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Exam 2020/2021

October 28, 2020, from 13:45 to 16:45
Documents allowed, Internet not allowed
Do what you can, and do not worry

(Q, F,(F1)=0,P) is a filtered probability space, with complete and right continuous filtration.
B = (By) ;=9 is a d-dimensional Brownian motion issued from the origin, d = 1.

Exercise 1 (Representation of a process). Take d =1and x € R.

1.

SARE- SN

Recall the computations and reasoning showing that the process (Z;) ;»¢ defined by
t
Z;=xe "+e "M, where M;= \/Ef e*dB;
0

is the unique solution of the stochastic differential equation Z = x, dZ, = v2dB, — Z,dt.

Show that for all £ =0, Z, "2 xe~* + e 'Ber_;.

Can we have, forall 1 =0, Z, = xe ' +e 'Bg_;?

Show that the process (M) ;> is a continuous local martingale with, for all £ =0, (M); = et 1,

Deduce that there exists a Brownian motion (W;) ;»o such that forall t =0, Z; = xe " + e ' W _;.

Elements of solution for Exercise 1. Ornstein—Uhlenbeck and Dubins-Schwarz!

1.

The It6 formula X, Y; = Xo Yy + fot(Xdes + Y dX;) gives, with (Xy, Yy) = (e7%, My),
t t t
e ‘M, = \/Ef e_seSst—[ e *Mds = \@Bt—f e *Mds
0 0 0
which gives
t
xe '+e "M, =x+ V2B, —f (xe™* +e 7 Mjy)ds.
0

On the other hand, to establish the uniqueness, let us suppose that (X;) ;¢ is a continuous semi-
martingale solution of the SDE. Then by combining the It6 formula above for the function f(u, v) =
uv and the semi-martingale (e’, X;), and the SDE satisfied by X, we obtain

t t t
etXt—x:f eSdXS+f e’ X ds= \/Ef e*dB;.
0 0 0

. Since M, is a Wiener integral, it is Gaussian with zero mean and variance 2 fo e?Sds = e?/—1, which

gives Z; ~ A (xe”!,1—e"2), and it turns out that this is also the law of xe ™" + e~/ Bg2:_;.

. No because the process on the right hand side would not be adapted. Indeed the random variable

B2t is Fe2:_j-measurable instead of being % ;-measurable.

. The process M is a Wiener(-It0) integral, in particular it is a Gaussian square integrable martin-

gale, and in particular a local martingale. Moreover (M) ; = [E(Mf) = 2f0t eXSds=e?—1.

. The process M is a continuous local martingale with respect to the filtration (%) ;> with My =0

and (M), = co. Therefore the Dubins—-Schwarz theorem states that (W;);~o = (Mr,) ,», where
T; = inf{s = 0: (M) > t} is a Brownian motion for the filtration (%7,) ., and (Wip,) ;0 = (M{) t=0-

Exercise 2 (Study of a special process). Letd =1, @ =0, x = 0. Let X be a continuous semi-martingale
taking values in R and solving the stochastic differential equation:

Let f:

r
Xt:x+2f vV XdBs+at, t=0.
0

[0, +00) — [0, +00) be continuous and ¢ : [0, +oc0) — (0, +00) be positive and €2, solving the ordi-

nary differential equation ¢" = 2 f ¢ with boundary conditions ¢(0) = 1 and ¢'(1) = 0. Note that ¢ > 0.
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L e

Could you give an explicit example of process X for special values of a?
Show that ¢ decreases on the interval [0, 1]

Show that u = ¢'/(2¢) solves the differential equation u' +2u? = f
Show that for all ¢ = 0,

t t t
u(t)Xt—f f(s)Xsds=u(O)x+f u(s)dXS—Zf u(s)* X,ds.
0 0 0

. Forall t =0, let us define Y; = u(t) X; — fotf(s)Xsds. Show that

t
(P(t)_er‘:eN‘_%W)’ where Nt=u(0)x+2f u(s)v/ XydB;
0

Show that 1
IEeXp(—f f(S)XSdS) :(p(l)%e%q)’(m
0

. From now on, let A > 0. Prove that

1 o
[ECXP(—ﬂf Xsds) = (cosh(\/z,l))—ze—gx/ﬂtanhm
0

. Prove thatforall A >0and y e R,

! 2
[EeXp( B Af + Bs)zdS) = (cosh(V/21)) 2™z VZAtanhv2l
0

Elements of solution for Exercise 2. This is on squared Bessel processes : [1, Exercise 5.31 p. 145-146].

