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Exam 2020/2021

October 28, 2020, from 13:45 to 16:45
Documents allowed, Internet not allowed

Do what you can, and do not worry

(Ω,F , (Ft )t≥0,P) is a filtered probability space, with complete and right continuous filtration.
B = (Bt )t≥0 is a d-dimensional Brownian motion issued from the origin, d ≥ 1.

Exercise 1 (Representation of a process). Take d = 1 and x ∈R.

1. Recall the computations and reasoning showing that the process (Zt )t≥0 defined by

Zt = xe−t +e−t Mt where Mt =
p

2
∫ t

0
esdBs

is the unique solution of the stochastic differential equation Z0 = x, dZt =
p

2dBt −Zt dt .

2. Show that for all t ≥ 0, Zt
law= xe−t +e−t Be2t−1.

3. Can we have, for all t ≥ 0, Zt = xe−t +e−t Be2t−1?

4. Show that the process (Mt )t≥0 is a continuous local martingale with, for all t ≥ 0, 〈M〉t = e2t −1.

5. Deduce that there exists a Brownian motion (Wt )t≥0 such that for all t ≥ 0, Zt = xe−t +e−t We2t−1.

Elements of solution for Exercise 1. Ornstein – Uhlenbeck and Dubins – Schwarz!

1. The Itô formula X t Yt = X0Y0 +
∫ t

0 (XsdYs +YsdXs) gives, with (X t ,Yt ) = (e−t , Mt ),

e−t Mt =
p

2
∫ t

0
e−sesdBs −

∫ t

0
e−s Msds =

p
2Bt −

∫ t

0
e−s Msds

which gives

xe−t +e−t Mt = x +
p

2Bt −
∫ t

0
(xe−s +e−s Ms)ds.

On the other hand, to establish the uniqueness, let us suppose that (X t )t≥0 is a continuous semi-
martingale solution of the SDE. Then by combining the Itô formula above for the function f (u, v) =
uv and the semi-martingale (et , X t ), and the SDE satisfied by X , we obtain

et X t −x =
∫ t

0
esdXs +

∫ t

0
es Xsds =

p
2
∫ t

0
esdBs .

2. Since Mt is a Wiener integral, it is Gaussian with zero mean and variance 2
∫ t

0 e2sds = e2t−1, which
gives Zt ∼N (xe−t ,1−e−2t ), and it turns out that this is also the law of xe−t +e−t Be2t−1.

3. No because the process on the right hand side would not be adapted. Indeed the random variable
Be2t−1 is Fe2t−1-measurable instead of being Ft -measurable.

4. The process M is a Wiener( – Itô) integral, in particular it is a Gaussian square integrable martin-
gale, and in particular a local martingale. Moreover 〈M〉t = E(M 2

t ) = 2
∫ t

0 e2sds = e2t −1.

5. The process M is a continuous local martingale with respect to the filtration (Ft )t≥0 with M0 = 0
and 〈M〉∞ = ∞. Therefore the Dubins – Schwarz theorem states that (Wt )t≥0 = (MTt )t≥0 where
Tt = inf{s ≥ 0 : 〈M〉s > t } is a Brownian motion for the filtration (FTt )t≥0, and (W〈M〉t )t≥0 = (Mt )t≥0.

Exercise 2 (Study of a special process). Let d = 1, α ≥ 0, x ≥ 0. Let X be a continuous semi-martingale
taking values in R+ and solving the stochastic differential equation:

X t = x +2
∫ t

0

√
XsdBs +αt , t ≥ 0.

Let f : [0,+∞) → [0,+∞) be continuous and ϕ : [0,+∞) → (0,+∞) be positive and C 2, solving the ordi-
nary differential equation ϕ′′ = 2 f ϕ with boundary conditions ϕ(0) = 1 and ϕ′(1) = 0. Note that ϕ> 0.

1/6



Université Paris-Dauphine / PSL � M2 MASEF/MATH � Introduction to stochastic calculus

1. Could you give an explicit example of process X for special values of α?

2. Show that ϕ decreases on the interval [0,1]

3. Show that u =ϕ′/(2ϕ) solves the differential equation u′+2u2 = f

4. Show that for all t ≥ 0,

u(t )X t −
∫ t

0
f (s)Xsds = u(0)x +

∫ t

0
u(s)dXs −2

∫ t

0
u(s)2Xsds.

