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Exam 2019/2020

December 4, 2019, from 13:45 to 16:45
Documents allowed, Internet not allowed

Do what you can, and do not worry

We use the notations of the lecture notes.
B = (Bt )t≥0 is a d-dimensional Brownian motion issued from the origin, d ≥ 1.

Exercise 1. Assume that d = 1. Let σ> 0, ρ ∈R, and x ∈R be fixed parameters.

1. Solve the ODE X0 = x and X ′(t ) = ρX (t ) and discuss its sign depending on x.

2. Solve the SDE X0 = x and dX t = ρX t dt +σX t dBt (existence, uniqueness, explicit formula).

Elements of solution for Exercise 1 (Geometric Brownian motion).

1. The unique solution of the ODE is X t = xeρt for all t ≥ 0. It keeps for all times the sign of the initial
condition, namely if x = 0 (respectively < 0, > 0), then X t = 0 (respectively < 0, > 0) for all t ≥ 0.

2. The coefficients of the SDE are Lipschitz: there exists a solution, which pathwise uniqueness. If x = 0
then X = 0 is a solution. If x < 0 then −X solves the SDE where X solves the SDE with initial condition
−x. We consider now the case x > 0. Suppose that X solves the SDE, with X t > 0 for all t ≥ 0. Then

dX t

X t
= ρdt +σdBt .

This suggests to use the Itô formula for log(X t ). The semi-martingale X t has local martingale part
σ

∫ t
0 XsdBs and finite variation part ρ

∫ t
0 Xsds. The Itô formula gives

log(X t )− log(x) =σ
∫ t

0

Xs

Xs
dBs +ρ

∫ t

0

Xs

Xs
ds − σ2

2

∫ t

0

X 2
s

X 2
s

ds =σBt +ρt − σ2

2
t ,

hence

X t = xeσBt+(ρ− σ2

2 )t , t ≥ 0.

We can check now by Itô formula that this well defined semi-martingale solves indeed the SDE, re-
gardless of x. The process X is known as geometric Brownian motion. This basic process is studied
in all courses and books about stochastic calculus, for instance in [2, Section 8.4.2 page 226].

Exercise 2. Let θ > 0, ρ ∈R, z ∈Rd be parameters, and let Z z be the solution of

Z z
0 = z, dZ z

t = θdBt −ρZ z
t dt

1. Why this SDE has a pathwise unique solution? What is the name of the process Z z ?

2. Show that the process Wt =
∫ t

0

Z z
s

|Z z
s |

dBs with the convention 0/0 = 1 is a Brownian motion.

3. Let us define x = |z|2. Show that the process X x
t = |Z z

t |2 solves the stochastic differential equation

X x
0 = x, dX x

t =σ
√

X x
t dWt + (a −bX x

t )dt where σ= 2θ, a = θ2d , b = 2ρ.

4. Show that if ρ > 0 then 1 X x
t

law−→
t→∞ Gamma(d/2,2b/σ2). What happens when b ≤ 0 ?

5. From now on, we assume that X x solves the SDE above for x ≥ 0 and an arbitrary real parameter
d > 0, without relation to Z z . Our goal is to evaluate P(T x

0 <∞), T x
c = inf{t ≥ 0 : X x

t = c}. Show that

u ∈ (0,+∞) 7→ϕ(u) =
∫ u

1
v− 2a

σ2 e
2b
σ2 v dv satisfies

σ2

2
uϕ′′(u)+ (a −bu)ϕ′(u) = 0.

1. If G ∼N (0, Id ) then |G|2 ∼χ2(d) = Gamma(d/2,1/2). The law Gamma(a,λ) has density u 7→ λa

Γ(a) ua−1e−λu 1u≥0.
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6. From now on, we take x > 0 and 0 < ε< x < R. Let us define T x
ε,R = T x

ε ∧T x
R . Show that for all t > 0,

ϕ(X x
t∧T x

ε,R
) =ϕ(x)+

∫ t∧T x
ε,R

0
ϕ′(X x

s )σ
√

X x
s dWs .

7. Show that E(T x
ε,R ) <∞, which gives Tε,R <∞ a.s. (hint: use an isometry, and a lower bound on ϕ′).

8. Show that
ϕ(x) =ϕ(ε)P(T x

ε < T x
R )+ϕ(R)P(T x

ε > T x
R ).

9. Show that if a ≥ σ2

2 then P(T x
0 <∞) = 0 (hint: use limu→0ϕ(u) =−∞).

10. Show that if 0 ≤ a < σ2

2 and b ≥ 0 then P(T x
0 <∞) = 1 (hint: use limR→+∞ϕ(R) =+∞).