1.

We know from the course (Itd+Lévy) that if @ = n € {1,2,...} then X has the law of |x + W|?> where
W is a n-dimensional Brownian motion issued from the origin (squared Bessel process).

. We have ¢'(1) =0 and ¢” =0 hence ¢’ <0on [0,1].

oo 2
We have u' = £ 2“’(/)2‘” thus

" 2 12 "
u’+2u2:%+;€p2 = 2(p<p =

The It6 formula for F(x1, xp) = x1x2 and (u(?), X;) gives

t t
u(t)Xt—u(O)x:f Xsu’(s)ds+f u(s)dX;
0 0

t t
:f Xs(f(s) —2u2(s))ds+f u(s)dX;
0 0

and it remains to use the result of the previous question.

We have, using the SDE solved by X for the second step, and in the third step the definition of Y
and the previous question,

t t
Nt—%<N)t:u(0)x+2f u(s)\/Xsst—Zf u(s)*>X,ds
0 0
t t
:u(O)x+f u(s)(dXs—ads)—Zf u(s)*> Xsds
0 0

t
= Yt—af u(s)ds.
0

Since

! r o .
f u(s)ds :f P(S) 4= logp) ~loge(0) _ loge)
0 0 2¢(s) 2 2

)

we obtain :
eVima (N — eY[(p(l)_at.
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1
6. The process eV=2" is a Doléans-Dade exponential, hence a continuous local martingale. In

order to show that it is a martingale for ¢ € [0,1], it suffices to show that it is dominated by an
integrable random variable. From the previous computations, for all ¢ € [0, 1],

eNi=3 (N _ oYi—a [y u(s)ds.

Now, Y; = u(t) X; — fotf(s)Xsds <0 since u < 0 (recall that ¢’ < 0), while X, f > 0.

1
Hence (e™~2N1) (0 1) is a martingale.

Next u(1) = ¢'(1)/(2¢(1)) = 0, we get, from the previous question with 7 =1,
(p(l)—%[Ee—folf(S)Xst — [E(eN[—%UV)[)
— [E(eNo—%(N)O)
— eu(O)x

9'©
= e 290

— e300,

7. We take f constant and equal to A > 0. The differential equation solved by ¢ writes ¢” = 21¢
with ¢(0) = 1 and ¢’'(1) = 0. The associated equation has two roots +v21 hence ¢(x) = aeV2Ax 4
ﬁe‘mx . The boundary conditions give ¢ + =1 and ae?V2h = B, hence

1 e~ V21 e2V21 eV2h
a= = and f= = .
1+e2vV2h  2cosh(v21) 1+e2v21  2cosh(v21)
This gives
1
()= ————— and ¢'(0) = V2A(a - f) = —vV2Atanh(V2A1).
¢ cosh(v21) ¢ P

8. If we take a = 1 then X has the law of the squared Bessel process (x + B)?.

Exercise 3 (Strict local martingales). Wetaked =3, X=x+B,0<r <|x|<R<oo,and, forall a =0,
T,=inf{t =0:|X;| = a}.
1. Show that if M = (M) ¢ is a continuous local martingale with for all £ > 0, | M| < U where U € L!,

then M is a martingale. Does it remain true if the domination condition is replaced by “M is u.i.”?

2. Show that if Z = (Z;) ;»¢ is d-dimensional, adapted, taking values in an open set D c R?, such that
its components are continuous local martingales, and for all 1 < j,k < d, (Z/, Z%) = V1 j=k fora
finite variation process V, then, for all harmonic u : D — R, the process ©(Z) is alocal martingale.

