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Suggested schedule of the lectures.

We recommend that the in class or oral lectures differ from the lecture notes, ideally they should contain
less details and should be focused on the essential aspects, the structure, the culture, and the intuition.

• Day 1 (2 x 1.5h)
Chapter 1 (Preliminaries)

• Day 2 (2 x 1.5h)
Chapter 2 (Processes, filtrations, stopping times, martingales)

• Day 3 (2 x 1.5h)
Chapter 3 (Brownian motion)

• Day 4 (2 x 1.5h)
Chapter 3 (Brownian motion)

• Day 5 (2 x 1.5h)
Chapter 4 (More on martingales)
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These are the lecture notes of the pre-school week, given at Université Paris-Dauphine – PSL, for second year master students
in mathematics1. The objective of this pre-school is to recall fundamental aspects of probability theory at the level of a first year
of master. This helps to prepare the students for the courses proposed in the master in particular to the course on stochastic
calculus. Before the year 2021–2022, this pre-school was essentially the first part of the stochastic calculus course. What was
removed (actually postponed to the stochastic calculus course) is essentially the Wiener integral, the Cameron – Martin formula,
and its application to exit times, and the Kunita-Watanabe inequality.

There are many references on the subject. For probability theory at the level of the first year of master, there is for instance
[10] by Allan Gut and [3] by Vivek Borkar. See also [11, 2]. Brownian motion and continuous martingales are studied for instance
in the books by Daniel Revuz and Marc Yor [17], Jean-François Le Gall [14], and Fabrice Baudoin [1]. A historical reference for the
foundations of probability theory and stochastic processes is the treatise by Claude Delacherie and Paul-André Meyer [7, 6, 5].

Contributors.

• 2018 – 2022 : Djalil Chafaï

• – 2018 : Halim Doss

Typos hunters.

• 2021 – 2022 : Pauline Amrouche, Faniriana Rakoto Endor

• 2020 – 2021 : Oskar Bataillon, Yi Han, Qiaoyu Luo, Gabriel Moreira-Nogueira, Diego Alejandro Murillo
Taborda, Lyes Tifoun, Walid El Wahabi

• 2019 – 2020 : Oscar Cosserat, Łukasz Mądry, Alejandro Rosales Ortiz, Ziyu Zhou

• 2018 – 2019 : Clément Berenfeld

1MASEF (Mathématiques pour l’économie et la finance) and MATH (Mathématiques appliquées et théoriques).
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Notation.

R+ [0,+∞)
BM Brownian motion
O, o Landau notation

iff if and only if
a.s. almost surely
u.i. uniformly integrable

w.r.t. with respect to
1A indicator of A

x · y or 〈x, y〉 x1 y1 +·· ·+xd yd if x, y ∈Rd

|x|
√

x2
1 +·· ·+x2

d if x ∈Rd

BE Borel σ-algebra of E
e exponential
d differential element
i the complex number (0,1)

d , i , j ,k,m,n,ℓ integer numbers
p, q,r, s, t ,u, v,α,β,ε real numbers

s ∧ t and s ∨ t min(s, t ) and max(s, t )
f is increasing f (y) ≥ f (x) if y ≥ x

Lp
Rd (Ω,P) X :Ω→Rd measurable with E(∥X ∥p ) <∞
〈x, y〉H scalar product in the Hilbert space H
〈M , N〉 angle bracket of local martingales M , N

〈M〉 〈M , M〉
[M , N ] square bracket of local martignales M , N

[M ] [M , M ]
X ∼µ X has law µ

(
Ω,F , (Ft )t≥0,P

)
Unless otherwise stated, the random variables

and stochastic processes considered in this course
are defined on this enormous filtered probability space

and moreover the filtration is complete and right continuous.
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Some of the scientists related to Brownian motion and stochastic calculus

Life time Scientist

(1975 – ) Martin Hairer
(1968 – ) Wendelin Werner
(1959 – ) Jean-François Le Gall
(1955 – ) Alain-Sol Sznitman
(1954 – ) Dominique Bakry
(1953 – ) Terry Lyons
(1951 – ) David Nualart
(1949 – 2014) Marc Yor
(1947 – ) Shige Peng
(1947 – ) Étienne Pardoux
(1944 – ) Nicole El Karoui
(1944 – ) Jean Jacod
(1942 – 2004) Catherine Doléans-Dade
(1940 – ) S. R. Srinivasa Varadhan
(1940 – ) Daniel W. Stroock
(1938 – ) Mark Iosifovich Freidlin
(1938 – 1995) Fischer Black
(1935 – ) Shinzo Watanabe
(1934 – ) Albert Shiryaev
(1934 – 2003) Paul-André Meyer
(1930 – ) Henry McKean
(1930 – 2011) Anatoliy Skorokhod
(1930 – 1997) Ruslan Stratonovich
(1927 – 2013) Donald Burkholder
(1925 – 2010) Paul Malliavin
(1924 – 2014) Eugene Dynkin
(1923 – 2020) Freeman Dyson
(1916 – 2008) Gilbert Hunt
(1915 – 2008) Kiyosi Itô
(1915 – 1940) Wolfgang Doeblin
(1914 – 1984) Mark Kac
(1911 – 2004) Shizuo Kakutani
(1910 – 2004) Joseph Leo Doob
(1908 – 1989) Robert Horton Cameron
(1906 – 1970) William Feller
(1903 – 1987) Andrey Kolmogorov
(1900 – 1988) George Uhlenbeck
(1896 – 1971) Paul Lévy
(1894 – 1964) Nobert Wiener
(1879 – 1955) Albert Einstein
(1875 – 1941) Henri Lebesgue
(1872 – 1946) Paul Langevin
(1872 – 1917) Marian Smoluchowski
(1871 – 1956) Émile Borel
(1870 – 1942) Jean Baptiste Perrin
(1870 – 1946) Louis Bachelier
(1856 – 1922) Andrey Markov
(1856 – 1894) Thomas Joannes Stieltjes
(1773 – 1858) Robert Brown
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On ne peut non plus fixer une tangente, même de façon approchée, à aucun point de la trajec-
toire, et c’est un cas où il est vraiment naturel de penser à ces fonctions continues sans dérivées
que les mathématiciens ont imaginées, et que l’on regarderait à tort comme de simples curiosités
mathématiques, puisque la nature les suggère aussi bien que les fonctions à dérivée.

Jean Perrin (1870 – 1942), Les Atomes (1913), Chapitre 4, partie 68, [16].

Uhlenbeck’s attitude to Wiener’s work was brutally pragmatic and it is summarized at the end
of footnote 9 in his paper (written jointly with Ming Chen Wang) “On the Theory of Brownian
Motion II” (1945): the authors are aware of the fact that in the mathematical literature, especially
in papers by N. Wiener, J. L Doob, and others [cf. for instance Doob (Annals of Mathematics 43,
351 1942) also for further references], the notion of a random (or stochastic) process has been de-
fined in a much more refined way. This allows [us], for instance, to determine in certain cases the
probability that the random function y(t) is of bounded variation or continuous or differentiable,
etc. However it seems to us that these investigations have not helped in the solution of problems
of direct physical interest and we will therefore not try to give an account of them.

Mark Kac (1914 – 1984) about George Uhlenbeck (1900 – 1988)
in Enigmas of Chance : an autobiography (1984).

This was before the completion of the theory of stochastic processes and stochastic calculus,
its numerical applications, and the rise of nowadays mathematical finance which is based on it.

About Brownian motion across physics and mathematics, the reader may take a look at [12, 18, 8, 15, 4].

“... Ainsi l’intégrale et les processus d’Itô, lointains descendants de la théorie de la spéculation de Bachelier, retour-
nent à la spéculation financière. Ils méritent à tous égards d’être intégrés dans la culture générale des mathématiciens.”

Jean-Pierre Kahane, Le mouvement brownien.
Un essai sur les origines de la théorie mathématique

Société Mathématique de France, 1998.
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Chapter 1

Preliminaries

We refer to [9] and to [10] for the essential basic notions of probability theory (and more).

1.0 Sigma-algebras, random variables, and probabilities

A σ-field or σ-algebra – tribu in French – on a set Ω is a collection of subsets A ⊂P (Ω) such that

• Ω ∈A

• for all A ∈A , we have Ac ∈A

• for all at most countable family (An)n in A , we have ∩n An ∈A

where Ac =Ω \ A. By combining these properties we also get ∅ ∈A and ∪n An ∈A . We say that the couple
(Ω,A ) is a measurable space. Extreme examples of σ-algebras are P (Ω) and {∅,Ω}.

• The intersection of an arbitrary family of σ-algebras is a σ-algebra.

• The σ-algebra generated by a subset of P (Ω) is the ∩ of all the σ-algebras containing the subset.

• If Ω is equipped with a topology T , the σ-algebra generated by T is called the Borel σ-algebra B1.

A map f :Ω→ E where (Ω,F ) and (E ,E ) are measurable is measurable when f −1(B) ∈F for all B ∈ E .
A (positive) measure on a measurable space (Ω,A ) is a map µ : A → [0,+∞] such that

• µ(∅) = 0

• for all at most countable family (An)n of parwise disjoint elements of A , we haveµ(∪n An) =∑
n µ(An).

The triplet (Ω,A ,µ) is a measured space. The measure µ is a probability measure when µ(Ω) = 1, and in this
case the triplet (Ω,A ,µ) is then a probability space.

A random variable X taking values in a measurable space (E ,E ) is a measurable map defined on a prob-
ability space (Ω,A ,P). By default we always assume that there is an underlying probability space (Ω,A ,P).

1.1 Expectation and law

If X = 1A then E(X ) = P(A), by linearity and monotone convergence this allows to define E(X ) ∈ [0,+∞]
when X takes its values in [0,+∞]. Next L1 is the set of random variables such that E(|X |) <∞. If X = X+−X−
then |X | = X++X− ∈ L1 if and only if X± ∈ L1, and then we have E(|X |) = X+−X− and E(X ) = E(X+)−E(X−).

The law PX of a real random variable X is characterized by

• distribution: PX (B) =P(X −1(B)) for all B ∈BR

• cumulative distribution function: FX (x) =PX ((−∞, x])) =P(X ≤ x) for all x ∈R
• characteristic function: ϕX (t ) = EPX (eit•) = E(eit X ) for all t ∈R,

1Further reading: https://djalil.chafai.net/blog/2016/03/21/integration-alpha-et-omega/
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2 1 Preliminaries

• Laplace transform (when X ≥ 0): LX (t ) = EPX (e−t•) = E(e−t X ) for all t ≥ 0.

More generally, for a random variable X : (Ω,A ) → (E ,B), the lawPX =P◦X −1 of X is a probability mea-
sure on (E ,B). This infinite dimensional dual functional object is characterized by considering its values
on a sufficiently large family of test functions such as, when (E ,B) = (R,B), 1(−∞,x], x ∈R, or eit•, t ∈R, etc.

1.2 Independence

1. A family (Ai )i∈I of sub-σ-algebras of A is independent when for all finite J ⊂ I and all Ai ∈Ai we have

P(∩i∈J Ai ) = ∏
i∈J
P(Ai ).

2. We say that a family (Xi )i∈I of random variables is independent, Xi : (Ω,A ) 7→ (Ei ,Bi ), when the
family of sub-σ-algebras (σ(Xi ))i∈I is independent, where

σ(Xi ) = {X −1
i (B) : B ∈Bi )

is the σ-algebra generated by Xi . Thus (Xi )i∈I is independent iff for all J ⊂ I finite,

PXi :i∈J =⊗i∈JPXi on (
∏
i∈J

Ei ,⊗i∈J Bi ).

It follows that if X1, X2, . . . , Xn are real random variables integrable and independent then

n∏
i=1

Xi ∈ L1 and E
( n∏

i=1
Xi

)= n∏
i=1
E(Xi ).

1.3 Markov, Cauchy – Schwarz, Hölder, Jensen, convergence, Borel – Cantelli, LLN, LIL, CLT, . . .

Markov inequality. If U (X ) ≥ 0 for a non-decreasing function U then for all r > 0,

P(X ≥ r ) ≤ E(U (X ))

U (r )
.

This allows to control tails with moments. Conversely, we can control moments by tails via

E(U (|X |)) =U (0)+
∫ ∞

0
U ′(t )P(|X | ≥ t )dt .

Cauchy – Schwarz inequality. In [0,+∞], with equality if and only if X and Y are colinear,

E(X Y ) ≤ E(|X |2)1/2E(|Y |2)1/2.

Hölder inequality. If p ∈ [1,∞] and q = 1/(1−1/p) = p/(p −1) then, in [0,+∞],

E(|X Y |) ≤ E(|X |p )1/pE(|Y |q )1/q .

Jensen inequality. If U :Rd →R is convex and X ∈ L1 with U (X ) ∈ L1 then

U (E(X )) ≤ E(U (X )),

moreover when U is strictly convex then equality is achieved only if X is (almost surely) constant. Useful
examples include U (x) = xp , p ≥ 1, U (x) = ecx , c ∈R, U (x) =+∞1x<0 +x log(x)1x≥0.

Convergences. Below (Xn)n≥1, (Yn)n≥1, X , Y are real random variables on a probability space (Ω,A ,P),
of law µn ,νn ,µ,ν and cumulative distribution function Fn ,Gn ,F,G respectively.

