Exam 2020/2021

October 28, 2020, from 13:45 to 16:45 Documents allowed, Internet not allowed Do what you can, and do not worry

 $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t \ge 0}, \mathbb{P})$ is a filtered probability space, with complete and right continuous filtration. $B = (B_t)_{t \ge 0}$ is a *d*-dimensional Brownian motion issued from the origin, $d \ge 1$.

Exercise 1 (Representation of a process). Take d = 1 and $x \in \mathbb{R}$.

1. Recall the computations and reasoning showing that the process $(Z_t)_{t\geq 0}$ defined by

$$Z_t = x e^{-t} + e^{-t} M_t$$
 where $M_t = \sqrt{2} \int_0^t e^s dB_s$

is the unique solution of the stochastic differential equation $Z_0 = x$, $dZ_t = \sqrt{2} dB_t - Z_t dt$.

- 2. Show that for all $t \ge 0$, $Z_t \stackrel{\text{law}}{=} x e^{-t} + e^{-t} B_{e^{2t}-1}$.
- 3. Can we have, for all $t \ge 0$, $Z_t = xe^{-t} + e^{-t}B_{e^{2t}-1}$?
- 4. Show that the process $(M_t)_{t\geq 0}$ is a continuous local martingale with, for all $t\geq 0$, $\langle M\rangle_t = e^{2t} 1$.
- 5. Deduce that there exists a Brownian motion $(W_t)_{t\geq 0}$ such that for all $t \geq 0$, $Z_t = xe^{-t} + e^{-t}W_{e^{2t}-1}$.

Exercise 2 (Study of a special process). Let d = 1, $\alpha \ge 0$, $x \ge 0$. Let X be a continuous semi-martingale taking values in \mathbb{R}_+ and solving the stochastic differential equation:

$$X_t = x + 2\int_0^t \sqrt{X_s} \mathrm{d}B_s + \alpha t, \quad t \ge 0.$$

Let $f : [0, +\infty) \to [0, +\infty)$ be continuous and $\varphi : [0, +\infty) \to (0, +\infty)$ be positive and \mathscr{C}^2 , solving the ordinary differential equation $\varphi'' = 2f\varphi$ with boundary conditions $\varphi(0) = 1$ and $\varphi'(1) = 0$. Note that $\varphi > 0$.

- 1. Could you give an explicit example of process *X* for special values of α ?
- 2. Show that φ decreases on the interval [0, 1]
- 3. Show that $u = \varphi'/(2\varphi)$ solves the differential equation $u' + 2u^2 = f$
- 4. Show that for all $t \ge 0$,

$$u(t)X_t - \int_0^t f(s)X_s ds = u(0)x + \int_0^t u(s)dX_s - 2\int_0^t u(s)^2 X_s ds.$$

5. For all $t \ge 0$, let us define $Y_t = u(t)X_t - \int_0^t f(s)X_s ds$. Show that

$$\varphi(t)^{-\frac{\alpha}{2}} \mathrm{e}^{Y_t} = \mathrm{e}^{N_t - \frac{1}{2} \langle N \rangle_t} \quad \text{where} \quad N_t = u(0)x + 2\int_0^t u(s)\sqrt{X_s} \mathrm{d}B_s$$

6. Show that

$$\mathbb{E}\exp\left(-\int_0^1 f(s)X_s \mathrm{d}s\right) = \varphi(1)^{\frac{\alpha}{2}} \mathrm{e}^{\frac{x}{2}\varphi'(0)}$$

7. From now on, let $\lambda > 0$. Prove that

$$\mathbb{E}\exp\left(-\lambda\int_0^1 X_s \mathrm{d}s\right) = (\cosh(\sqrt{2\lambda}))^{-\frac{\alpha}{2}} \mathrm{e}^{-\frac{x}{2}\sqrt{2\lambda}\tanh\sqrt{2\lambda}}$$

8. Prove that for all $\lambda > 0$ and $y \in \mathbb{R}$,

$$\mathbb{E}\exp\left(-\lambda\int_0^1(y+B_s)^2\mathrm{d}s\right) = (\cosh(\sqrt{2\lambda}))^{-\frac{1}{2}}\mathrm{e}^{-\frac{y^2}{2}\sqrt{2\lambda}\tanh\sqrt{2\lambda}}$$

Université Paris-Dauphine / PSL — M2 MASEF/MATH — Introduction to stochastic calculus

Exercise 3 (Strict local martingales). We take d = 3, X = x + B, $0 < r < |x| < R < \infty$, and, for all $a \ge 0$,

$$T_a = \inf\{t \ge 0 : |X_t| = a\}.$$

- 1. Show that if $M = (M_t)_{t \ge 0}$ is a continuous local martingale with for all $t \ge 0$, $|M_t| \le U$ where $U \in L^1$, then *M* is a martingale. Does it remain true if the domination condition is replaced by "*M* is u.i."?
- 2. Show that if $Z = (Z_t)_{t \ge 0}$ is *d*-dimensional, adapted, taking values in an open set $D \subset \mathbb{R}^d$, such that its components are continuous local martingales, and for all $1 \le j, k \le d, \langle Z^j, Z^k \rangle = V \mathbf{1}_{j=k}$ for a finite variation process *V*, then, for all harmonic $u : D \to \mathbb{R}$, the process u(Z) is a local martingale.
- 3. Show that $|\bullet|^{-1}$ is harmonic on $\mathbb{R}^3 \setminus \{0\}$.
- 4. Show that $T_R < \infty$ almost surely and

$$\mathbb{P}(T_r < T_R) = \frac{R^{-1} - |x|^{-1}}{R^{-1} - r^{-1}}.$$

- 5. Deduce from the previous formula that a.s. for all $t \ge 0$, $X_t \ne 0$.
- 6. Show that a.s. $\lim_{t\to\infty} |B_t| = +\infty$. Hint: show that $|X|^{-1}$ is a non-negative super-martingale.
- 7. Show that $|X|^{-1}$ is bounded in L². Hint: density of B_t in spherical coordinates.
- 8. Show that $|X|^{-1}$ is a continuous local martingale, but is not a martingale.

Exercise 4 (Strict local martingales and stochastic integrals).

1. Give an example of an Itô stochastic integral which is a local martingale but not a martingale, without using the previous exercise.

- 000 -