3. Show that |¢|~! is harmonic on R3\ {0}.
4. Show that T < oo almost surely and
_ R71 _ |x|7l
P(T, < Tg) = W
Deduce from the previous formula that a.s. for all £ =0, X; # 0.
Show that a.s. lim;_.o | B;| = +oo. Hint: show that | X| ' isa non-negative super-martingale.

Show that | X|™! is bounded in L2. Hint: density of B; in spherical coordinates.

® N o o

Show that | X|~! is a continuous local martingale, but is not a martingale.

Elements of solution for Exercise 3. The goal is to construct a local martingale which is u.i. but which
is not a martingale. The example chosen here is a non-centered Bessel process. This example of a strict
local martingale is quite classical, and corresponds for instance to [1, Exercise 5.33(8) page 148].
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1. For all £ = 0, the measurability and integrability of M; comes from the adaptation of M and the

domination assumption. Let (T}),=o be a localizing sequence for M. For all n =0, M'» is a
martingale: forall 0 < s < ¢, E(M1,a¢ | &5) = M7,75. Now since lim,,_., T, = +oo a.s. and since M
is continuous, if follows that a.s. for all £ = 0, lim;,—.co M7, = M;. It remains to use dominated
convergence to get that lim,, ..o E(Mr, ¢ | F5) = E(M; | ;). Hence M is a martingale. Finally, if M
isu.i. instead of being dominated, then the argument is no longer valid since it does not give a way
to handle M, »;. The goal of the exercise is precisely the construction of an u.i. continuous local
martingale which is not a martingale! Note: domination implies u.i. but the converse is wrong.

. The It6 formula is licit on an open domain D for a process taking values in D. It gives, for all £ = 0,

t

13
u(X,) = u(X0)+f Vu(Xs)dXs+%f Au(Xy)dV.
0 0

The last integral vanishes since Au = 0 and X takes values on D, thus u(X) is a local martingale.

. Forall ye D, denoting u = le|™1, we obtain Au(y) =0 from

d(d-2) |yl —dy?yl*2
2 |y|d+2

diu(y) = (Z—d)|j—|id, and 9%, u(y) =

. Set Z=XTr. Then (Z/, Zk>t = (Bj,Bk)t,\Tr = (t A Ty)1j=k. Hence, by a previous question with the
processes Z and V; = t A Ty, the harmonic function u = le]7!, and D = {x e R3: x # 0}, we get that

u(Z2) = (u(Xeat,)) =0

is a local martingale, and since it is bounded by 1, it is a bounded martingale.

Next, since a 1-dimensional BM escapes almost surely from every finite interval, the first com-

ponent of our 3-dimensional Brownian motion x + B escapes almost surely from [-R, R], and

thus almost surely T < co. In particular almost surely T, < Tr or T, > Ty and we cannot have
» = Tr = co. We have thus the immediate equation

1=P(T, < Tg) + P(T; > Tg).
By the Doob stopping theorem for the bounded martingale u(Z) and the finite stopping time T,
1xI7! = E(u(Z0)) = Eu(Z71,)) = E( X1, 1,1 7") = 1 'P(T < Tp) + R'P(T; > Th).

It remains to solve the system of equations to get the desired formula.

5. We have T; < T if R > supy o x, 11 X;l, hence

{T, <Tr} / {T; <oo}.
R—o00
It follows that
P(T,<Tg) / P(T; <o0)
R/ o0
and thus, from the formula provided by the previous question,

x|~

P(T, <o00) = lim P(T, < Tg) = +— = .
R—o0 r-t x|

Now a.s. X is continuous and therefore

{T, <oo} \, {Tp<oo}
™\.0*

and thus

r
P(Tp <oo0) = lim P(T; <oo) = lim — =0.
r—0* r—0* | x|
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6. By the previous questions Ty < co a.s. thus X remains a.s. in D, and since u = |¢|~! is harmonic
on D, we get that u(X) = 1X|7! = (|x+B|_1)t20 is a non-negative local martingale. By using a
localizing sequence and the Fatou lemma, it is a non-negative super-martingale. Therefore it
converges a.s. to an integrable random variable, hence, as t — oo, |x + B! converges a.s. and
thus |x + B;| converges a.s. in [0, +oo], and since this convergence holds also in law, this law can
only be 6

