y|<(1+Ix|)(1+1yl) if d =2,

where

n
1
En(X1,..0oxn) =0 Y V(x)+ EZg(x,- - Xj).
-1 i
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fd e "BV (x)—log(1+1x1)1d=2) 1y < 0.
R

B Using g=0if d=3 and [x—yl<(1+|x])(1+1yl) if d=2,

where
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En(xt,...,xn) =n)_ V(x;)+ EZg(X,- - Xj).
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B Boltzmann—Gibbs measure
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Coulomb gas or one component plasma
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B We suppose that for all >0 and for n large enough
f o= "BV (x)-log(1+1x)1a-2) g < oo,
RrRd
B Using g=0if d=3 and [x—yl<(1+|x])(1+1yl) if d=2,
Zn :f e PEnbarxn) qy; ... dx, < co.
(R9)"
where

4 1
En(xt,...,xn) =n)_ V(x;)+ EZg(X,- - Xj).
-1 i
B Boltzmann—Gibbs measure

dPn(x1,...,%p) = ————dxy ---dxp

B Particles subject to confinement and singular pair repulsion
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B Empirical energy

BEn(x1,...,xn) = Bn (% Zn: V(x;)+

i<j

2Zg(><: %))
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Empirical measure

B Empirical energy

B, ) = B ([ 1o V() + o T )

i<j

B Empirical measure and off-diagonal energy

ﬁEn(X]_,...,Xn) 28# (IJ'X1 ..... Xn)

1 n
where i x, = ;Zéxi and
i=1
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Laplace method point of view

B Laplace point of view

dP,(x1,...,Xn) = Z—dX1 --odxp.
n

B Large Deviation Principle (nice proof: David Garcia—Zelada)

Zn = e_ﬁnng(”V)
n—oo

e Bn*infg(Ev—6v(uv))

—

Pn(,uxl,...,x,, € B) N :oo
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Laplace method point of view

B Laplace point of view

dP,(x1,...,Xn) = 7
n

B Large Deviation Principle (nice proof: David Garcia—Zelada)

Z, = e~ Br*év(uv)

n—oo

Pn(tixy,..x, € B) e Bn*infg(Ev—6v(uv))
yeesXn n—oo

B Law of Large Numbers : if X, ~P, then almost surely

— =argmin&
X1, X oo BV =218 1%
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Asymptotic analysis of fluctuations

B Quadratic form using g = —c4A™!

1 _
v () = 5(=cad ) +<V, )
B “Law of py,, .«

n

under P, is asymptotically W(mﬁv,—%)”
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Asymptotic analysis of fluctuations

B Quadratic form using g = —cgA7?

1
v () = 5(=cad ) +<V, )

.....

B Central Limit Theorem and Gaussian Free Field (universality)

n n
S F(Xni)—E Y F(Xpi) 22 JV 0, —f IVFI? dx
i=1 i:]_

n—oo
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1
Bv(p) =5 (-cad™ ) + <V, )

.....

B Central Limit Theorem and Gaussian Free Field (universality)

n n 1
N F(Xni)=EY f(Xni) n%;,/v o —f IVF|? dx
i=1 i=1

B It works! Not that simple: ..., Johansson, Rider-Virag, ...
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B Quadratic form using g = —cgA7?

1
Bv(p) =5 (-cad™ ) + <V, )

.....

B Central Limit Theorem and Gaussian Free Field (universality)

4 4 law 1 2
,-:21 F(Xn) —Eizzl F(Xn) n:oﬂ(o,mfw VfPdx).
B It works! Not that simple: ..., Johansson, Rider-Virag, ...