11. Show that if 0 ≤ a < σ2

2 and b < 0 then P(T x
0 <∞) = (ϕ(∞)−ϕ(x))/(ϕ(∞)−ϕ(0)) ∈ (0,1).

Elements of solution for Exercise 2 (Cox – Ingersoll – Ross processes). CIR processes, see [1, Section 6.2.2].

1. The existence and pathwise uniqueness of the solution follows from the fact that we have here a
constant diffusion coefficient θId and a non-random constant in time Lipschitz drift b(z) = −ρz.
From the lecture notes Z z is an Ornstein – Uhlenbeck (OU) process.

2. The function z 7→ z/|z| is a multivariate analogue of “sign”. Since Z z is an OU process, the process
(Z z

t /|Z z
t |)t≥0 is progressive and square integrable. Also W is a continuous local martingale, and since

〈W 〉t =
∫ t

0
|Z z

s |2
|Z z

s |2 dBs = t , it follows by a famous criterion that W is a Brownian motion.

3. The semi-martingale Z z has local martingale part θBt and finite-variation part −ρ ∫ t
0 Z z

s ds. The Itô
formula for the continuous semi-martingale Z z and the C 2 function |·|2 gives

dX x
t = d(|Z z

t |2) = 2Zt dZ z
t + 1

2
θ2(2d)dt

= 2θZ z
t dBt −2ρ|Z z

t |2dt +θ2ddt

= 2θ|Z z
t |

Z z
t

|Z z
t |

dBt + (θ2d −2ρ|Z z
t |2)dt

= 2θ
√

X x
t dWt + (θ2d −2ρX x

t )dt

We say that X x = |Z z |2 is a Cox – Ingersoll – Ross (CIR) process. CIR processes are for OU processes
what square Bessel processes are for BM. They include square Bessel processes as special cases. They
are used in mathematical finance for the modeling of interest rates, see for instance [1, Section 6.2.2].

4. Since Z z is OU with Z0 = z, by the Mehler formula, Z z
t = ze−ρt +

√
θ2(1−e−2ρt )

2ρ G , G ∼ N (0, Id ). Now

|G|2 ∼ χ2(d) = Gamma(d/2,1/2) and r |G|2 ∼ Gamma(d/2,1/(2r )). Now ρ > 0 gives limt→∞ ze−ρt = 0
and limt→∞(1−e−2ρt ) = 1, hence the result. When ρ ≤ 0 then the law of X t degenerates as t →∞.

5. These last questions are taken from [1, Proposition 6.2.3 and Exercise 37]. The result follows from

ϕ′(u) = u− 2a
σ2 e

2b
σ2 u and ϕ′′(u) =−2a

σ2 u− 2a
σ2 −1e

2b
σ2 u + 2b

σ2 u− 2a
σ2 e

2b
σ2 u .

6. The continuous semi-martingale X x has local martingale partσ
∫ •

0

√
X x

s dWs , thus 〈X x〉 =σ2
∫ •

0 X x
s ds,

and finite variation process
∫ •

0 (a −bX x
s )ds. The Itô formula for X x and the C 2 function ϕ gives

ϕ(X x
t ) =ϕ(x)+σ

∫ t

0
ϕ′(X x

s )
√

X x
s dWs +

∫ t

0
ϕ′(X x

s )(a −bX x
s )ds + σ2

2

∫ t

0
ϕ′′(X x

s )X x
s ds

The desired result follows by stopping at T x
ε,R and then using the ODE on ϕ (previous question).

7. By definition of T x
ε,R , the random variable Y =ϕ(T x

ε,R )−ϕ(x) is bounded. By using the Itô isometry,

E(Y 2) = E
((∫ t

0
1s≤T x

ε,R
ϕ′(X x

s )σ
√

X x
s dWs

)2)=σ2E

∫ t

0
1s≤T x

ε,R
(ϕ′(X x

s ))2X x
s ds.

Now on {s ≤ T x
ε,R }, inf((ϕ′(X x

s ))2X x
s ) ≥ `> 0 for a deterministic `, thus +∞> E(Y 2) ≥σ2`E(T x

ε,R ).
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8. Let us consider the expression of ϕ(X x
T x
ε,R

) obtained already. The stochastic integral in the result is

centered because it is a martingale (put the stopping time inside or use the Doob stopping theorem)
issued from the origin. By taking the expectation, we get ϕ(x) = E(ϕ(X x

t∧T x
ε,R

)). By the previous ques-

tion, T x
ε,R <∞ almost surely, and since t 7→ϕ(X x

t∧T x
ε,R

) is bounded, we get, by dominated convergence

as t →∞, that ϕ(x) = E(ϕ(X x
T x
ε,R

)). It remains to consider the partition {T x
ε < T x

R }∪ {T x
ε > T x

R }.