5. For all t ≥ 0, let us define Yt = u(t )X t −
∫ t

0 f (s)Xsds. Show that

ϕ(t )−
α
2 eYt = eNt− 1

2 〈N〉t where Nt = u(0)x +2
∫ t

0
u(s)

√
XsdBs

6. Show that

Eexp
(
−

∫ 1

0
f (s)Xsds

)
=ϕ(1)

α
2 e

x
2ϕ

′(0)

7. From now on, let λ> 0. Prove that

Eexp
(
−λ

∫ 1

0
Xsds

)
= (cosh(

p
2λ))−

α
2 e−

x
2

p
2λ tanh

p
2λ

8. Prove that for all λ> 0 and y ∈R,

Eexp
(
−λ

∫ 1

0
(y +Bs)2ds

)
= (cosh(

p
2λ))−

1
2 e−

y2

2

p
2λ tanh

p
2λ

Elements of solution for Exercise 2. This is on squared Bessel processes : [1, Exercise 5.31 p. 145 – 146].

1. We know from the course (Itô+Lévy) that if α= n ∈ {1,2, . . .} then X has the law of |x +W |2 where
W is a n-dimensional Brownian motion issued from the origin (squared Bessel process).

2. We have ϕ′(1) = 0 and ϕ′′ ≥ 0 hence ϕ′ ≤ 0 on [0,1].

3. We have u′ = ϕ′′ϕ−ϕ′2

2ϕ2 thus

u′+2u2 = ϕ′′ϕ−ϕ′2

2ϕ2 + ϕ′2

2ϕ2 = ϕ′′

2ϕ
= f .

4. The Itô formula for F (x1, x2) = x1x2 and (u(t ), X t ) gives

u(t )X t −u(0)x =
∫ t

0
Xsu′(s)ds +

∫ t

0
u(s)dXs

=
∫ t

0
Xs( f (s)−2u2(s))ds +

∫ t

0
u(s)dXs

and it remains to use the result of the previous question.

5. We have, using the SDE solved by X for the second step, and in the third step the definition of Y
and the previous question,

Nt − 1

2
〈N〉t = u(0)x +2

∫ t

0
u(s)

√
XsdBs −2

∫ t

0
u(s)2Xsds

= u(0)x +
∫ t

0
u(s)(dXs −αds)−2

∫ t

0
u(s)2Xsds

= Yt −α
∫ t

0
u(s)ds.

Since ∫ t

0
u(s)ds =

∫ t

0

ϕ′(s)

2ϕ(s)
ds = logϕ(1)− logϕ(0)

2
= logϕ(1)

2
,

we obtain
eNt− 1

2 〈N〉t = eYtϕ(1)−αt .
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6. The process eN− 1
2 〈N〉 is a Doléans-Dade exponential, hence a continuous local martingale. In

order to show that it is a martingale for t ∈ [0,1], it suffices to show that it is dominated by an
integrable random variable. From the previous computations, for all t ∈ [0,1],

eNt− 1
2 〈N〉t = eYt−α

∫ t
0 u(s)ds .

Now, Yt = u(t )X t −
∫ t

0 f (s)Xsds ≤ 0 since u ≤ 0 (recall that ϕ′ ≤ 0), while X , f ≥ 0.

Hence (eNt− 1
2 〈N〉t )t∈[0,1] is a martingale.

Next u(1) =ϕ′(1)/(2ϕ(1)) = 0, we get, from the previous question with t = 1,

ϕ(1)−
α
2 Ee−

∫ 1
0 f (s)Xs ds = E(eNt− 1

2 〈N〉t )

= E(eN0− 1
2 〈N〉0 )

= eu(0)x

= ex ϕ′(0)
2ϕ(0)

= e
x
2ϕ

′(0).

7. We take f constant and equal to λ > 0. The differential equation solved by ϕ writes ϕ′′ = 2λϕ

with ϕ(0) = 1 and ϕ′(1) = 0. The associated equation has two roots ±p2λ hence ϕ(x) =αe
p

2λx +
βe−

p
2λx . The boundary conditions give α+β= 1 and αe2

p
2λ =β, hence

α= 1

1+e2
p

2λ
= e−

p
2λ

2cosh(
p

2λ)
and β= e2

p
2λ

1+e2
p

2λ
= e

p
2λ

2cosh(
p

2λ)
.

This gives

ϕ(1) = 1

cosh(
p

2λ)
and ϕ′(0) =

p
2λ(α−β) =−

p
2λ tanh(

p
2λ).

8. If we take α= 1 then X has the law of the squared Bessel process (x +B)2.

Exercise 3 (Strict local martingales). We take d = 3, X = x +B , 0 < r < |x| < R <∞, and, for all a ≥ 0,

Ta = inf{t ≥ 0 : |X t | = a}.

1. Show that if M = (Mt )t≥0 is a continuous local martingale with for all t ≥ 0, |Mt | ≤U where U ∈ L1,
then M is a martingale. Does it remain true if the domination condition is replaced by “M is u.i.”?

2. Show that if Z = (Zt )t≥0 is d-dimensional, adapted, taking values in an open set D ⊂Rd , such that
its components are continuous local martingales, and for all 1 ≤ j ,k ≤ d , 〈Z j , Z k〉 = V 1 j=k for a
finite variation process V , then, for all harmonic u : D →R, the process u(Z ) is a local martingale.