B Quantitative: concentration of measure inequalities
..., Guionnet—Zeitouni, Rougerie-Serfaty, Hardy—-C.—Maida, Berman, ...
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e—KV
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K
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B Low temperature regime: puy =argmin8y if = f, with
nBn — +oo.
B High temperature regime: = f, with
nBn—x €(0,400)

then py =argmin&y where

-xV

_ Entropy(- | & Ent -|d

Gy g RV T7) o Entropy(:|dx)
K

_Kv)®n

W Sanov: g=0and B,=7, then P, = (ez
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B Mo e 2Trce(MM") yith g =2
B Law of the eigenvalues (xi,...,xp) €C" of M
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Ginibre random matrices

B M random matrix on 4y ,(C)
B RMj, and SMj, independent identically distributed N (0, 2 5

B Mo e 2Trce(MM") yith g =2
B Law of the eigenvalues (xi,...,xp) €C" of M

n 2
. 6_27:1 |Xi|2 HIXI—XJ|2 _ ﬁ(z, 1 2|X:| +35 Z,¢j|og i X|2)

i<j

B Coulomb gas P, with d =2, =2, V =1
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High dimensional phenomenon : random matrix spectrum

1.0

0.5

0.0

-0.5
I

-1.0
I

plot(eig(randn(n,n)+i*randn{(n,n))/sqrt(2*n)))
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M Jean Ginibre (1938 - )

Statistical Ensembles of Complex, Quaternion, and Real Matrices
Journal of Mathematical Physics (1965)

Robert May (1938 - )

Will a large complex system be stable? Nature (1972)

Stability and Complexity in Model Ecosystems. Princeton P. (1973)
Robert B. Laughlin (1950 - )

Anomalous Quantum Hall Effect: An Incompressible Quantum Fluid
with Fractionally Charged Excitations

Physical Review Letters (1983)

Dan-Virgil Voiculescu (1949 — )
Limit laws for random matrices and free products
Inventiones Mathematicae (1991)

Terry Tao (1975 - ), Sylvia Serfaty (1975 — ), Robert Berman (1976 - ),
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d=2, p=2, V(x)=;
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Random matrix models (always d = 2)

B Hermite Unitary Ensemble M;g/’* or GUE

d=2, p=2, V(x)= %xf +0015,£0
B Laguerre Unitary Ensemble MM*
d=2, p=2, V(x)= %xl + 001,20 or x<0
B Forrester—Krishnapur spherical ensemble AB™!

1n+1
d=2, p=2 V(x):§n+

log(1 +|x|?)
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L Random matrices

Random matrix models (always d = 2)
B Hermite Unitary Ensemble % or GUE
1
d=2, B=2, V(x)= §x12 +0015,£0
B Laguerre Unitary Ensemble MM*
1
d = 27 ﬁ = 2; V(X) = EX]. +OO]-X2¢0 or x1<0
B Forrester—Krishnapur spherical ensemble AB~!
1n+1
d=2, p=2, V(x)= 51 log(1 + [x12)
n
B Exact solvability when d = =2 via determinantal structure

Pk has density (X],...,Xk) — det(KVy”(X"’Xj))lsi,jsn

20/30
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B Overdamped Langevin dynamics on (RY)":

law

Xt t?o)o Pn
dX; =, /Z%dBt —aVEn(X;)dt, L=a(ftA-VE, V)
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B Overdamped Langevin dynamics on (R9)": X, = Pn
—00

dXe =, /2%dBt— aVEn(X:)dt, L=a(f1A-VE, V)
B Mean-field McKean—Vlasov limit: if o = Iim,,_,oo% then

lim uf =pt where Oy =0Apr+V-((VV +Vg* pue)pe).

n—oo
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law

B Overdamped Langevin dynamics on (R9)": X, = Pn
—00

dXe =, /2%dBt —aVE,(X:)dt, L=a(f1A-VE, V)
B Mean-field McKean—-Vlasov limit: if o= Iim,,_,oo% then

lim pf =ur where O¢pir =0Aus +V-((VV +Vg * g ).

n—oo

B Underdamped Langevin or kinetic Dyson—Ornstein—-Uhlenbeck

dX; = aYydt and dvtz—aVE,,(xt)dH,/2%d3t—yandt.
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LDyna\mics for planar case

Langevin dynamics

law

B Overdamped Langevin dynamics on (R9)": X, = Pn
—00

dXe =, /2%dBt —aVE,(X:)dt, L=a(f1A-VE, V)

B Mean-field McKean—-Vlasov limit: if o= Iim,,_,oo% then
lim uf =pu; where 0iur =0Aus+V-((VV + Vg pue)ue).

n—oo

B Underdamped Langevin or kinetic Dyson—Ornstein—-Uhlenbeck

dX; = aYydt and dvtz—aVE,,(xt)dH,/2%d3t—yavtdt.