9. If a ≥ σ2

2 then (Riemann criterion) limu→0ϕ(u) =−∞. Now T x
ε grows if ε decreases, thus P(T x

ε < T x
R )

decreases when ε decreases, and from the previous question, we get limε→0P(T x
ε < T x

R ) = 0 (contra-
diction otherwise). Next T x

ε < T x
0 gives P(T x

0 < T x
R ) ≤P(T x

ε < T x
R ) −→

ε→0
0. It remains to let R →∞ to get

the desired result by monotone or dominated convergence.

10. Since 0 ≤ a < σ2

2 , then ϕ(0) = limu→0ϕ(u) is finite. By monotone or dominated convergence,

ϕ(x) =ϕ(0)P(T x
0 < T x

R )+ϕ(R)P(T x
0 > T x

R ).

Since b ≥ 0 we get limR→+∞ϕ(R) =+∞ and thus P(T x
0 =∞) = 0 (contradiction otherwise).

11. Since 0 ≤ a < σ2

2 we get that ϕ(0) is finite. Moreover b < 0 gives ϕ(∞) = limR→+∞ϕ(R) ∈ (0,+∞) and
we get ϕ(x) =ϕ(0)P(T x

0 <∞)+ϕ(∞)P(T x
0 =∞) hence the formula. Note: it is still valid when x = 0.

Note that for θ = 1 and ρ = 0, we have σ= 2, a = d , b = 0, and X = |z +B |2 is a squared Bessel process
of dimension d started from z. The condition a ≥ σ2

2 reads d ≥ 2, and it follows that almost surely
a Bessel process of dimension d hits the origin if d < 2 and never hits the origin if d ≥ 2, and this
remains valid if we define the Bessel process with real dimension parameter d > 0 via an SDE.

Exercise 3. Let U ∈C 2(Rd ,R). In particular −∇U is locally Lipschitz but is not globally Lipschitz in general.
Let us fix x ∈ Rd . From the lecture notes, we recall and admit that there exists an adapted process X with
values in Rd ∪ {∞} and a stopping time T with values in (0,+∞] such that

— X t ∈Rd if t < T while X t =∞ if t ≥ T , and limt→<T |X t | =∞ on {T <∞}
— t ∈ [0,T ) 7→ X t ∈Rd is continuous

— X t = x +Bt −
∫ t

0
∇U (Xs)ds on the (maximal) time interval [0,T )

We study now a couple of sufficient criteria on U in order to get P(T <∞) = 0 (no explosion in finite time).

1. Suppose that

lim
|x|→∞

U (x) =+∞ and C2 = sup
x∈Rd

(1

2
∆U −|∇U |2

)
<∞.

(a) Show that TR = inf{t ≥ 0 : U (X t ) > R} ↗
R→∞

T .

(b) Show that Y = X TR = (X t∧TR )t≥0 solves the following SDE

Yt = x +
∫ t

0
1s≤TR dBs −

∫ t

0
1s≤TR∇U (Xs)ds, t ≥ 0.

(c) Show that for all R > 0 and t > 0,

E(U (X t∧TR )) =U (x)+E
(∫ t∧TR

0

(1

2
∆U −|∇U |2

)
(Xs)ds

)
.

(d) Show that C1 = infRd U >−∞ and, for all R > 0 and t > 0,

R1TR≤t −|C1| ≤U (X t∧TR ).

(e) Show that for all R > 0 and t > 0,

E(R1TR≤t −|C1|−U (x)) ≤ E(C2(t ∧TR )) ≤ t .

(f ) Show that P(T <∞) = 0.
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2. Suppose that for some a,b ∈R and all x ∈Rd ,

〈x,∇U (x)〉 ≥−a|x|2 −b.

(a) Show that
Tn = inf{t ≥ 0 : |X t |2 > n} ↗

n→∞
T.

(b) Show that Y = X Tn = (X t∧Tn )t≥0 solves the following SDE

Yt = x +
∫ t

0
1s≤Tn dBs −

∫ t

0
1s≤Tn∇U (Xs)ds, t ≥ 0.

(c) Show that for all t ≥ 0 and n ≥ 1,

E(|X t∧Tn |2) ≤ |x|2 + (1+2|b|)t +2|a|
∫ t

0
E(|Xs∧Tn |2)ds.

(d) Show that for all t ≥ 0 and n ≥ 1,

E(|X t∧Tn |2) ≤ (|x|2 + (1+2|b|)t )e2|a|t .