Almost sure convergence. We say that Xn
a.s.−→ X when

P( lim
n→∞Xn = X ) = 1
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1.3 Markov, Cauchy – Schwarz, Hölder, Jensen, convergence, Borel – Cantelli, LLN, LIL, CLT, . . . 3

in other words P({ω ∈Ω : limn→∞ Xn(ω) = X (ω)}) = 1. This is the notion of convergence in the SLLN.

Convergence in probability. We say that Xn
P−→ X when

∀ε> 0, lim
n→∞P(|Xn −X | ≥ ε) = 0

which means that ∀ε> 0, limn→∞P({ω ∈Ω : |Xn(ω)−X (ω)| ≥ ε}) = 0. This is used in the weak LLN.

Mean convergence. For all p ∈ [1,∞), we say that Xn
Lp

−→ X when

X ∈ Lp and lim
n→∞E(|Xn −X |p ) = 0.

The most useful cases are p ∈ {1,2,4}.

Convergence in law. The following properties are equivalent and we say then that Xn
law−→ X , or Xn

d−→µ

(convergence in distribution), or µn
nar.−→µ (narrow convergence). This is used in the CLT.

1. limn→∞E( f (Xn)) = E( f (X )) for all bounded and continuous f :R→R

2. limn→∞E( f (Xn)) = E( f (X )) for all C ∞ and compactly supported f :R→R

3. Cumulative distribution function. limn→∞E( f (Xn)) = E( f (X )) for all f = 1(−∞,x] with x continuity
point of P(X ≤ •), in other words Fn(x) =P(Xn ≤ x) → F (x) =P(X ≤ x) as soon as F is continuous at x

4. Fourier transform or characteristic function. limn→∞E( f (Xn)) = E( f (X )) for all f = eit•, t ∈R
5. Laplace transform. (on R+) limn→∞E( f (Xn)) = E( f (X )) for all f = e−t•, t ≥ 0.

Contrary to the other modes of convergence, the convergence in law does not depend on the law of the cou-
ple (Xn , X ) and uses only marginal laws. The Fourier and Laplace transforms convert sums of independent
random variables into products, for which the expectation is the product of expectations.

Apart the convergence in law, the other modes of convergence are stable by finite linear combinations.
The almost sure convergence, the convergence in probability, and the convergence in law are stable by com-
position with continuous functions, and this is referred to sometimes as the continuous mapping theorem.

The notions of convergence extend naturally to random vectors by using a distance/norm/scalar prod-
uct, for instance for the characteristic function by replacing it X by i〈t , X 〉.

Lp CV
⇓

L1 CV
⇓

a.s. CV ⇒ CV in P ⇒ CV in law

If X is constant then the convergence in law implies the convergence in probability. The convergence in
L1 is equivalent to uniform integrability and convergence in probability.

Monotone convergence theorem. If (Xn)n≥1 takes its values in [0,+∞] and ↗ then

E( lim
n→∞Xn) = lim

n→∞E(Xn) ∈ [0,+∞].

Fatou lemma. If (Xn)n≥1 takes its values in [0,+∞] then

E( lim
n→∞

Xn) ≤ lim
n→∞

E(Xn) ∈ [0,+∞].

Dominated convergence theorem. If Xn
a.s.−→ X and supn |Xn | ≤ Y , E(Y ) <∞, then

lim
n→∞E(Xn) = E( lim

n→∞Xn) = E(X ).

The dominated convergence is an easy to check criterion of uniform integrability.

Scheffé lemma. If Xn , X ∈ L1, Xn
a.s.−→ X then Xn

L1

−→ X iff E(|Xn |) → E(|X |).
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4 1 Preliminaries

Slutsky lemma. If Xn
law−→ X and Yn

law−→ Y and Y is constant then (Xn ,Yn)
law−→ (X ,Y ). In particular

XnYn
law−→ X Y , Xn +Yn

law−→ X +Y , Xn/Yn
law−→ X /Y if Y ̸= 0.

Fubini – Tonelli theorem. Let (Ω1,A1,µ1) and (Ω2,A2,µ2) two measurable spaces, and let f :Ω1×Ω2 →R

be a measurable function. If f ≥ 0 or if f ∈ L1(µ1 ⊗µ2) then∫
f (x, y)d(µ1 ⊗µ2)(x, y) =

∫ (∫
f (x, y)dµ1(x)

)
dµ2(y).

Borel – Cantelli lemma. Let (An)n be events in a probability space (Ω,A ,P). We define{
limn An =∪n ∩m≥n Am = {ω ∈Ω :ω ∈ An for n large enough},

limn An =∩n ∪m≥n Am = {ω ∈Ω :ω ∈ An for infinitely many values of n}.

We have (limn Ac
n)c = limn An , and limn 1An = 1limn An

and limn 1An = 1limn An .

1. (Cantelli) if
∑

nP(An) <∞ then P(limn An) = 0

2. (Borel zero-one law) if
∑

nP(An) =∞ and the (An)n are independent then P(lim An) = 1.

The Borel – Cantelli lemma is a great provider of almost sure convergence. Note that if X takes its values in
[0,+∞] then E(X ) <∞ implies P(X <∞) = 1, and this allows to prove the Cantelli part:∑

n
P(An) =∑

n
E1An = E

∑
n

1An and
{∑

n
1An =∞

}
= lim

n
An .

Strong Law of Large Numbers (SLLN). If X ∈ L1 and X1, X2, . . . are i.i.d.2 copies of X then, with m = E(X ),

X1 +·· ·+Xn

n
a.s.−→

n→∞ m and
X1 +·· ·+Xn

n
L1

−→
n→∞ m.

Central limit theorem (CLT). If moreover X ∈ L2, then with σ2 = Var(X ) = E((X −m)2) = E(X 2)−m2,

p
n

σ

( X1 +·· ·+Xn

n
−m

)
= X1 −m +·· ·+Xn −mp

nσ
law−→

n→∞ N (0,1).

Law of iterated logarithm (LIL). Under the assumptions and with the notation of the CLT, almost surely

lim
n→∞

( p
n

σ
√

2loglog(n)

( X1 +·· ·+Xn

n
−m

))
= lim

n→∞

( X1 −m +·· ·+Xn −m√
2n loglog(n)σ

)
= 1

and

lim
n→∞

( p
n

σ
√

2loglog(n)

( X1 +·· ·+Xn

n
−m

))
= lim

n→∞

( X1 −m +·· ·+Xn −m√
2n loglog(n)σ

)
=−1

Note that the CLT gives X1+···+Xn
n

P−→
n→∞ m, which is a weak form of LLN.

1.4 Uniform integrability

For any family (Xi )i∈I ⊂ L1, the following three properties are equivalent3. When one (and thus all) of
these properties holds true, we say that the family (Xi )i∈I is uniformly integrable (u.i.) or equi-integrable4.
The first property can be seen as a natural definition of uniform integrability.

1. (definition of uniform integrability) limr→+∞ supi∈I E(|Xi |1|Xi |≥r ) = 0

2Independent and identically distributed, in French “indépendantes et identiquement distribuées”.
3Further reading: https://djalil.chafai.net/blog/2014/03/09/de-la-vallee-poussin-on-uniform-integrability/
4The terminology comes from the fact that by dominated convergence, we have X ∈ L1 if and only if limr→∞ E(|X |1|X |≥r ) = 0.
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1.5 Conditioning 5

2. (epsilon-delta criterion) the family is bounded in L1 in the sense that

sup
i∈I

E(|Xi |) <∞

and moreover ∀ε> 0, ∃δ> 0, ∀A ∈F , P(A) ≤ δ⇒ supi∈I E(|Xi |1A) ≤ ε
3. (de la Vallée Poussin5 boundedness in LU criterion) there exists a non-decreasing convex U : R+ → R+

such that limx→+∞U (x)/x =+∞ and such that (U (|Xi |))i∈I is bounded in L1, namely

sup
i∈I

E(U (|Xi |)) <∞.

Note that this implies boundedness in L1, and is implied by boundedness in Lp with p > 1.

Here are examples for uniformly integrable families:

• every finite subset of L1 is uniformly integrable. In particular if X ∈ L1 then there exists a non-decreasing
convex and super-linear U such that U (|X |) ∈ L1, but beware that this U depends on X .

• if (Xi )i∈I is bounded in Lp with p > 1 then it is u.i.

• if supi∈I |Xi | ∈ L1 (domination: |Xi | ≤ X ∈ L1 for all i ∈ I ) then (Xi )i∈I is u.i.

• if T ∈ {N,R+} and X t
L1

−→
t→∞ X ∈ L1 then (X t )t∈T , (X t )t∈T ∪ {X }, and (X t −X )t∈T are u.i.

• if X ∈ L1 and Xi = E(X |Fi ) for all i ∈ I for σ-algebras (Fi )i∈I then (Xi )i∈I is uniformly integrable.

The notion of uniform integrability leads to a stronger version of the dominated convergence theorem:
for any p ≥ 1, and for any random variables X and (X t )t∈T , T ∈ {N,R+}, we have

X t , X ∈ Lp and X t
Lp

−→
t→∞ X if and only if (|X t |p )t∈T is u.i. and X t

P−→
t→∞ X

In particular the convergence in probability together with u.i. implies X ∈ L1, which is remarkable!
The dominated convergence theorem corresponds to the special case supt∈T |X t | ∈ L1.

1.5 Conditioning

1. Orthogonal projection in a Hilbert space. Let H be a Hilbert space and F ⊂ H be a closed sub-space.
For all x ∈ H there exists a unique y ∈ F , called the orthogonal projection of x on F , which satisfies
one (and thus all) the following equivalent properties:

• (orthogonality) for all z ∈ F , x − y ⊥ z namely 〈x, z〉 = 〈y, z〉
• (variational: least squares) for all z ∈ F ,

∥∥x − y
∥∥≤ ∥x − z∥ namely

∥∥x − y
∥∥= minz∈F ∥x − z∥.

2. Let (Ω,A ,P) be a probability space and F be a sub-σ-algebra of A . Let us consider the Hilbert space
H = L2(Ω,A ,P). The set F = L2(Ω,F ,P) is a closed sub-space of H . If X ∈ H , it is natural to consider
the best (least squares) approximation of X by an element of F , denoted Y . The random variable Y is
the orthogonal projection of X on F , characterized by the following:

Y ∈ L2(Ω,F ,P) and, for all Z ∈ L2(Ω,F ,P), E(|X −Y |2) ≤ E(|X −Z |2).

Using the relation to scalar product, the second property is equivalent to

• for all Z ∈ L2(Ω,F ,P), E(X Z ) = E(Y Z ), or even for all B ∈B, E(X 1B ) = E(Y 1B ).

We denote Y = E(X |F ) and we call it the conditional expectation of Y given F . It is the best approxi-
mation in L2 (in a sense least squares) of X by an F -measurable square integrable random variable.

5After Charles-Jean Étienne Gustave Nicolas de la Vallée Poussin (1866 – 1962), Belgian mathematician.
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6 1 Preliminaries

3. If now X ∈ L1(Ω,A ,P), we define by extension Y = E(X |F ), a real random variable characterized by

(a) Y ∈ L1(Ω,F ,P)

(b) for all Z bounded and F measurable, E(X Z ) = E(Y Z ), or for all B ∈F , E(X 1B ) = E(Y 1B ).

Proof. Let µ be the bounded measure on (Ω,F ) defined by µ(B) = E(X 1B ), B ∈ F . Set ν = PF . For
all B ∈ F , if ν(B) = 0 then µ(B) = 0. From the Radon – Nikodym theorem, there exists a unique Y ∈
L1(Ω,F ,ν) such that

∫
B Y dν=µ(B), for all B ∈F in other words E(Y 1B ) = E(X 1B ), for all B ∈F . ■

The expectation and the variance of square integrable random variables have a variational interpreta-
tion. Namely if X ∈ L2 then var(X ) is the square distance in L2 of X to the sub-space of constants r.v. namely

var(X ) = inf
c∈R

E((X − c)2) = inf
c∈R

(E(X 2)−2cE(X )+ c2).

This infinimum is a minimum, achieved for c = E(X ), which is therefore the orthogonal projection of X in
L2 on the sub-space of constant random variables, and

var(X ) = E((X −E(X ))2) = E(X 2)−2E(XE(X ))+ (E(X )2) = E(X 2)− (E(X ))2

which follows in fact from the Pythagoras theorem in L2. More generally we have

var(X ) = E(X 2)− (E(X ))2

= E(X 2)−E((E(X |F ))2)+E((E(X |F ))2)− (E(X ))2

= E(var(X |F ))+var(E(X |F ))

where var(X |F ) = E(X 2 |F )− (E(X |F ))2. Note that by definition of E(X |F ),

inf
Y :σ(Y )⊂F

E((X −Y )2) = E((X −E(X |F ))2)

= E(X 2)−2E(XE(X |F ))+E((E(X |F ))2)

= E(X 2)−E((E(X |F ))2)

= E(var(X |F )).

Note that E = E(· | T ) where T = {∅,Ω}. The conditional expectation generalizes the expectation and
has all the properties of an expectation, and more. Namely, for all sub-σ-algebra F of A :

• Linearity. for all α,β ∈R and X ,Y ∈ L1, E(αX +βY |F ) =αE(X |F )+βE(Y |F )

• Independence. If X is independent of F (always the case when X is constant) then E(X |F ) = E(X )

• Factorization. If X is F -measurable, Y ∈ L1, X Y ∈ L1, then E(X Y | F ) = XE(Y | F ), in particular we
recover the “projection property” E(X |F ) = X if X ∈ L1(Ω,F ,P) which is the case when X is constant

• Composed “projections” or “tower property”. For all sub-σ-algebras F ,G with G ⊂F and all X ∈ L1,

E(E(X |F ) |G ) = E(E(X |G ) |F ) = E(X |G ),

and in particular for all X ∈ L1, E(E(X |F )) = E(X ), and if X is constant then E(X |F ) = X .