B Lyapunov: Bolley—C.-Fontbona, Lu—Mattingly
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Usefulness

B Numerical simulation via Hamiltonian Monte Carlo (Ferré-C.)

B Exact computation for arbitrary  (Bolley—C.-Fontbona)
If Xp~Pp for d=2, f>0, V =212 then

Xn1+:+Xngn ~ JV(O,I—Z)

B
1 Xn1l2++ [ Xpnl> ~ Gamma(n + ﬁ@,ﬁg)
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Usefulness

B Numerical simulation via Hamiltonian Monte Carlo (Ferré-C.)

B Exact computation for arbitrary  (Bolley—C.-Fontbona)
If Xp~Pp for d=2, f>0, V =212 then

Xn1+:+Xngn ~ JV(O,I—Z)

B
1 Xn1l2++ [ Xpnl> ~ Gamma(n + ﬁ@,ﬁg)

B In particular

[E(lxn,l +oee +Xn,n|2)
[E(|Xn,1 |2 +teeet |Xn,n|2)
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B Do you know an alternative proof?
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B Gibbs conditioning principle non-prod. singular Gibbs measures
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Conditioned Coulomb gas

B Ferrée—C.—Stoltz
W X,~P,and Y, ~ Law(x,, | (Xn1) ++ +9(Xnn) = o)

Provided regularity on ¢ we show that almost surely

lim — Z Oy, = Hvip=argmin&y .

Exactly solvable when V/(x) = c|x|? and ¢(x) = ax+ b. Shift!

Gibbs conditioning principle non-prod. singular Gibbs measures

[

[

B Technical difficulty: regularity sets of &y

B Quadratic conditioning gives perturbation of g instead of V
[

Numerical simulation: constrained HMC via kinetic Langevin
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Wigner jellium and Coulomb gas
B Eugene P. Wigner 1938 : Electrons in a piece ScRY of metal
B Simplification of Hartree—Fock quantum model
B Background of opposite charges on supp(p) < S

n
B (xt,.00) = 2 g (xi—xj) —a ) Up(x) +a’c
i<j i=1
. . _ E]nellium
B Charge neutral if @ = n, Boltzmann—Gibbs measure ezjw
B Jellium is a Coulomb gas P, with confinement potential
-2U, on S a
V=g n7F ., and py=—p
+00 outside n
® Coulomb gas is a Jellium with p=Z=-AV on S = RI
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B Garcia-Zelada—C.—Jung: d =2 and p = Uniform(D(0, R))
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B Garcia-Zelada—C.—Jung: d =2 and p = Uniform(D(0, R))

V(x) === Up(x)
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B Impossible: charge neutral (@ = n) with determinantal (f=2)
W If nf,—o0and %2 — A =1, then py = Uniform(D(0, R/vVA))
B Transition for edge fluctuations when =2 and a, ~An

Gumbel if A>1 and Heavy-tailed if A =1.
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B Garcia-Zelada—C.—Jung: d =2 and p = Uniform(D(0, R))

V(x) === Up(x)

(ﬁ—lﬂo R)1 +—Io Ix|1
R g Ix|<R g Ix|>R*

n

. _ 2
m 7 oo iffa—n>= -1

B Impossible: charge neutral (@ = n) with determinantal (f=2)
W If nf,—o0and %2 — A =1, then py = Uniform(D(0, R/vVA))
B Transition for edge fluctuations when =2 and a, ~An

Gumbel if A>1 and Heavy-tailed if A =1.

B More: Butez—Garcia-Zelada
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Thank you very much for your attention!
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