3. Show that |•|−1 is harmonic on R3 \ {0}.

4. Show that TR <∞ almost surely and

P(Tr < TR ) = R−1 −|x|−1

R−1 − r−1 .

5. Deduce from the previous formula that a.s. for all t ≥ 0, X t 6= 0.

6. Show that a.s. limt→∞ |Bt | = +∞. Hint: show that |X |−1 is a non-negative super-martingale.

7. Show that |X |−1 is bounded in L2. Hint: density of Bt in spherical coordinates.

8. Show that |X |−1 is a continuous local martingale, but is not a martingale.

Elements of solution for Exercise 3. The goal is to construct a local martingale which is u.i. but which
is not a martingale. The example chosen here is a non-centered Bessel process. This example of a strict
local martingale is quite classical, and corresponds for instance to [1, Exercise 5.33(8) page 148].
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1. For all t ≥ 0, the measurability and integrability of Mt comes from the adaptation of M and the
domination assumption. Let (Tn)n≥0 be a localizing sequence for M . For all n ≥ 0, M Tn is a
martingale: for all 0 ≤ s ≤ t , E(MTn∧t |Fs) = MTn∧s . Now since limn→∞ Tn =+∞ a.s. and since M
is continuous, if follows that a.s. for all t ≥ 0, limn→∞ MTn∧t = Mt . It remains to use dominated
convergence to get that limn→∞E(MTn∧t |Fs) = E(Mt |Fs). Hence M is a martingale. Finally, if M
is u.i. instead of being dominated, then the argument is no longer valid since it does not give a way
to handle MTn∧t . The goal of the exercise is precisely the construction of an u.i. continuous local
martingale which is not a martingale! Note: domination implies u.i. but the converse is wrong.

2. The Itô formula is licit on an open domain D for a process taking values in D . It gives, for all t ≥ 0,

u(X t ) = u(X0)+
∫ t

0
∇u(Xs)dXs + 1

2

∫ t

0
∆u(Xs)dVs .

The last integral vanishes since ∆u = 0 and X takes values on D , thus u(X ) is a local martingale.

3. For all y ∈ D , denoting u = |•|−1, we obtain ∆u(y) = 0 from

∂i u(y) = (2−d)
yi

|y |d , and ∂2
i ,i u(y) = d(d −2)

2

|y |d −d y2
i |y |d−2

|y |d+2
.

4. Set Z = X Tr . Then 〈Z j , Z k〉t = 〈B j ,B k〉t∧Tr = (t ∧Tr )1 j=k . Hence, by a previous question with the
processes Z and Vt = t ∧Tr , the harmonic function u = |•|−1, and D = {x ∈R3 : x 6= 0}, we get that

u(Z ) = (u(X t∧Tr ))t≥0

is a local martingale, and since it is bounded by r−1, it is a bounded martingale.
Next, since a 1-dimensional BM escapes almost surely from every finite interval, the first com-
ponent of our 3-dimensional Brownian motion x +B escapes almost surely from [−R,R], and
thus almost surely TR < ∞. In particular almost surely Tr < TR or Tr > TR and we cannot have
Tr = TR =∞. We have thus the immediate equation

1 =P(Tr < TR )+P(Tr > TR ).

By the Doob stopping theorem for the bounded martingale u(Z ) and the finite stopping time TR ,

|x|−1 = E(u(Z0)) = E(u(ZTR )) = E(|XTr ∧TR |−1) = r−1P(Tr < TR )+R−1P(Tr > TR ).

It remains to solve the system of equations to get the desired formula.

5. We have Tr < TR if R > sups∈[0,XTr ] |Xs |, hence

{Tr < TR } ↗
R→∞

{Tr <∞}.

It follows that
P(Tr < TR ) ↗

R↗∞
P(Tr <∞)

and thus, from the formula provided by the previous question,

P(Tr <∞) = lim
R→∞

P(Tr < TR ) = |x|−1

r−1 = r

|x| .

Now a.s. X is continuous and therefore

{Tr <∞} ↘
r↘0+

{T0 <∞}

and thus
P(T0 <∞) = lim

r→0+P(Tr <∞) = lim
r→0+

r

|x| = 0.
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6. By the previous questions T0 <∞ a.s. thus X remains a.s. in D , and since u = |•|−1 is harmonic
on D , we get that u(X ) = |X |−1 = (|x +B |−1)t≥0 is a non-negative local martingale. By using a
localizing sequence and the Fatou lemma, it is a non-negative super-martingale. Therefore it
converges a.s. to an integrable random variable, hence, as t → ∞, |x +Bt |−1 converges a.s. and
thus |x +Bt | converges a.s. in [0,+∞], and since this convergence holds also in law, this law can
only be δ∞.