• Normalization. E(1Ω |F ) = 1Ω (follows from some of the properties above)

• Positivity or monotonicity. For all X ,Y ∈ L1, if X ≤ Y then E(X |F ) ≤ E(Y |F ), or equivalently for all
X ∈ L1 if X ≥ 0 then E(X |F ) ≥ 0. In particular for all X ∈ L1,

|E(X |F )| ≤ E(|X | |F )
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1.5 Conditioning 7

• Convexity. Jensen inequality: for all non-negative convex U :Rd →R and all X ∈ L1,

U (E(X |F )) ≤ E(U (X ) |F ).

In particular, for all p ∈ [1,∞), |E(X | F )|p ≤ E(|X |p | F ). Moreover for all X ∈ Lp and Y ∈ Lq with
1 ≤ p, q <∞, 1/p +1/q = 1 (q = p/(p −1)), we have the Hölder inequality

|E(X Y |F )| ≤ (E(|X |p |F )1/pE(|Y |q |F )1/q .

The Cauchy – Schwarz inequality corresponds to the special case p = q = 1/2

• Monotone convergence. If Xn ≥ 0, Xn ↗ X , X ∈ L1, then E(Xn | F ) ↗ E(X | F ). This allows to define
E(X |F ) for all non-negative random variable X taking values in [0,+∞].

Theorem 1.5.1. Transfer or the meaning of being measurable.

If T : Ω→ (F,F ) are Y : Ω→ (R,BR) and random variables then Y is σ(T ) measurable if and only if
there exists g : (F,F ) → (R,BR) measurable such that Y = g ◦T .

Proof. If Y = 1A for A ∈ σ(T ), then A = T −1(B) for some B ∈ F , and therefore Y = 1B ◦T . If Y = ∑
i∈I ai 1Ai

with I finite and Ai = T −1(Bi ), Bi ∈ F , then Y = (
∑

i∈I ai 1Bi ) ◦T . The property is thus satisfied when Y is
a step function. Now, if Y is non-negative and σ(T ) measurable, then there exists a sequence (Yn)n of step
functions, σ(T ) measurable, such that Yn ↗ Y , and Yn = gn ◦T . By setting g = lim gn , we get Y = g ◦T .
Finally, if Y is just σ(T ) measurable, then it suffices to write Y = Y+−Y−. ■

Let X ∈ L1(Ω,A ,P) and let T : (Ω,A ) → (F,F ) be a random variable. The conditional expectation of X
given T , denoted E(X | T ), is defined by E(X | T ) = E(X |σ(T )). It is characterized by the following properties:

1. There exists g : (F,F ) → (R,BR) with E(X | T ) = g (T ) and g (T ) ∈ L1

2. For all h : (F,F ) → (R,BR) measurable and bounded,

E(X h(T )) = E(g (T )h(T )).

If X ∈ L2 then, thanks to the transfer theorem (Theorem 1.5.1), the conditional expectation E(X | T ) is
the best approximation in L2 (least squares!) of X by a measurable function of T .

For a probability space (Ω,F ,P), an event A ∈ F , and a sub-σ-algebra A ⊂ F , the quantity P(A | A ) =
E(1A | A ) is a random variable taking its values in [0,1]. Similarly, conditioning with respect to an event
makes sense in the sense that E(X | A) = E(X | 1A = 1), and

E(X | 1A) = E(X 1A)

P(A)
1A + E(X 1Ac )

P(Ac )
1Ac

= E(X | 1A = 1)1A +E(X | 1A = 0)1Ac .

Finally, when X and Y take their values in an at most countable set then

E(X | Y ) = F (Y ) where F (y) = E(X | Y = y) =∑
x

xP(X = x | Y = y).

Remark 1.5.2. Conditional expectation as averaging of residual randomness.

Let X and Y be random variables defined on a probability space (Ω,F ,P), and let A be a sub-σ-
algebra of F . If X is independent of A and if Y is A -measurable, then, using the monotone class
theorem, for all F -measurable and bounded or positive f :R×R→R, we get

E( f (X ,Y ) |A ) = E( f (X ,Y ) | Y ) = g (Y ) where g (y) = E( f (X , y)).

This suggests to interpret intuitively the conditional expectation as an averaging of residual random-
ness, and not only as the best approximation in the sense of least squares.
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8 1 Preliminaries

Let X and Y be two random variables taking values in the measurable spaces (E ,E ) and (F,F ) respec-
tively. The conditional law of X given Y is a family (N (y, ·))y∈F of probability measures on (E ,E ), in other
words a transition kernel, such that for all A ∈ E , the map y ∈ F 7→ N (y, A) ∈ [0,1] is measurable, and for all
bounded (or positive) measurable test function h : E →R,

E(h(X ) | Y ) =
∫

E
h(x)N (Y , ·).

For all y ∈ F , we also say that N (y, ·) is the conditional law of X given Y = y , in other words

E(h(X ) | Y = y) =
∫

E
h(x)N (y, ·).

In particular P(X ∈ A | Y ) = N (Y , A) for all A ∈ E . We sometimes speak about disintegration of measure.
The random variables X and Y are independent if and only if N (y, ·) does not depend on y in the sense

that for almost all y ∈ F , N (y, ·) =PX where PX is the law of X .
If (X ,Y ) has Lebesgue density fX ,Y then X and Y have densities fX = ∫

f (·, y)dy and fY = ∫
f (x, ·)dx and

the conditional law Law(X | Y = y) has density fX |Y =y = fX ,Y (x, y)/ fY (y), in such a way that

fX ,Y (x, y) = fX |Y =y (x) fY (y) = fX (x) fY |X=x (y).

1.6 Gaussian random vectors

A random vector X = (X1, . . . , Xn) ofRn is a Gaussian random vector when every linear combination of its
components is Gaussian, namely for allα1, . . . ,αn ∈R the real random variableα1X1+·· ·+αn Xn is Gaussian.

Let X be a random vector with mean vector and the covariance matrix

m = E(X ) = (E(X1), . . . ,E(Xn)) and Σ= (
E((X j −m j )(Xk −mk ))

)
1≤ j ,k≤n

Then X is Gaussian iff its characteristic function is given for all t ∈Rn by

ϕX (t ) = E(
eit X )= eitm− 1

2 〈Σt ,t〉.

We denote this law N (m,Σ). Beware that when n = 1, we denote Σ=σ2.
We say that N (0, Id ) is the standard Gaussian.
The law N (m,Σ) has a density iff Σ is invertible, given by

x ∈Rn 7→
exp

(
− 1

2 〈Σ−1(x −m), x −m〉
)

p
(2π)n det(Σ)

,

otherwise N (m,Σ) is supported by a strict sub-vector space of Rn .
If (X1, . . . , Xn) is a Gaussian random vector, then X1, . . . , Xn are independent iif Σ is diagonal.
If Z ∼N (0, In) and m ∈Rd and A ∈Md ,n(R) then AZ ∼N (m, A A⊤) is a Gaussian random vector of Rd .

Coding in action 1.6.1. Simulation.

Write a Pythona or Juliab program for the simulation of a sample of N (m,Σ) knowing m and Σ. What
is the best way to reduce to the one-dim. case? What is the best way to find A such that A A⊤ =Σ?

ahttps://en.wikipedia.org/wiki/Python_(programming_language)
bhttps://en.wikipedia.org/wiki/Julia_(programming_language)

1.7 Bounded variation and Lebesgue – Stieltjes integral
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1.7 Bounded variation and Lebesgue – Stieltjes integral 9

Definition 1.7.1. p-variation of a function on a finite interval.

Let [a,b] ⊂R be a finite interval. For all p ≥ 1, the p-variation of a function f : [a,b] →R is defined by

∥∥ f
∥∥

p−var =
(

sup
tk

∑
k
| f (tk+1)− f (tk )|p

)1/p ∈ [0,+∞]

where the supremum runs over all finite partitions or sub-divisions of the interval I namely the finite
sequences (tk )0≤k≤n in [a,b] such that n ≥ 0 and a = t0 < ·· · < tn+1 = b.

• ∥ f ∥1-var is called sometimes the total variation of f

• if f : [a,b] →R has finite 1-variation, we say that f has finite variation or is of bounded variation

• if f : [a,b] →R is of bounded variation then f is bounded (the boundedness of [a,b] plays a role here).

• if f : [a,b] →R if of bounded variation and is differentiable with integrable derivative then

∥ f ∥1-var =
∫ b

a
| f ′(t )|dt .

• if f is continuously differentiable then f has bounded variation and the latter holds true.

Theorem 1.7.2. Representation of bounded variation functions on a finite interval.

Let [a,b] ⊂R be a finite interval. For all f : [a,b] 7→R, the following properties are equivalent:

1. f is of bounded variation

2. f is the difference of two positive increasing functions [a,b] →R.

Such a decomposition is not unique in general.

Proof. 1 ⇒ 2. Let f be a function of bounded variation on [a,b]. For all t ∈ [a,b], let

F (t ) = sup
δ

n−1∑
k=0

| f (tk+1)− f (tk )|

where the supremum runs over the set of partitions or sub-divisions δ : a = t0 < ·· · < tn = t of [a, t ], n = nδ ≥
1. Now F is increasing (and bounded) by definition. It suffices now to show that G = F − f is increasing. We
observe that for all t1 < t2 in [a,b], we have F (t1)+ f (t2)− f (t1) ≤ F (t1)+| f (t2)− f (t1)| ≤ F (t2), and thus

G(t2)−G(t1) = F (t2)− f (t2)−F (t1)+ f (t1) ≥ 0.

2 ⇒ 1. If f and g have bounded variation on [a,b], then it is also the case for f − g . On the other hand, if f
is monotonic on I then it is of bounded variation since for all sub-division a = t0 < ·· · < tn = b, n ≥ 1,

n−1∑
k=0

| f (tk+1)− f (tk )| = | f (b)− f (a)|.

■

The notion of bounded variation is used for the Lebesgue – Stieltjes integral in stochastic calculus.

Theorem 1.7.3. Lebesgue – Stieltjes integral of continuous finite variation integrators.

Let [a,b] ⊂ R be a finite interval. Let f : [a,b] → R be right continuous and of bounded variation.
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10 1 Preliminaries

Then there exists a unique finite signed Borel measure µ f on ([a,b],B[a,b]) such that

µ f ({a}) = 0, and for all t ∈ [a,b], µ f ((a, t ]) = f (t )− f (a).

It is customary to denote dµ f = d f , and for all measurable g : [a,b] →R, positive or in L1(|µ f |),∫ b

a
g (t )d f (t ) =

∫
g dµ f .

Moreover, for all bounded and continuous g : [a,b] →R, and for all sequence (δn)n≥1 of partitions or

sub-divisions of [a,b], δn : a = t (n)
0 < ·· · < t (n)

mn
= b, mn ≥ 1, with limn→∞ maxk (t (n)

k+1− t (n)
k ) = 0, we have∫ b

a
g (t )d f (t ) = lim

n→∞
∑
k

g (t (n)
k )( f (t (n)

k+1)− f (t (n)
k )).

Furthermore, h : t ∈ [a,b] 7→ h(t ) = ∫ t
a g (s)d f (s) is continuous and of bounded variation, and µh =

gµ f in other words dh(t ) = g (t )d f (t ), in the sense that for all bounded and measurable k : [a,b] →R,∫ b

a
k(t )dh(t ) =

∫ b

a
k(t )d

∫ t

a
g (s)d f (s) =

∫ b

a
k(t )g (t )d f (t ).

In particular when f (t ) = t for all t ≥ 0 then on all [a,b] ⊂ [0,∞), the measureµ f is the Lebesgue measure
and for all measurable g :R+ 7→Rwhich is locally bounded or positive, we have, for all t ≥ 0,∫ t

0
g (s)d f (s) =

∫
g dµ f =

∫ t

0
g (s)ds.

Theorem 1.7.3 is used in stochastic calculus with f (t ) =Vt (ω), t ≥ 0, and for almost all fixedω ∈Ωwhere
V = (Vt )t≥0 is a finite variation process, for instance V = 〈M〉 where M is a continuous local martingale. In
particular when M = B is Brownian motion then Vt = t is deterministic and we recover the example above.

Theorem 3.2.1 says that Brownian motion has a.s. sample paths of infinite variation on any interval. In
particular the assumptions of Theorem 1.7.3 are not satisfied when f (t ) = Bt (ω), t ∈ [a,b] ⊂ [0,+∞).

Proof. First part. Theorem 1.7.2 gives f = f+− f− where f± ≥ 0 are bounded and increasing. This reduces
the problem to the case where f is increasing and µ f is a positive Borel measure. In this case, the result
follows from the Carathéodory extension theorem (Theorem 1.8.5). Note: µ f is unique even if f± are not.