(e) Show that P(T <∞) = 0.

– End of document –

Elements of solution for Exercise 3 (Non-explosion criteria for Kolmogorov diffusions). From [3, Th. 2.2.19].

1. (a) On {T = ∞} we have limR→∞ TR = ∞ = T since U (X t ) takes then its values in R for all t . On
{T <∞} we have limR→∞ TR = T since lim

t
<→T

U (X t ) =+∞.

(b) Follows from the property of X , the fact that TR < T , and the properties of the stochastic integral
and the Lebesgue – Stieltjes integral with respect to stopping times.

(c) In the SDE in the previous question, by using cutoff and regularization, we could replace −∇U by
a globally Lipschitz coefficient, because −∇U is seen only on {U ≤ R} and U is C 2 and thus locally
Lipschitz. It follows that X TR solves an SDE with globally Lipschitz coefficients, and is a continu-
ous semi-martingale, with local martingale and finite variations parts B•∧TR and−∫ •∧TR

0 ∇U (Xs)ds
respectively. By the Itô formula and the properties of stopped integrals/brackets,

U (X t∧TR ) =U (x)+
∫ t∧TR

0
∇U (Xs)dBt −

∫ t∧TR

0
|∇U (Xs)|2ds + 1

2

∫ t∧TR

0
(∆U )(Xs)ds.

By definition of TR and the regularity of U the stochastic integral with respect to BM is a martin-
gale, and since it is issued from the origin, its has zero expectation, hence the desired result.

(d) Since U ∈C 2(Rd ,R) and lim|x|→∞U (x) =+∞ it follows that C1 = infRd U >−∞.
Next, the inequality R1TR≤t − |C1| ≤U (X t∧TR ) holds because on {TR > t }, it reads −|C1| ≤U (X t ),
while on {TR ≤ t }, it reads R −|C1| ≤ R ≤U (XTR ) =U (X t∧TR ).

(e) The desired result follows by using the couple of previous questions.

(f) From the previous question we get limR→∞P(TR ≤ t ) = 0. The desired result follows from the
facts P(T <∞) = limt→∞P(T ≤ t ) and P(T ≤ t ) ≤ limR→∞P(TR ≤ t ) = 0.

2. (a) On {T = ∞}, we have limn→∞ Tn = ∞ = T thanks to the fact that X takes then its values in Rd ,
while on {T <∞}, we have limn→∞ Tn = T since X is continuous on [0,T ) and lim

t
<→T

|X t | = +∞
(b) Follows from the property of X , the fact that Tn < T , and the properties of the stochastic integral

and the Lebesgue – Stieltjes integral with respect to stopping times.
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(c) In the SDE satisfies by X Tn , by using cutoff and regularization, we could replace −∇U by a glob-
ally Lipschitz coefficient, because −∇U is seen only on D(0,R) and U is C 2 and thus locally Lip-
schitz. It follows that X Tn solves an SDE with globally Lipschitz coefficients, and is a continuous
semi-martingale, with local martingale and finite variations parts B•∧Tn and −∫ •∧Tn

0 ∇U (Xs)ds
respectively. By the Itô formula and the properties of stopped integrals/brackets,

|X t∧Tn |2 = |x|2 +2
∫ t∧Tn

0
XsdBt −2

∫ t∧Tn

0
〈Xs ,∇U (Xs)〉ds + (t ∧Tn).

By definition of Tn , the stochastic integral with respect to BM is a martingale, and since it is issued
from zero, its has zero expectation. Taking expectations and using the assumption on U give

E(|X t∧Tn |2) ≤ |x|2 +2|a|
∫ t

0
E(|Xs∧Tn |2)ds + (1+2|b|)(t ∧Tn).

(d) The Grönwall lemma for f (t ) = E(|X t∧Tn |2) yields the desired result.

(e) We have limn→∞ |X t∧Tn |2 = |X t∧T |2 a.s. Moreover P(T < t ) ↗t→∞ P(T <∞), and thus if we have
P(T <∞) > 0 then P(T < t ) > 0 for t large enough, and for such a t , the Fatou lemma would gives

+∞= E(|X t∧T |21T<t ) ≤ E(|X t∧T |2) = E( lim
n→∞

|X t∧Tn |2) ≤ lim
n→∞

E(|X t∧Tn |2) ≤ c(x, t ) <∞

where the last inequality follows from the previous question, which is impossible. Note that we
could replace the Fatou lemma by the dominated convergence theorem since the previous ques-
tions gives that for all t ≥ 0, the sequence (|X t∧Tn |)n≥1 is bounded in L2 and thus u.i.
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