7. Let us show that X = |x+ B|™! is bounded in L. By rotational invariance and scaling of B;, we
can assume without loss of generality that x = (1,0,0). Since x + B; ~ A (x, tI3), using spherical
coordinates y; = rcos(0) sin(p), y» = rsin(0) sin(p), y3 = r cos(¢), with r € [0,00), 0 € [0,27), ¢ €
[0,7), we have dy = r?sin(¢)drdfde, and for all ¢ > 0,

V2+ys+ly3—1)?

EUXHZ):(Znn_yzjj|yr2e_“‘§“*dy
27[ r sin 2+ I COS!
= nn 2 f f f PO D in()drdOdg

=@2n1)” 1/2 —3/2[

0

_12 =32 [ [T s
= (2m) t e 20 sin(@)drde
o Jo

S 72 1 ru
:(2”)—1/2t—3/26— f e_ﬂ(f eru)dr
0 -1
u=1

-1/2 —3/2 — o0 _L r ru =
=(2n) t e e g dr
0

u=-1

S T sm((p)2+(rws(tp) l)
e 2t sin(p)drde
0

oo ,zsmh
—202m)"V2173/2¢ -% ()

0

o0 (e.0) 2 r2
=202m) 21325 ([ (5)"e—zdr
FOQn+D' t
-l 2 [ on -2
=t le Z—(Znt) ree " zidr
— 2n+1)! o
oo -2n —1)!
B LA
—2n+)l 27 (n-1)!
—rleH Yy en™"
o Cn+1)n!
=2e 21t M
=0 2n+1)n!
(n+1)
52ezz}jggl———-—zeﬁne%—l)sz
=0 (n+1)!

8. By aprevious question, a.s. X takes its values in R3\{0} and |¢|~! is harmonic on this domain, and
this implies that | X|™! = |x + B|~! is a local martingale. Moreover | X|~! is u.i.

Now, suppose that Y = |[X| ! isa martingale. Since it is u.i. lim;_, Y; = Y a.s. and in L!, with
Yoo =0 and Y,, € L'. Moreover E(Yy,) = E(Yp) = |x|~! > 0. But we know from a previous question
that a.s. lim;_ | B;| = +00, which gives that a.s. Y, =0, thus E(Y,) =0, a contradiction.

Alternatively, we could use Doob stopping for u.i. martingales, with the u.i. martingale Y and the
stopping time Ty, which is a.s. finite, this gives Ix|"' = E(Yp) = E(Y7,) = R~ which is impossible.
Note that from the first question, Y cannot be dominated by an integrable random variable!

It can be shown that the process Y solves the SDE dY; = - Ytdet.

Explicit computations show that E(Y;) \, 0, and this is another way to show that Y is not a martingale!
t—o0
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Exercise 4 (Strict local martingales and stochastic integrals).

1. Give an example of an It stochastic integral which is a local martingale but not a martingale,
without using the previous exercise.

Elements of solution for Exercise 4.

1. Of course we could consider the trivial example fotdYs = Y; — Yy where Y is the strict local mar-
tingale considered in the previous exercise, but a deeper understanding is expected here!

A more interesting idea relies on the stochastic integral

IB((P):/(; (ﬂsst

where ¢ is the single step function ¢ = U1 ;) where U is an %, measurable random variable. A
property of the Ito stochastic integral for semi-martingale integrators (here B) gives

IB((p) = UB./\] - UB() = UB.Al.
Now if we take U independent of B, then, in [0, +o¢],
E(IIp(@)1]) =E(UDE( B ).

Thus, if U is not integrable then Iz (¢p); is not integrable and thus I (¢) is not a martingale.
—-000-

References

[1] Jean-Francgois Le Gall. Brownian motion, martingales, and stochastic calculus, volume 274 of Graduate Texts in Mathemat-
ics. Springer, french edition, 2016.

6/6