Second part. For all n ≥ 1, set g (n)(a) = g (a), and for all t ∈ (a,b], g (n)(t ) = g (t (n)
k ) if t ∈ (t (n)

k , t (n)
k+1] for some

k ∈ {0, . . . ,mn − 1}. Then g (n) is measurable, we have limn→∞ g (n)(t ) = g (t ) for all t ∈ [a,b], and moreover
supn supt∈[a,b] |g (n)(t )| ≤ supt∈[a,b] |g (t )| <∞. By dominated convergence in L1(|µ|), we obtain

∑
k

g (t (n)
k )( f (t (n)

k+1 − f (t (n)
k )) =

∫
g (n)dµ f −→

n→∞

∫
g dµ f =

∫ b

a
g (t )d f (t ).

Note that if g is measurable and not continuous, then g (n) → g as n → ∞, almost everywhere on [a,b],
which is suitable for the Lebesgue measure but not necessarily for the measure |µ| which is of interest here.

Third part. First of all, for all s ∈ [a,b], we have µ f |[a,s] =µ f |[a,s].∫ s

a
g (t )d f (t ) =

∫
g dµ f 1[a,s] =

∫
g 1[a,s]dµ f .

The continuity of h follows now by dominated convergence. For the 1-variation, we write∑
k
|h(tk+1)−h(tk )| ≤∑

k

∫
|g |1(tk+1,tk ]d|µ f | =

∫
|g |d|µ f | <∞.

Finally, to prove the formula, it suffices to check it for k = 1[a,c] for c ∈ [a,b]. This writes µh(c)−µh(a) =∫ c
a g (t )dµ f (t ) = h(c)−h(a), which is the definition of µh . Note that by construction we have h(a) = 0. ■
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1.8 Monotone class theorem and Carathéodory extension theorem 11

Remark 1.7.4. Riemann – Stieltjes – Young integral.

Following L.C. Young, it can be shown that if f , g : [a,b] → R are continuous with f of finite p-var.
and g of finitie q-var. with 1/p +1/q > 1, then the Riemann – Stieltjes integral is well defined:∫ b

a
f (t )dg (t ) = lim

n→∞

mn∑
k=0

f (t (n)
k )(g (t (n)

k+1)− g (t (n)
k )),

where (δn)n≥1 is an arbitrary sequence of partitions of [a,b], δn : a = t0 < ·· · < tmn = b, mn ≥ 1.

1.8 Monotone class theorem and Carathéodory extension theorem

Definition 1.8.1. π-systems and λ-systems.

• We say that C ⊂P (Ω) is a π-system when A∩B ∈C for all A,B ∈C

• We say that S ⊂P (Ω) is a λ-system (or monotone class or Dynkin6 system) when

– ∪n An ∈S for all (An)n such that An ⊂ An+1 and An ∈S for all n

– A \ B ∈S for all A,B ∈S such that B ⊂ A.

Named after Eugene Dynkin (1924 – 2014), Soviet and American mathematician.

Basic examples of π-systems are given by the class of singletons {{x} : x ∈ R}∪ {∅}, the class of product
subsets {A×B : A,B ∈P (Ω)}, and the class of intervals {(−∞, x] : x ∈R}.

A basic yet important example of λ-system is given by {A ∈ A : P(A) =Q(A)} where P and Q are proba-
bility measures on (Ω,A ), see Corollary 1.8.4 for an application.

Lemma 1.8.2. σ-algebras.

A λ-system that contains Ω and which is a π-system is a σ-algebra.

Note that conversely, a σ-algebra is always a π-system, but not a λ-system in general, due to the second
property of λ-systems which is not necessarily valid for a σ-algebra when A ̸=Ω.

Proof. If a λ-system S ⊂P(Ω) contains Ω and is a π-system then for all A,B ∈S we have

A∪B =Ω\ ((Ω\ A)∩ (Ω\ B)),

which means that S is table by finite union. This allows to drop the non-decreasing condition in the stabil-
ity of S by countable union, which simply means finally that S is a σ-algebra. ■

Theorem 1.8.3. Dynkin π-λ Theorem.

If S ⊂P (Ω) is a λ-system containing Ω and including a π-system C ,
then S contains also the σ-algebra σ(C ) generated by C .

Proof. The λ-system generated by a subset of P (Ω) is by definition the intersection of all λ-systems which
include this subset. This intersection is not empty since it contains P (Ω), and we can check that it is a
λ-system. It is the smallest (for the inclusion) λ-system containing the initial subset of P (Ω).

Let S ′ be the λ-system generated by C and Ω. It suffices to show that S ′ is a σ-algebra. For that, and
thanks to lemma 1.8.2, it suffices to show that S ′ is a π-system. To do so, let us define

S1 = {A ∈S ′ : A∩B ∈S ′ for all B ∈C },
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12 1 Preliminaries

which is a λ-system including Ω and containing C , hence S1 ⊂S ′, and thus S1 =S ′. Now,

S2 = {A ∈S ′ : A∩B ∈S ′ for all B ∈S ′}

is a λ-system containing Ω and including S and thus S2 =S ′, hence S ′ is a π-system. ■

Corollary 1.8.4. Sierpińskia – Dynkin (functional) monotone class theorem.

aNamed after Wacław Sierpiński (1882 – 1969), Polish mathematician.

1. For all probability measures P andQ on a measurable space (Ω,A ), if P(A) =Q(A) for all A ∈C

where C is a π-system such that σ(C ) =A , then P=Q
2. Let H be a vector space of bounded measurable functions (Ω,A ) → (R,BR) such that

(a) H is stable by monotone convergence namely if ( fn)n is a sequence in H such that fn ↗ f
pointwise with f bounded then f ∈ H

(b) H contains constant functions namely 1Ω ∈ H , is stable by product namely if f , g ∈ H
then f g ∈ H , and contains all 1A for all A in a π-system C on Ω such that σ(C ) =A

then H contains all A -measurable bounded functions Ω→R.

Note that H is an algebra in the sense that it is a vector space stable by product.
The second statement can be seen as some sort of Stone – Weierstrass theorem of measure theory.

Proof.

1. Take S = {A ∈A :P(A) =Q(A)} and use Theorem 1.8.3.

2. Take S = {A ∈A : 1A ∈ H } and use Theorem 1.8.3.

■

Theorem 1.8.5. Carathéodory extension theorem.

Let Ω ̸=∅, A ⊂P (Ω), and µ : A 7→R+. Let σ(A) be the σ-algebra generated by A . If

1. Ω ∈A

2. (stability by complement) for all A ∈A , we have Ac =Ω\ A ∈A

3. (stability by intersection) for all A,B ∈A , we have A∩B ∈A

4. µ is σ-additive and σ-finite

then there exists a unique σ-additive measure µext on (Ω,σ(A)) such that µext =µ on A .

Proof. See for instance [1]. The uniqueness can be deduced from Corollary 1.8.4. ■
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Chapter 2

Processes, filtrations, stopping times, martingales

A stochastic process or process is a family of random variables X = (X t )t≥0, indexed by a parameter
t ∈R+ interpreted as a time, defined on a probability space (Ω,F ,P), and taking values in some measurable
space (G ,B). By default a process takes real values. In general G is a metric space, with distance denoted d ,
complete, separable, and B is its Borel σ-algebra.

2.1 Measurability

The natural filtration of a process (X t )t≥0 is the increasing family (Ft )t≥0 of sub-σ-algebras of F defined
for all t ≥ 0 by Ft =σ(Xs : 0 ≤ s ≤ t ). More generally, an increasing family (Ft )t≥0 of sub-σ-algebras of F is
called a filtration. For a given filtration (Ft )t≥0 on (Ω,F ,P), we say that the process X is. . .

• real when G =R in other words X takes real values (this is the default in this course)

• d-dimensional when G =Rd in other words X takes its values in Rd , d ≥ 1

• issued from the origin when X0 = 0 (makes sense when G is a vector space)

• adapted when for all t ≥ 0, X t is Ft measurable

• measurable when for all t ≥ 0, (s,ω) ∈ [0, t ]×Ω 7→ Xs(ω) is B[0,t ] ⊗F measurable

• progressive when for all t ≥ 0, (s,ω) ∈ [0, t ]×Ω 7→ Xs(ω) is B[0,t ] ⊗Ft measurable

• right-continuous (respectively left-continuous, continuous) when for almost all ω ∈ Ω, the sample
path t ∈R+ 7→ X t (ω) ∈G is right-continuous (respectively left-continuous, continuous)

• square integrable when for all t ≥ 0, E(X 2
t ) <∞

• bounded in Lp , p ≥ 1, when supt≥0E(|X t |p ) <∞
• bounded when there exists a finite C > 0 such that almost surely, supt≥0 |X t | ≤C

• locally bounded when for almost all ω ∈Ω and all t ≥ 0, sups∈[0,t ] |Xs(ω)| <∞
• of finite variation when almost surely t 7→ X t is of bounded variation on all finite intervals of R+,

equivalently is the difference of two positive increasing processes, see Theorem 1.7.2

• Feller continuous when x 7→ E( f (X t ) | X0 = x) is continuous for all t ≥ 0 and bounded continuous f .

Theorem 2.1.1. Progressive σ-field and progressive processes.

1. The family P of all A ∈F ⊗BR+ such that the process (ω, t ) 7→ 1(ω,t )∈A is progressive is aσ-field
on Ω×R+ called the progressive σ-field. Moreover the following properties hold:

• For all A ⊂Ω×R+, we have A ∈P if and only if for all t ≥ 0, A∩ (Ω× [0, t ]) ∈Ft ⊗B[0,t ].

• A process X = (X t )t≥0 is progressive if and only if it is measurable with respect to the
progressive σ-algebra P on Ω×R+ as a random variable X : (ω, t ) ∈Ω×R+ 7→ X t (ω)
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14 2 Processes, filtrations, stopping times, martingales

2. If X = (X t )t≥0 is adapted right-continuous or left-continuous defined on a filtered probability
space (Ω,F , (Ft )t≥0,P) and taking its values in a metric space (E ,d) equipped with its Borel
σ-algebra, then X is progressive. In particular continuous adapted implies progressive.

Proof.

1. Exercise

2. We give the proof in the right-continuous case, the left-continuous case being entirely similar. For all
n ≥ 1, t > 0, s ∈ [0, t ], we define the random variable

X n
s =

{
X n

kt/n if s ∈ [(k −1)t/n,kt/n), 1 ≤ k ≤ n,

X t if s = t .

Since (X t )t≥0 is right-continuous, it follows that Xs(ω) = limn→∞ X n
s (ω) for all t > 0 and s ∈ [0, t ] and

all ω ∈Ω. On the other hand, for every Borel subset A of E ,

{(ω, s) ∈Ω× [0, t ] : X n
s (ω) ∈ A} = ({X t ∈ A}× {t })

⋃( n⋃
k=1

({Xkt/n ∈ A}× [(k −1)t/n,kt/n))
)
.

Since (X t )t≥0 is adapted, this set belongs to Ft ⊗B[0,t ]. Therefore, for all n ≥ 1, the function (ω, s) ∈
Ω× [0, t ] 7→ X n

s (ω) is measurable for Ft ⊗B[0,t ]. Now a pointwise limit of measurable functions is
measurable, and therefore the function (ω, s) ∈ Ω× [0, t ] 7→ Xs(ω) is also measurable for Ft ⊗B[0,t ],
which means, since t > 0 is arbitrary, that (X t )t≥0 is progressive.

■

A process X = (X t )t≥0 taking its values in Rd can be seen as a random variable taking its values in the
“path space” P (R+,Rd ) of functions from R+ to Rd . The measurability is for free if we equip P (R+,Rd ) with
the σ-algebra AP (R+,Rd ) generated by the cylindrical events

{ f ∈P (R+,Rd ) : f (t1) ∈ I1, . . . , f (tn) ∈ In}

where n ≥ 1, t1, . . . , tn ∈ R+, and where I1, . . . , In are products of intervals in Rd of the form
∏d

i=1(ai ,bi ].
Unfortunately P (R+,Rd ) is so big that AP (R+,Rd ) turns out to be too small, and does not contain for instance

events of interest such that { f ∈P (R+,Rd ) : supt∈[0,1] f (t ) < 1}.
We focus in this course on continuous processes. This suggests to consider C (R+,Rd ) and theσ-algebra

AC (R+,Rd ) generated by the cylindrical events { f ∈C (R+,Rd ) : f (t1) ∈ I1, . . . , f (tn) ∈ In} where n ≥ 1, t1, . . . , tn ∈
R+, n ≥ 1, I1, . . . , In are products of intervals in Rd of the form

∏d
i=1(ai ,bi ]. We have then the following:

Theorem 2.1.2. What a wonderful world.

On C (R+,Rd ), the following σ-algebras coincide:

• σ-algebra AC (R+,Rd ) generated by the cylindrical events

• Borel σ-algebra BC (R+,Rd ) generated by the open sets of the topology of uniform convergence
on compact intervals of R+.

Proof. Take d = 1 for simplicity. It can be shown that C (R+,Rd ) equipped with the distance

d( f , g ) =
∞∑

n=1
2−n(1∧ max

t∈[0,n]
| f (t )− g (t )|)

is a Polish space in other words a complete and separate metric space, and the associated topology is the
one of uniform convergence on compact subsets of R+. First we have the inclusion AC (R+,Rd ) ⊂ BC (R+,R)

since the σ-algebra AC (R+,R) is generated by the cylinders

{ f ∈C (R+,R) : f (t1) < a1, . . . , f (tn) < an}, n ≥ 1, t1, . . . , tn ∈R+, a1, . . . , an ∈R,
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2.1 Measurability 15

which are open subsets. Conversely, for all g ∈C (R+,R), all n ≥ 1, and all r > 0,

{ f ∈C (R+,R) : max
t∈[0,n]

| f (t )− g (t )| ≤ r } =∩t∈Q∩[0,n]{ f ∈C (R+,R) : | f (t )− g (t )| ≤ r }

belongs to AC (R+,R), and since these sets generate BC (R+,Rd ), we get AC (R+,Rd ) =BC (R+,R). ■

Theorem 2.1.3. Continuous processes as random variables on path space.