7. Let us show that X = |x +B |−1 is bounded in L2. By rotational invariance and scaling of Bt , we
can assume without loss of generality that x = (1,0,0). Since x +Bt ∼ N (x, t I3), using spherical
coordinates y1 = r cos(θ)sin(ϕ), y2 = r sin(θ)sin(ϕ), y3 = r cos(ϕ), with r ∈ [0,∞), θ ∈ [0,2π), ϕ ∈
[0,π), we have dy = r 2 sin(ϕ)dr dθdϕ, and for all t > 0,

E(|X t |2) = (2πt )−3/2
∫
R3

∣∣y
∣∣−2 e−

y2
1+y2

2+(y3−1)2

2t dy

= (2πt )−3/2
∫ ∞

0

∫ 2π

0

∫ π

0
r−2e−

r 2 sin(ϕ)2+(r cos(ϕ)−1)2

2t r 2 sin(ϕ)dr dθdϕ

= (2π)−1/2t−3/2
∫ ∞

0

∫ π

0
e−

r 2 sin(ϕ)2+(r cos(ϕ)−1)2

2t sin(ϕ)dr dϕ

= (2π)−1/2t−3/2
∫ ∞

0

∫ π

0
e−

r 2−2r cos(ϕ)+1
2t sin(ϕ)dr dϕ

= (2π)−1/2t−3/2e−
1

2t

∫ ∞

0
e−

r 2

2t

(∫ 1

−1
e

r u
t du

)
dr

= (2π)−1/2t−3/2e−
1

2t

∫ ∞

0
e−

r 2

2t

[ t

r
e

r u
t

]u=1

u=−1
dr

= 2(2π)−1/2t−3/2e−
1

2t

∫ ∞

0
e−

r 2

2t
sinh( r

t )
r
t

dr

= 2(2π)−1/2t−3/2e−
1

2t

∞∑
n=0

1

(2n +1)!

∫ ∞

0

(r

t

)2n
e−

r 2

2t dr

= t−1e−
1

2t

∞∑
n=0

t−2n

(2n +1)!
(2πt )−1/2

∫ ∞

−∞
r 2ne−

r 2

2t dr

= t−1e−
1

2t

∞∑
n=0

t−2n

(2n +1)!
t n (2n −1)!

2n−1(n −1)!

= t−1e−
1

2t

∞∑
n=0

(2t )−n

(2n +1)n!

= 2e−
1

2t

∞∑
n=0

(2t )−(n+1)

(2n +1)n!

≤ 2e−
1

2t

∞∑
n=0

(2t )−(n+1)

(n +1)!
= 2e−

1
2t (e

1
2t −1) ≤ 2.

8. By a previous question, a.s. X takes its values in R3 \{0} and |•|−1 is harmonic on this domain, and
this implies that |X |−1 = |x +B |−1 is a local martingale. Moreover |X |−1 is u.i.

Now, suppose that Y = |X |−1 is a martingale. Since it is u.i. limt→∞ Yt = Y∞ a.s. and in L1, with
Y∞ ≥ 0 and Y∞ ∈ L1. Moreover E(Y∞) = E(Y0) = |x|−1 > 0. But we know from a previous question
that a.s. limt→∞ |Bt | = +∞, which gives that a.s. Y∞ = 0, thus E(Y∞) = 0, a contradiction.

Alternatively, we could use Doob stopping for u.i. martingales, with the u.i. martingale Y and the
stopping time TR , which is a.s. finite, this gives |x|−1 = E(Y0) = E(YTR ) = R−1 which is impossible.

Note that from the first question, Y cannot be dominated by an integrable random variable!

It can be shown that the process Y solves the SDE dYt =−Y 2
t dWt .

Explicit computations show that E(Yt ) ↘ 0
t→∞

, and this is another way to show that Y is not a martingale!
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Exercise 4 (Strict local martingales and stochastic integrals).

1. Give an example of an Itô stochastic integral which is a local martingale but not a martingale,
without using the previous exercise.

Elements of solution for Exercise 4.

1. Of course we could consider the trivial example
∫ t

0 dYs = Yt −Y0 where Y is the strict local mar-
tingale considered in the previous exercise, but a deeper understanding is expected here!

A more interesting idea relies on the stochastic integral

IB (ϕ) =
∫ •

0
ϕsdBs

where ϕ is the single step function ϕ=U 1(0,1] where U is an F0 measurable random variable. A
property of the Itô stochastic integral for semi-martingale integrators (here B) gives

IB (ϕ) =U B•∧1 −U B0 =U B•∧1.

Now if we take U independent of B , then, in [0,+∞],

E(|IB (ϕ)1|) = E(|U |)E(|B1|).

Thus, if U is not integrable then IB (ϕ)1 is not integrable and thus IB (ϕ) is not a martingale.

– oOo –
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