Let X = (X t )t≥0 be a continuous d-dimensional process defined on (Ω,F ,P). Let Ω′ ∈ F such that
P(Ω′) = 1 and Ω′ ⊂ {X• ∈ C (R+,Rd )}. Then the map X |Ω′ : ω ∈Ω′ → X•(ω) ∈ C (R+,Rd ) is measurable
with respect to the σ-algebras F ′ = {F ∩Ω′ : A ∈A } and BC (R+,Rd ).

Proof. Let us consider an arbitrary cylindrical event

F = { f ∈C (R+,Rd ) : f (t1) ∈ I1, . . . , f (tn) ∈ In},

where n ≥ 1, t1, . . . , tn ∈R+, and I1, . . . , In are product of intervals as
∏d

i=1(ai ,bi ]. Then

Ω′∩ {X• ∈ F } =Ω′∩ {X t1 ∈ I1, . . . , X tn ∈ In} ∈F ′.

Now BC (R+,Rd ) is generated by cylindrical events (Theorem 2.1.2). ■

Remark 2.1.4. Equality of processes, modification and indistinguishability.

Two processes X = (X t )t≥0 and Y = (Yt )t≥0 defined on the same probability space (Ω,F ,P) are indis-
tinguishable when for almost all ω ∈Ω the sample paths t 7→ X t (ω) and t 7→ Yt (ω) coincide, namely

P(∀t ≥ 0 : X t = Yt ) = 1.

There is a weaker notion in which the almost sure event depends on time, namely we say that Y is a
modification of X if for all t ≥ 0 the event Ωt = {ω ∈Ω : X t (ω) ̸= Yt (ω)} is negligible, in other words

∀t ≥ 0 :P(X t = Yt ) = 1.

If X and Y are continuous then the two notions of indistinguishable and modification coincide.

If X = (X t )t≥0 and Y = (Yt )t≥0 are two processes taking values in Rd with same finite dimensional
marginal distributions, in the sense that for all n ≥ 1 and all t1, . . . , tn ∈ R+, the random vectors (X t1 , . . . , X tn )
and (Yt1 , . . . ,Ytn ) have same law in (Rd )n , then X and Y have same law as random variables on the path space
(P (R+,R),AP (R+,Rd )). The following theorem provides a sort of converse, stated when d = 1 for simplicity.

Theorem 2.1.5. Kolmogorov extension theorem.

For all n ≥ 1 and all t ∈ Rn with 0 ≤ t1 ≤ ·· · ≤ tn , let µt1,...,tn be a probability measure on Rn . Let us
assume the following consistency condition:

• for all n ≥ 1, t ∈Rn with 0 ≤ t1 ≤ ·· · ≤ tn , and all A1, . . . , An−1 ∈BR, we have

µt1,...,tn (A1 ×·· ·× An−1 ×R) =µt1,...,tn−1 (A1 ×·· ·× An−1).

Then there exists a unique probability measure µ on the path space (P (R+,R),AP (R+,R)) such that
for all n ≥ 1, all t ∈Rn with 0 ≤ t1 ≤ ·· · ≤ tn , and all A1, . . . , An ∈BR, we have

µ(πt1 ∈ A1, . . . ,πtn ∈ An) =µt1,...,tn (A1 ×·· ·× An),

where πt (ω) =ωt , namely πt :ω ∈P (R+,R) 7→ωt ∈R for all t ≥ 0.
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16 2 Processes, filtrations, stopping times, martingales

Proof. For a cylindrical event At1,...,tn (B) = { f ∈ P (R+,R) : ( f (t1), . . . , f (tn)) ∈ B} where n ≥ 1, t ∈ Rn with
0 ≤ t1 ≤ ·· · ≤ tn , and where B ∈ BRn , we define µ(B) = µt1,...,tn (B). This makes sense thanks to the consis-
tency condition. Note that we could drop the ordering on the coordinates of t by defining µt1,...,tn =µt(1),...,t(n)

where t(1) ≤ ·· · ≤ t(n) is the reordering. Moreover µ(P (R+,R)) = 1. Since the set of cylinders satisfies the as-
sumptions of the Carathéodory extension theorem (Theorem 1.8.5), and generates the σ-algebra AP (R+,R),
it remains to show that µ is a σ-finite measure, which is the difficult part of the proof. See instance [1]. ■

2.2 Completeness

Contrary to discrete processes, continuous processes lead naturally to measurability issues.
In a probability space (Ω,F ,P), we say that A ⊂Ω is negligible when there exists A′ ∈F with A ⊂ A′ and

P(A′) = 0. We say that the (Ω,F ,P) is complete when F contains the negligible subsets of Ω.
A filtration (Ft )t≥0 on (Ω,F ,P) is complete when F0 contains the negligible subsets of F .
Completeness emerges naturally via almost sure events which are complement of negligible subsets.

Theorem 2.2.1. Measurability of running supremum from completeness.

Let (X t )t≥0 be a continuous process defined on a probability space (Ω,F ,P) and taking values in a
topological space E equipped with its Borel σ-field E . Let f : E →R be a measurable function.

• If (Ω,F ,P) is complete then sups∈[0,t ] f (Xs) is measurable for all t ≥ 0.

• If X is adapted with respect to a complete filtration (Ft )t≥0 then (sups∈[0,t ] f (Xs))t≥0 is adapted.

Proof. Let Ω′ ∈F be an almost sure event on which X is continuous. Set St = sups∈[0,t ] f (Xs).

• For all t ≥ 0 and A ∈ E , we have

Ω′∩ {St ∈ A} =Ω′∩{
sup

s∈[0,t ]∩Q
f (Xs) ∈ A

} ∈F ,

while (Ω\Ω′)∩ {St ∈ A} ⊂Ω\Ω′ is negligible and thus belongs to F by completeness of (Ω,F ,P).

• Same argument as before with Ft instead of F .

■

The notion of completeness is relative to the probability measure P. There is also a notion of universal
completeness, see [5], that do not depend on the probability measure, but we do not use it in these notes.

2.3 Stopping times

Definition 2.3.1. Stopping time.

A map T : Ω→ [0,+∞] is a stopping time or optional time for a filtration (Ft )t≥0 on (Ω,F ,P) when
{T ≤ t } ∈Ft for all t ≥ 0. All constant non-negative random variables are stopping times.

Contrary to discrete time filtrations, the notion of stopping times for continuous time filtration leads
naturally to the notions of complete filtration and right continuous filtration.

Theorem 2.3.2. Hitting times as archetypal examples of stopping times.

Let X = (X t )t≥0 be a continuous and adapted process on a probability space (Ω,F ,P) with respect to
a complete filtration (Ft )t≥0, and taking its values in a metric space G equipped with its Borelσ-field.
Then, for all closed subset A ⊂G , the hitting time TA :Ω→ [0,+∞] of A, defined by

TA = inf{t ≥ 0 : X t ∈ A},
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with convention inf∅=+∞, is a stopping time.

For instance Tn = T[n,∞) = inf{t ≥ 0 : |X t | ≥ n} when G =Rd .

Proof. Let Ω′ be the almost sure event on which X is continuous. On Ω′, since X is continuous and A is
closed, we have {t ≥ 0 : X t ∈ A} = {t ≥ 0 : dist(X t , A) = 0}, the map t ≥ 0 7→ dist(X t , A) is continuous, and the
inf in the definition of TA is a min. Now, since X is adapted, we have, for all t ≥ 0,

Ω′∩ {TA ≤ t } =Ω′∩ ⋂
s∈[0,t ]∩Q

{Xs ∈ A} ∈Ft ,

where we have also used the fact that Ω′ ∈ Ft for all t ≥ 0 since (Ft )t≥0 is complete. On the other hand,
(Ω\Ω′)∩ {TA ≤ t } ⊂Ω\Ω′ is negligible, and belongs then to Ft for all t ≥ 0 since (Ft )t≥0 is complete. ■

We say that a filtration (Ft )t≥0 is right-continuous when Ft =Ft+ for all t ≥ 0 where

Ft+ = ⋂
ε>0

Ft+ε =
⋂
s>t

Fs .

Theorem 2.3.3. Stopping times: alternative definition.

If T :Ω→ [0,+∞] is a stopping time with respect to a filtration (Ft )t≥0 then {T < t } ∈Ft for all t ≥ 0.
Conversely this property implies that T is a stopping time when the filtration is right-continuous.

Proof. If T is a stopping time then for all t ≥ 0 we have

{T < t } =
∞⋃

n=1
{T ≤ t − 1

n } ∈Ft ,

(note also that {T = t } = {T ≤ t }∩ {T < t }c ∈Ft ). Conversely {T ≤ t } ∈∩s>t Fs =Ft+ since for all s > t ,

{T ≤ t } =
∞⋂

n=1
{T < (t + 1

n )∧ s} ∈Fs .

■

This can be skipped at first reading.

The following generalizes Theorem 2.3.2 to hitting times of arbitrary measurable subsets by proges-
sive processes, at the price of assuming right continuity of the filtration in addition to completeness.

Theorem 2.3.4: Hitting times are stopping times reloaded.

Let X = (X t )t≥0 be a progressive process defined on a probability space (Ω,F ,P) equipped
with a right continuous and complete filtration (Ft )t≥0, and taking its values in a measurable
space G . Then for all measurable subset A ⊂G , the hitting time TA :Ω→ [0,+∞] defined by

TA = inf{t ≥ 0 : X t ∈ A},

with convention inf∅=+∞, is a stopping time.

Example of progressive processes include adapted right-continuous processes.

Proof. The debut DB of any B ∈F ⊗B(R+) is defined for all ω ∈Ω by

DB (ω) = inf{t ≥ 0 : (ω, t ) ∈ B} ∈ [0,+∞].

If B is progressive, then DB is a stopping time (this is known as the debut theorem). Indeed, for all
t ≥ 0 the set {DB < t } is then the projection onΩ of {s ∈ [0, t ) : (ω, s) ∈ B}, which belongs to B(R+)⊗Ft
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18 2 Processes, filtrations, stopping times, martingales

since B is progressive. Since the filtration is right-continuous and complete, this projectiona belongs
to Ft . Now {DB < t } ∈ Ft for all t ≥ 0 implies that DB is a stopping time since the filtration is right
continuous (Theorem 2.3.3). Finally it remains to note that TA = DB with B = {(ω, t ) : X t ∈ A}, which
is progressive as the pre-image of R+× A by the map (ω, t ) 7→ X t (ω) (recall that X is progressive). ■

aSee [5, Th. IV.50 page 116]. This is related to a famous mistake made by the French Henri Lebesgue (1875 – 1941) on the
measurability of projections of measurable sets in product spaces, that motivated the Russian Nikolai Luzin (1883 – 1950)
and his student Mikhail Yakovlevich Suslin (1894 – 1919) to forge the concept of analytic set and descriptive set theory.

Remark 2.3.5. Canonical filtration.

It is customary to assume that the underlying filtration is right-continuous and complete. For a given
filtration (Ft )t≥0, it is always possible to consider its completion (σt )t≥0 = (σ(N ∪Ft ))t≥0 where
N is the collection of negligible subsets of F . It is also customary to consider the right-continu-
ous version (σt+)t≥0, called the canonical filtration. A process is always adapted with respect to the
canonical filtration constructed from its completed natural filtration.

From now on and unless otherwise stated we make the “canonical assumption”:
we assume that the underlying filtration is complete and right-continuous.

Remark 2.3.6. Subtleties about righ-continuity of filtrations.

The natural filtration of a right-continuous process is not right-continuous in general, indeed a
counter example is given by X t = t Z for all t ≥ 0 where Z is a non-constant random variable, since
σ(X0) = {∅,Ω} while σ(X0+ε : ε > 0) = σ(Z ) ̸= σ(X0). However it can be shown that the completion
of the natural filtration of a “Feller Markov process” – including all Lévy processes and in particular
Brownian motion – is always right-continuous.

Theorem 2.3.7. Stopping times properties.

Let S, T , and Tn , n ≥ 0 be stopping times for some underlying filtration (Ft )t≥0 on an underlyning
probability space (Ω,F ,P). Then:

1. the following family is a σ-algebra called the stopping σ-algebra:

FT = {A ∈F : ∀t ≥ 0, A∩ {T ≤ t } ∈Ft }.

Moreover the stopping time T is FT -measurable

2. X = (X t )t≥0 is adapted then the stopped process X T = (X t∧T )t≥0 is also adapted. Moreover

(X T )S = X S∧T = (X S)T

3. if (X t )t≥0 is adapted and progressive and if T is a.s. finite then X T = (X t∧T )t≥0 is progressive

4. if X = (X t )t≥0 is adapted and right-continuous then Z = XT 1T<∞ is FT -mesurable

5. if S ≤ T then FS ⊂FT

6. S ∧T and S ∨T are stopping times and in particular FS∧T ⊂FS∨T

7. if (Ft )t≥0 is right-continuous then limn Tn and limn Tn are stopping times and

∩nFTn =Finfn Tn .

Proof. The proof of the first three items are left as exercises.
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2.4 Martingales, sub-martingales, super-martingales 19

4. Let B ∈BR and t ≥ 0. Then we have:

{Z ∈ B}∩ {T ≤ t } = {XT∧t ∈ B}∩ {T ≤ t }.

Now we consider the composition of measurable maps:

ω ∈ (Ω,Ft ) 7→ (σ(ω)∧ t ,ω) ∈ ([0, t ]×Ω,B[0,1] ⊗Ft ) 7→ Xσ(ω)∧t (ω) ∈ (R,BR)

and we use the fact that X is progressive.

5. If A ∈FS then, for all t ≥ 0, A∩ {T ≤ t } = A∩ {S ≤ t }∩ {T ≤ t } ∈Ft , hence A ∈FT .

6. For all t ≥ 0 we have

{S ∧T > t } = {S > t }∩ {T > t } ∈Ft and {S ∨T ≤ t } = {S ≤ t }∩ {T ≤ t } ∈Ft .

7. It suffice to show that supn Tn and infn Tn are stopping times. But

{sup
n

Tn ≤ t } =∩n{Tn ≤ t } ∈Ft and {inf
n

Tn < t } =∪n{Tn < t } ∈Ft

and therefore
{inf

n
Tn ≤ t } =∩ε>0{inf

n
Tn < t +ε} ∈Ft+ =Ft .

Let A ∈∩nFTn . Then
A∩ {inf

n
Tn < t } =∪n A∩ {Tn < t } ∈Ft .

Therefore
A∩ {inf

n
Tn ≤ t } ∈Ft+ =Ft .

■

Remark 2.3.8. Truncation via cutoff stopping times for continuous processes.

Truncation is an important tool in probability theory, and allows for instance to prove the strong law
of large numbers for i.i.d. integrable random variables by reduction to the case of more integrable
random variables. This tool is also available for stochastic processes, and its version with cutoff stop-
ping times has the advantage of keeping the martingale structure (Doob stopping, Theorem 2.5.1).
Let X = (X t )t≥0 be adapted. For all n we introduce the “truncation” or “cutoff” stopping time

Tn = inf{t ≥ 0 : |X t | ≥ n},

which takes its values in [0,+∞]. We have Tn ≤ Tn+1 for all n. If X is continuous then almost surelya.

Tn ↗
n→∞

+∞.

Still if X is additionally continuous then almost surely and for all n ≥ 1 and all t ≥ 0,

|X t∧Tn | ≤ n1|X0|≤n +|X0|1|X0|>n .

If X0 = 0 then the process |X Tn | is bounded by n for all n ≥ 1. This is useful in this courseb.

aIndeed, almost surely, either the trajectory of X is bounded then Tn = +∞ for large enough n beyond a (random)
threshold, or the trajectory of X is unbounded and then by definition of being continuous and unbounded we have Tn ↗
+∞ as n →∞. Without continuity Xt could take arbitrary large values near a finite time forcing (Tn )n to be bounded.

bLocalization is efficient for continuous processes issued from the origin. If X is discontinuous and in particular if it is
a discrete time process, then, due to a possible jump at time Tn , we could have |XTn | > n even if X0 = 0 and n is large.

2.4 Martingales, sub-martingales, super-martingales

We restrict for simplicity to continuous martingales/sub-martingales/super-martingales. But many of
the results remain actually valid for right-continuous martingales/sub-martingales/super-martingales.

The notion of martingale implements the idea of updating with a conditionally independent ingredient.
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20 2 Processes, filtrations, stopping times, martingales

Definition 2.4.1. Martingales, sub-martingales, super-martingales.

Let X = (X t )t≥0 be a real adapted and integrable process in the sense that for all t ≥ 0, X t is measur-
able for Ft and X t ∈ L1. Then, when

• E(X t |Fs) ≥ Xs for all t ≥ 0 and all s ∈ [0, t ], we say that X is a sub-martingale,

• E(X t |Fs) = Xs for all t ≥ 0 and all s ∈ [0, t ], we say that X is a martingale

• E(X t |Fs) ≤ Xs for all t ≥ 0 and all s ∈ [0, t ], we say that X is a super-martingale.

These three notions can be seen in a sense as a probabilistic counterpart of the notions of increasing
sequence, constant sequence, and decreasing sequence in basic classical analysis.

• For a sub-martingale, t 7→ E(X t ) grows and in particular E(X t ) ≥ E(X0) for all t ≥ 0

• For a martingale, t 7→ E(X t ) is constant, namely E(X t ) = E(X0) for all t ≥ 0. It is a conservation law

• For a super-martingale, t 7→ E(X t ) decreases and in particular E(X t ) ≤ E(X0) for all t ≥ 0.

The set of martingales is the intersection of the set of sub-martingales and the set of super-martingales.
A super-martingale or sub-martingale is a martingale if and only if its expectation is constant along time.
Being a martingale for a given filtration is a property stable by linear combinations.
If M is a martingale and if (tn)n≥0 is a strictly increasing sequence of times then the sequence of random

variables (Mtn )n≥0 is a discrete time martingale. We will try to avoid using discrete time martingales, but we
will sometimes discretize time, notably to handle stopping times, which is roughly the same. The theory of
discrete time martingales is similar to the theory of continuous time martingales that we develop here and
comes with very similar theorems. In this course, most stochastic processes are in continuous time, and
when we say “continuous process/martingale/etc”, we mean that the process has continuous sample paths.

Example 2.4.2. Martingales.

1. If Y ∈ L1 then the process (X t )t≥0 defined by X t = E(Y | Ft ) for all t ≥ 0 is a martingale with
respect to (Ft )t≥0 known as the Doob martingale or a closed martingale. It is uniformly inte-
grable. Corollary 4.4.5 provides a sort of converse (u.i. martingales are closed)

2. If (X t )t≥0 is a martingale and ifϕ :R→R is convex and such thatϕ(X t ) ∈ L1 for all t ≥ 0, then by
the Jensen inequality for conditional expectation, (Yt )t≥0 = (ϕ(X t ))t≥0 is a sub-martingale for
the same filtration. In particular (|X t |)t≥0, (X 2

t )t≥0, and (eX t )t≥0 are sub-martingales

3. If (X t )t≥0 is a sub-martingale and ifϕ :R→R is convex and non-decreasing such thatϕ(X t ) ∈ L1

for all t ≥ 0, then by the Jensen inequality for condition expectation, (Yt )t≥0 = (ϕ(X t ))t≥0 is a
sub-martingale for the same filtration. In particular (eX t )t≥0 is a sub-martingale

4. A martingale X = (X t )t≥0 is also a martingale for its natural filtration (σ(Xs : s ∈ [0, t ]))t≥0

5. If (En)n≥1 are independent and identically distributed exponential random variables of mean
1/λ, then, for all t ≥ 0, the number of these random variables falling in the interval [0, t ] is
Nt = card{n ≥ 1 : En ∈ [0, t ]}. It is known that the counting process (Nt )t≥0 has independent
and stationary increments of Poisson law, namely for all n ≥ 1 and 0 = t0 ≤ ·· · ≤ tn , the random
variables Nt1 − Nt0 , . . . , Ntn − Ntn−1 are independent of law Poi(λ(t1 − t0)), . . . ,Poi(λ(tn − tn−1)).
We say that (Nt )t≥0 is the simple Poisson process of intensity λ. Now for the (natural) filtration
(Ft )t≥0, Ft = σ(Ns : 0 ≤ s ≤ t ), and for all c ∈ R, the process (Nt − ct )t≥0 is a sub-martingale if
c <λ, a martingale if c =λ, and a super-martingale if c >λ. Namely, for all 0 ≤ s ≤ t ,

E(Nt − ct |Fs) = E(Nt −Ns − c(t − s)+Ns − cs |Fs)

= E(Nt −Ns)− c(t − s)+Ns − cs
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2.5 Doob stopping theorem and maximal inequalities 21

= (λ− c)(t − s)+Ns − cs.

This process is not continuous, but has right-continuous and left limited trajectories (càdlàga).

6. If (Nt )t≥0 is the simple Poisson process of intensity λ as above, then, for all 0 ≤ s ≤ t ,

E(eNt−ct |Fs) = eNs−csE(eNt−Ns )e−c(t−s) = eNs−cseλ(t−s)(e−1)−c(t−s).

It follows that for the natural filtration of (Nt )t≥0, the process (eNt−ct )t t≥0 is a sub-martingale if
c <λ(e−1), a martingale if c =λ(e−1), and a super-martingale if c >λ(e−1). We often say that
(eNt−ct )t≥0 is an exponential (sub/super-)martingale.

7. The Brownian motion (Bt )t≥0 of Chapter 3 has independent and stationary Gaussian incre-
ments: for all n ≥ 1 and 0 = t0 ≤ ·· · ≤ tn the random variables Bt1 −Bt0 , . . . ,Btn −Btn−1 are inde-
pendent of law N (0, t1 − t0), . . . ,N (0, tn − tn−1). Thus the process (Bt )t≥0 is a martingale for its
natural filtration, indeed, for all 0 ≤ s ≤ t ,

E(Bt |Fs) = E(Bt −Bs +Bs |Fs) = E(Bt −Bs)+Bs = Bs .

This process has continuous trajectories. Moreover and similarly, for all c ∈ R, the process
(B 2

t − ct )t≥0 is a sub-martingale if c < 1, a martingale if c = 1, and a super-martingale if c > 1.
The key is to use the decomposition Bt = (Bt −Bs)2+2BsBt −B 2

s . We can also study the process
eBt−ct and seek for a condition on c to get a martingale, and we speak about an exponential
martingale. For simplicity, most of the martingales encountered in this course are continuous.

aContinu à droite avec limites à gauche.

2.5 Doob stopping theorem and maximal inequalities

Stopped martingales are martingales, and the conservation law extends to stopping times:

Theorem 2.5.1. Dooba stopping theorem.

aNamed after Joseph L. Doob (1910 – 2004), American mathematician.

If M is a continuous martingale and T : Ω→ [0,+∞] is a stopping time then M T = (Mt∧T )t≥0 is a
(continuous) martingale, namely for all t ≥ 0 and s ∈ [0, t ], we have

Mt∧T ∈ L1 and E(Mt∧T |Fs) = Ms∧T .

Moreover, if T is bounded, or if T is almost surely finite and (Mt∧T )t≥0 is u.i.a, then

MT ∈ L1 and E(MT ) = E(M0).

aFor instance dominated by an integrable random variable, or even bounded by a constant.

In practice, the best is to retain that (Mt∧T )t≥0 is a martingale. We have limt→∞ MT∧t 1T<∞ = MT 1T<∞
a.s. When T < ∞ a.s. we could use what we know on M and T to deduce by monotone or dominated
convergence that this holds in L1, giving E(MT ) = E(limt→∞ Mt∧T ) = limt→∞E(Mt∧T ) = E(M0). Theorem
2.5.1 states that this is automatically the case when T is bounded or when M T is u.i. Furthermore, if M T is
u.i. then it can be shown that M∞ exists, giving a sense to MT even on {T =∞}, and then E(MT ) = E(M0).

Proof. Let assume first that T takes a finite number of values t1 < ·· · < tn . Let us show that MT ∈ L1 and
E(MT ) = E(M0). We have MT = ∑n

k=1 Mtk 1T=tk ∈ L1, and moreover, using {T ≥ tk } = (∪k−1
i=1 {T = ti })c ∈ Ftk−1 ,
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22 2 Processes, filtrations, stopping times, martingales

and the martingale property E(Mtk −Mtk−1 |Ftk−1 ) = 0, for all k, we get

E(MT ) = E(M0)+E
( n∑

k=1
E(Mtk −Mtk−1 |Ftk−1 )1T≥tk

)
= E(M0).

Suppose now that T takes an infinite number of values but is bounded by some constant C . For all n ≥ 0,
we approximate T by the piecewise constant random variable (discretization of [0,C ])1

Tn =C 1T=C +
n∑

k=1
tk 1tk−1≤T<tk where tk = tn,k =C

k

n
.

This is a stopping time since it takes discrete values and for all m ≥ 0,

{Tn = m} =


∅ ∈F0 if m ̸∈ {tk : 1 ≤ k ≤ n}

{T =C } ∈FC if m =C

{T < tk−1}c ∩ {T < tk } ∈Ftk if m = tk , 1 ≤ k ≤ n

where we used the fact that {T = t } = {T ≤ t }∩ {T < t }c = {T ≤ t }∩∩∞
r=1{T > t −1/r } ∈Ft for all t ≥ 0.

Since Tn takes a finite number of values, the previous step gives E(MTn ) = E(M0). On the other hand,
almost surely, Tn → T as n →∞. Since M is continuous, it follows that almost surely MTn → MT as n →∞.
Let us show now that (MTn )n≥1 is uniformly integrable. Since for all n ≥ 0, Tn takes its values in a finite set
t1 < ·· · < tmn ≤C , the martingale property2 and the Jensen inequality give, for all R > 0,

E(|MTn |1|MTn |≥R ) =∑
k
E(|Mtk |1|Mtk

|≥R,Tn=tk )

=∑
k
E(|E(MC |Ftk )|1|Mtk

|≥R,Tn=tk )

≤∑
k
E(E(|MC | |Ftk )1|Mtk

|≥R,Tn=tk )

=∑
k
E(|MC |1|Mtk

|≥R,Tn=tk )

= E(|MC |1|MTn |≥R ).

Now M is continuous and thus locally bounded, and MC ∈ L1, thus, by dominated convergence,

sup
n
E(|MTn |1|MTn |>R ) ≤ E(|MC |1sups∈[0,C ] |Ms |≥R ) −→

R→∞
0.

Therefore (MTn )n≥0 is uniformly integrable. As a consequence

a.s.
lim

n→∞MTn = MT ∈ L1 and E(MT ) = lim
n→∞E(MTn ) = E(M0).

Let us suppose now that T is an arbitrary stopping time. For all 0 ≤ s ≤ t and A ∈ Fs , the random
variable S = s1A + t1Ac is a (finite) stopping time, and what precedes for the finite stopping time t ∧T ∧S
gives Mt∧T∧S ∈ L1 and E(Mt∧T∧S) = E(M0). Now, using the definition of S, we have

E(M0) = E(Mt∧T∧S) = E(1A Ms∧T )+E(1Ac Mt∧T ) = E(1A(Ms∧T −Mt∧T ))+E(Mt∧T ).

Since E(Mt∧T ) = E(M0), we get E((Mt∧T −Ms∧T )1A) = 0, namely the martingale property for (Mt∧T )t≥0.
Finally, suppose that T < ∞ a.s. and (Mt∧T )t≥0 is u.i. The random variable MT is well defined and

limt→∞ Mt∧T = MT a.s. because M is continuous. Furthermore, since (Mt∧T )t≥0 is u.i., it follows that MT ∈
L1 and limt→∞ Mt∧T = MT in L1. In particular E(M0) =

∀t
E(Mt∧T ) = limt→∞E(Mt∧T ) = E(MT ). ■

1By using dyadics, we could define Tn in such a way that Tn ↘ T , giving MTn → MT pointwise when M is right-continuous.
2It also works for non-negative sub-martingales.
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Example 2.5.2. Example of application of Doob stopping theorem.

Let (Mt )t≥0 be a continuous martingale, a < b, and T = inf{t ≥ 0 : Mt ∈ {a,b}} the hitting time of the
boundary of [a,b]. Suppose that M0 takes its values in [a,b] and that T is almost surely finitea. Then
on the one hand, we have the equation P(MT = a)+P(MT = b) = 1. On the other hand, by definition
of T the process (Mt∧T )t≥0 is bounded and thus u.i. and the Doob stopping theorem (Theorem 2.5.1)
gives then x = E(M0) = E(MT ) = aP(MT = a)+bP(MT = b). It follows by combining the equations that

P(MT = a) = b −x

b −a
and P(MT = b) = x −a

b −a

(note that x ∈ [a,b]). This holds in particular for Brownian motion started from x ∈ [a,b], and by
using an exponential martingale, it is then even possible to compute the Laplace transform of T .

aHolds for BM B with B0 = 0 ∈ (a,b) since P(T =∞) ≤P(T > t ) ≤P(Bt ∈ (a,b)) =P(
p

t Z ∈ (a,b)) → 0 as t →∞.

Coding in action 2.5.3. Gambler’s ruin.

Physically Brownian motion and the simple symmetric random walk are the same, it is just a matter
of scale. Fix a ≤ b in Z. Write a code to plot on the same graphic multiple trajectories of such a
random walk started from various values of x ∈ [a,b] and stopped when it reaches a or b. Could you
verify numerically the formulas of Example 2.5.2? And mathematically?

Remark 2.5.4. Counter example with an unbounded stopping time.

If M is a continuous martingale with M0 = 0, then, for all a > 0, Ta = inf{t > 0 : Mt = a} is a stopping
time, but it cannot be bounded since this would give 0 = E(M0) = E(MTa ) = a > 0, a contradiction!

The following variant of the Doob stopping is useful in many applications.

Theorem 2.5.5. Doob stopping theorem for sub-martingales.

If M is a continuous sub-martingale and S and T are bounded stopping times such that S ≤ T , MS ∈
L1, and MT ∈ L1, then E(MS) ≤ E(MT ).

Proof. We proceed as in the proof of Theorem 2.5.1, by assuming first that S and T take their values in the
finite set {t1, . . . , tn} where t1 < ·· · < tn . In this case MT and MS are in L1 automatically. The inequality S ≤ T
gives 1S≥t ≤ 1T≥t for all t . Using this fact and the sub-martingale property of M , we get

E(MS) = E(M0)+E
( n∑

k=1
E(Mtk −Mtk−1 |Ftk−1 )︸ ︷︷ ︸

≥0

1S≥tk

)
≤ E(M0)+E

( n∑
k=1

E(Mtk −Mtk−1 |Ftk−1 )1T≥tk

)
= E(MT ).

More generally, when S and T are arbitrary bounded stopping times satisfying S ≤ T , and at least when M
is a non-negative sub-martingale, we can proceed by approximation as in the proof of Theorem 2.5.1. ■

This can be skipped at first reading.

Theorem 2.5.6: Doob stopping theorem for non-negative super-martingales

If M is a continuous non-negative super-martingale and S and T are stopping times such that
S ≤ T , then MS ∈ L1 and MT ∈ L1 and E(MS) ≥ E(MT |FS), in particular E(MS) ≥ E(MT ).

When S and T are bounded we recover Theorem 2.5.6 in the special case where M ≤ 0.

Proof. See for instance [14, Theorem 3.25 pages 64 – 65]. Note that since M is a non-negative super-
martingale, it is automatically bounded in L1 since 0 ≤ E(Mt ) ≤ E(M0) for all t ≥ 0. ■
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24 2 Processes, filtrations, stopping times, martingales

The following theorem allows to control the tail of the supremum of a martingale over a time interval
by the moment at the terminal time. It is a continuous time martingale version of the simpler Kolmogorov
maximal inequality for sums of independent and identically distributed random variables.

Theorem 2.5.7. Doob maximal inequalities.

1. If M is a continuous martingale or non-negative sub-martingale then for all p ≥ 1, t ≥ 0, λ> 0,

P
(

max
s∈[0,t ]

|Ms | ≥λ
)
≤ E(|Mt |p )

λp .

2. If M is a continuous martingale then for all p > 1 and t ≥ 0,

E
(

max
s∈[0,t ]

|Ms |p
)
≤

( p

p −1

)p
E(|Mt |p ) in other words

∥∥∥ max
s∈[0,t ]

|Ms |
∥∥∥

p
≤ p

p −1
∥Mt∥p .

In particular if Mt ∈ Lp then M∗
t = maxs∈[0,t ] |Ms | ∈ Lp .

Note that q = 1/(1−1/p) = p/(p −1) is the Hölder conjugate of p in the sense that 1/p +1/q = 1.
The Doob inequality is often used with p = 2, for which (p/(p −1))p = 4.

Proof. We can assume that the right hand side is finite (Mt ∈ Lp ), otherwise the inequalities are trivial.

1. If M is a martingale, then by the Jensen inequality for the convex function u ∈ R 7→ |u|p , the process
|M |p is a sub-martingale. Similarly, If M is a non-negative sub-martingale then, since u ∈ [0,+∞) 7→
up is convex and non-decreasing it follows that M p = |M |p is a sub-martingale. Therefore in all cases
(|Ms |p )s∈[0,t ] is a sub-martingale. Let us define the bounded stopping time

T = t ∧ inf{s ≥ 0 : |Ms | ≥λ}.

Since M is continuous we have |MT | ≤ max(|M0|,λ) and thus MT ∈ L1. The Doob stopping Theorem
2.5.5 for the sub-martingale |M |p and the bounded stopping times T and t that satisfy T ≤ t gives

E(|MT |p ) ≤ E(|Mt |p ).

On the other hand the definition of T gives

|MT |p ≥λp 1maxs∈[0,t ] |Ms |≥λ+|Mt |p 1maxs∈[0,t ] |Ms |<λ ≥λp 1maxs∈[0,t ] |Ms |≥λ.

It remains to combine these inequalities to get the desired result

2. We first reduce to the case where M satisfies maxs∈[0,t ] |Ms | ∈ Lp . To do so, we introduce for all n ≥ 1
the truncation or localization stopping time3 Tn = inf{s ≥ 0 : |Ms | ≥ n} . By the Doob stopping theorem
(Theorem 2.5.1), the process (Ms∧Tn )s∈[0,t ] is a martingale. Moreover, since M is continuous, we have
the domination |Ms∧Tn | ≤ |M0|∧n, and since Mt ∈ Lp gives M0 ∈ Lp , we obtain maxs∈[0,t ] |Ms∧Tn | ∈ Lp .
The desired inequality for the dominated martingale (Ms∧Tn )s∈[0,t ] would give

E( max
s∈[0,t ]

|Ms∧Tn |p ) ≤
(

p

p −1

)p

E(|Mt∧Tn |p ),

and the desired result for (Ms)s∈[0,t ] would then follow by monotone convergence theorem as n →
∞ since then |Ms∧Tn | ↗ |Ms | for all s ∈ [0, t ]. Thus this shows that we can assume without loss of
generality that sups∈[0,t ] |Ms | ∈ Lp . This is our first martingale localization argument!

By using the proof of the first item with p = 1 and decomposing Mt as we did for MT , we get

P( max
s∈[0,t ]

|Ms | ≥λ) ≤ E(|Mt |1maxs∈[0,t ] |Ms |≥λ)

λ

3Since we are only interested by the time interval [0, t ], we could take ∧t which makes the stopping time bounded.
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for all λ> 0, and thus∫ ∞

0
λp−1P( max

s∈[0,t ]
|Ms | ≥λ)dλ≤

∫ ∞

0
λp−2E(|Mt |1maxs∈[0,t ] |Ms |≥λ)dλ.

Now the Fubini – Tonelli theorem gives∫ ∞

0
λp−1P( max

s∈[0,t ]
|Ms | ≥λ)dλ= E

∫ maxs∈[0,t ] |Ms |

0
λp−1dλ= 1

p
E( max

s∈[0,t ]
|Ms |p ).

and similarly (here we need p > 1)∫ ∞

0
λp−2E(|Mt |1maxs∈[0,t ] |Ms |≥λ))dλ= 1

p −1
E(|Mt | max

s∈[0,t ]
|Ms |p−1).

Combining all this gives

E( max
s∈[0,t ]

|Ms |p ) ≤ p

p −1
E(Mt max

s∈[0,t ]
|Ms |p−1).

But since the Hölder inequality gives

E(|Mt | max
s∈[0,t ]

|Ms |p−1) ≤ E(|Mt |p )1/pE( max
s∈[0,t ]

|Ms |p )
p−1

p ,

we obtain
E( max

s∈[0,t ]
|Ms |p ) ≤ p

p −1
E(|Mt |p )1/pE( max

s∈[0,t ]
|Ms |p )

p−1
p .

Consequently, since E(maxs∈[0,t ] |Ms |p ) <∞, we obtain the desired inequality.

■

Example 2.5.8. A consequence of Doob maximal inequality.

Let (Mt )t≥0 be a continuous martingale bounded in Lp , p > 1, namely

Cp = sup
t≥0

E(|Mt |p ) <∞.

It follows that M is u.i. But the Doob maximal inequality says more. Namely, by Theorem 2.5.7, for
all t ≥ 0, E(maxs∈[0,t ] |Ms |p ) ≤Cp . The monotone convergence theorem gives then

E(sup
t≥0

|Mt |p ) ≤Cp <∞.

Therefore, almost surely supt≥0 |Mt | <∞. In other words M has almost surely bounded trajectories.
Beware however that the bound is random and may depend on the trajectory.

The following version of Doob maximal inequality is useful for some applications.

Theorem 2.5.9. Doob maximal inequality for super-martingales.

If M is a continuous super-martingale, then for all t ≥ 0 and λ> 0, denoting M− = max(0,−M),

P
(

max
s∈[0,t ]

|Ms | ≥λ
)
≤ E(M0)+2E(M−

t )

λ
.

In particular when M is non-negative then E(M−) = 0 and the upper bound becomes E(M0)/λ.

This can be skipped at first reading.

Proof. Let us define the bounded stopping time

T = t ∧ inf{s ∈ [0, t ] : Ms ≥λ}.
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26 2 Processes, filtrations, stopping times, martingales

We have MT ∈ L1 since |MT | ≤ max(|M0|, |Mt |,λ). By the Doob stopping Theorem 2.5.5 with the sub-
martingale −M and the bounded stopping times 0 and T that satisfy M0 ∈ L1 and MT ∈ L1, we get

E(M0) ≥ E(MT ) ≥λP( max
s∈[0,t ]

Ms ≥λ)+E(Mt 1maxs∈[0,t ] Ms<λ)

hence, recalling that M− = max(−M ,0),

λP( max
s∈[0,t ]

Ms ≥λ) ≤ E(M0)+E(M−
t ).

This produces the desired inequality when M is non-negative. For the general case, we observe
that the Jensen inequality for the non-decreasing convex function u ∈ R 7→ max(u,0) and the sub-
martingale −M shows that M− is a non-negative sub-martingale. Thus, by Theorem 2.5.1,

λP( max
s∈[0,t ]

M−
s ≥λ) ≤ E(M−

t ).

Finally, putting both inequalities together gives

λP( max
s∈[0,t ]

|Ms | ≥λ) ≤λP( max
s∈[0,t ]

Ms ≥λ)+λP( max
s∈[0,t ]

M−
s ≥λ) ≤ E(M0)+2E(M−

t ).

■
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Chapter 3

Brownian motion

Just like the central limit theorem, Brownian motion is a physical as well as a mathematical phenomenon,
see figures 3.1, 3.2, and 3.3. In this chapter, we study some properties of the mathematical Brownian motion.

Lévy processes

Markov processes

Martingales Gaussian processes

Brownian Motion

For all t > 0, d ≥ 1, the density of the Gaussian distribution N (0, t Id ) on Rd is

x ∈Rd 7→ pt (x) = e−
|x|2
2t

(
p

2πt )d
where |x|2 = x2

1 +·· ·+x2
d .

We have, for all s, t > 0,

pt+s(x) = (pt ∗ps)(x) =
∫
Rd

pt (x − z)ps(z)dz.
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Figure 3.1: First steps of four approximated sample paths of 2-dimensional Brownian motion issued from
the origin, numerically simulated with a Gaussian random walk via code plot(cumsum(randn(2,1000))).

Figure 3.2: From the famous book [16] of Jean Perrin (1870 – 1942), three tracings of the motion of col-
loidal particles of radius 0.53 µm, as seen under the microscope are displayed. Successive positions every
30 seconds are joined by straight line segments (mesh size is 3.2 µm). These precise and systematic experi-
ments, inspired by the historical ones by Robert Brown (1773 – 1858), allowed to test the atomistic theory of
Ludwig Boltzmann (1944 – 1906), Albert Einstein (1879 – 1955), Marian Schmoluchovski (1872 – 1917), and
others. “Ainsi, la théorie moléculaire du mouvement brownien peut-être regardée comme expérimentalement
établie, et, du même coup, il devient assez difficile de nier la réalité objective des molécules.”. Louis Bachelier
(1870 – 1946) identified independently a similar physical phenomenon in the behavior of stock markets.
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Figure 3.3: Atomistic interpretation of physical Brownian motion: a big particle of dust in a liquid is subject
to a high number of collisions with the molecules of the liquid, which are much smaller and disordered by
heat. This leads to the kinetic interpretation behind the Langevin equation. In reality, the diameter ratio
is high, for instance the colloidal particle observed by Perrin has diameter of 0.57 µm while a molecule
of water has a diameter of 0.27 nm, which gives a diameter ratio of about 2000. Moreover in reality the
molecules density is high, the distance between molecules being of 0.31 nm for water. With this atomistic
interpretation, physical Brownian motion is essentially a random walk, seen at a space-time scale which
makes it close to mathematical Brownian motion, its idealistic scaling limit.

Definition 3.0.1. Brownian motiona or Wienerb process.

aNamed after Robert Brown (1773 – 1858), Scottish botanist.
bNamed after Norbert Wiener (1894 – 1964), American mathematician.

A d-dimensional Brownian motion (BM) is a d-dimensional process B = (Bt )t≥0 which has:

1. Almost surely continuous trajectories, in the sense that B is a continuous process.

2. Stationary, Gaussian, independent increments:

• for all 0 ≤ s ≤ t , Bt −Bs ∼N (0, (t − s)Id )

• for all t0 = 0 < t1 < ·· · < tn , n ≥ 0, Bt1 −Bt0 , . . . ,Btn −Btn−1 are independent.

Beware that there are no conditions on B0, and in particular Bt = B0 +Bt −B0 may not be Gaussian.

# Python program generating the graphic used for the lecture notes cover
import numpy as np ; import matplotlib.pyplot as pp
for i in range(1,11):

pp.plot(np.cumsum(np.random.randn(1,1000)[0]),'k-',linewidth=1)
pp.axis('off') ; pp.show()

# Julia program generating the graphic used for the lecture notes cover
using Pkg ; Pkg.add("Plots") ; using Plots
for i=1:10
plot!(cumsum(randn(1000,1),dims = 1), lw = 1, legend = false, grid = false,

axes=([],false)),→
end
gui()
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Coding in action 3.0.2. Stochastic simulation.

By using the structure of the increments, write your own program simulating and plotting approxi-
mated trajectories of BM. Can we check numerically that the mathematical object of Brownian mo-
tion exists? Let D be a closed domain of Rd such as a disc or a square, containing the origin 0. Let ∂D
be its boundary, let B be a BM with B0 = 0, and let T = inf{t ≥ 0 : Bt ∈ ∂D}. Write a program simulating
the law of T and the law of BT , and producing nice plots when d = 1, d = 2, d = 3.

Remark 3.0.3. Gaussiana and Lévyb processes.

aNamed after Carl Friedrich Gauss (1777 – 1855), German mathematician.
bNamed after Paul Lévy (1886 – 1971), French mathematician.

For all n ≥ 1 and 0 ≤ t1 < ·· · < tn the random vector (Bt1 , . . . ,Btn ) is Gaussian, and we say that Brown-
ian motion is a Gaussian process. On the other hand, for all n ≥ 1 and 0 = t0 < ·· · < tn the increments
Bt1 −Bt0 , . . . ,Btn −Btn−1 are independent and stationary in the sense that their law depends only on
the differences t1−t0, . . . , tn−tn−1 between successive times. Also Brownian motion has independent
and stationary increments and such processes are called Lévy processes. They form a special sub-
class of Markov processes. The Poisson process considered in Example 2.4.2 is also a Lévy process,
for which the increments are Poisson and the trajectories right continuous with left limits.

Remark 3.0.4. Finite dimensional laws.

A d-dimensional continuous process X = (X t )t≥0 issued from x ∈ Rd is a Brownian Motion iff for all
n ≥ 0, all 0 < t1 < ·· · < tn , all Ai ∈BRd , 1 ≤ i ≤ n, we have

P(X t1 ∈ A1, . . . , X tn ∈ An) =
∫

A1×···×An

pt1 (x1 −x)pt2−t1 (x2 −x1) · · ·ptn−tn−1 (xn −xn−1)dx1 · · ·dxn .

Remark 3.0.5. Reduction to centered case.

From the definition, we get that if B = (Bt )t≥0 is a Brownian motion issued from the origin namely
B0 = 0 and if H is a random variable then (H +Bt )t≥0 is also a Brownian motion, issued from H .

Remark 3.0.6. Reduction to one-dimensional case.

From the definition, if X = (X t )t≥0 is d-dimensional with coordinates X t = (X 1
t , . . . , X d

t ) in Rd , then X
is a Brownian motion issued from the origin iff the following two properties hold true:

1. for all 1 ≤ i ≤ d , (X i
t )t≥0 is a Brownian motion issued from the origin

2. the processes (X 1
t )t≥0, . . . , (X d

t )t≥0 are independent.

3.1 Characterizations and martingales

Theorem 3.1.1. Characterization of BM by Gaussianity and covariance.

If X = (X t )t≥0 is real, continuous, issued from the origin, then X is a Brownian motion if and only if
X is a Gaussian process, centered, with covariance given by E(X t Xs) = s ∧ t for all s, t ≥ 0.

Proof.

1. Suppose that X = (X t )t≥0 is a Brownian motion issued from the origin, then for all 0 < t1 < ·· · < tn the
random variables X t1 , X t2 − X t1 , . . . , X tn − X tn−1 are Gaussian, centered, and independent, and X0 = 0,
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3.1 Characterizations and martingales 31

and (X t1 , X t2−X t1 , . . . , X tn−X tn−1 ) and (X t1 , . . . , X tn ) are (centered) Gaussian random vectors in the sense
that all linear combinations of their coordinates are Gaussian. Moreover, for all 0 ≤ s ≤ t , we have

E(Xs X t ) = E(Xs(X t −Xs))+E(X 2
s ) = 0+ s = s = s ∧ t .

2. Conversely, if X = (X t )t≥0 is a Gaussian process, centered, with E(Xs X t ) = s ∧ t for all s, t ≥ 0, then
for all 0 < t1 < ·· · < tn , the random vector (X t1 , X t2 − X t1 , . . . , X tn − X tn−1 ) is Gaussian, centered, with
diagonal covariance diag(t1, t2 − t1, . . . , tn − tn−1), which implies that (X t )t≥0 is a Brownian motion.

■

Corollary 3.1.2. Scale invariance by space-time scaling.

If B = (Bt )t≥0 is a BM on R, issued form the origin, then for all c ∈ (0,+∞),
(

1p
c

Bct

)
t≥0

is a BM.

Proof. The process
(

1p
c

Bct

)
t≥0

is continuous, Gaussian, centered, with same covariance as BM. ■

Theorem 3.1.3. Fourier and Laplace martingale characterizations of Brownian motion.

Let X = (X t )t≥0 be a d-dimensional continuous process issued from the origin.
The following properties are equivalent:

1. X is a Brownian motion

2. For all λ ∈Rd , (Mλ
t )t≥0 = (eiλ·X t+ |λ|2 t

2 )t≥0 is a martingalea for the natural filtration of X

3. For all λ ∈Rd , (Nλ
t )t≥0 = (eλ·X t− |λ|2 t

2 )t≥0 is a martingale for the natural filtration of X .

aThe notion of martingale remains valid for complex valued processes.

Proof. Let us define Gt = σ(Xs : s ∈ [0, t ]) for all t ≥ 0. The process X is a BM iff for all 0 ≤ s < t , X t − Xs is
independent of Gs and X t −Xs ∼N (0, (t − s)Id ), in other words if and only if for all 0 ≤ s < t and λ ∈Rd ,

E(eiλ·(X t−Xs ) |Gs) = e−
|λ|2(t−s)

2 .

By multiplying both sides by eiuZ for an arbitrary bounded Gs measurable random variable Z and taking the
expectation we get that X t−Xs is independent of Gs and X t−Xs ∼N (0, (t−s)Id ). This shows the equivalence
of the first two properties. The third property is the Laplace (instead of Fourier) transform version. ■

Definition 3.1.4. Brownian motion with respect to a filtration.

Let (Ω,F , (Ft )t≥0,P) be a filtered probability space. We say that a continuous d-dimensional process
X = (X t )t≥0 is an (Ft )t≥0 Brownian motion when it is (Ft )t≥0 adapted and for all t ≥ 0 and s ∈ [0, t ],
the increment X t − Xs is independent of Fs and follows the Gaussian law N (0, (t − s)Id ), which is
equivalent to say that for all λ ∈Rd , the process (exp(iλ ·X t + 1

2 |λ|2t ))t≥0 is an (Ft )t≥0-martingale.

Remark 3.1.5. Definitions of Brownian motion (BM).

If X = (X t )t≥0 is an (Ft )t≥0 BM, then X is a BM in the sense of Definition 3.0.1. Conversely, a BM
(X t )t≥0 in the sense of Definition 3.0.1 is an (Gt )t≥0 BM where Gt = σ(Xs : s ≤ t ) for all t ≥ 0 is the
natural filtration associated to X (see Theorem 3.1.3).
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Theorem 3.1.6. Martingale properties.

Let B = (Bt )t≥0 be an (Ft )t≥0 d-dimensional Brownian motion and let Bt = (B 1
t , . . . ,B d

t ) be the coor-
dinates of the random vector Bt . Then for all 0 ≤ s < t an 1 ≤ j ,k ≤ d ,

E(B j
t −B j

s |Fs) = 0 and E((B j
t −B j

s )(B k
t −B k

s ) |Fs) = (t − s)1 j=k .

As a consequence, for all 1 ≤ j ,k ≤ d ,

• (B j
t )t≥0 is a continuous (Ft )t≥0-martingale, provided that B0 ∈ L1

• (B j
t B k

t −1 j=k t )t≥0 is a continuous (Ft )t≥0-martingale, provided that B0 ∈ L2.

Actually it turns out that these properties characterize Brownian motion.

Proof. The first property follows from the fact that (B j
t )t≥0 is a BM. For the second property, we write

E((B j
t −B j

s )(B k
t −B k

s ) |Fs) = E((B j
t −B j

s )(B k
t −B k

s ))

= E((B j
t −B j

s ))E((B k
t −B k

s ))1 j ̸=k +E((B j
t −B k

s )2)1 j=k

= 0+ (t − s)1 j=k .

As a consequence, for all 0 ≤ s ≤ t and 1 ≤ j ,k ≤ d ,

E(B j
t |Fs) = B j

s = E(B j
s |Fs)

and
E(B j

t B k
t − t1 j=k |Fs) = B j

s B k
s − s1 j=k = E(B j

s B k
s − s1 j=k |Fs).

■

Up to now, we study BM but it is unclear if BM exists or not! Actually an explicit construction of BM is
given in Section 3.6. Other constructions are available, see for instance [13].

3.2 Variation of trajectories and quadratic variation

See Definition 1.7.1 (finite variation functions) and Definition 4.1.1 (quadratic variation of processes).

Theorem 3.2.1. Variation and quadratic variation of Brownian motion.

Let B = (Bt )t≥0 be a BM issued from the origin, let [u, v] be a finite interval, 0 ≤ u < v , and let δ be a
partition or sub-division of [u, v], δ : u = t0 < ·· · < tn = v , n ≥ 1. Let us consider the quantities

r1(δ) =
n−1∑
i=1

|Bti+1 −Bti | and r2(δ) =
n−1∑
i=0

|Bti+1 −Bti |2.

Then the following properties hold true:

1. lim|δ|→0 r2(δ) = v −u in L2 and thus in P, where |δ| = sup0≤i≤n(ti+1 − ti ). In other words, the
quadratic variation of B on a finite interval is equal to the length of the interval.

2. supδ∈P r1(δ) =+∞ almost surely, where P is the set of subdivision of [u, v]. In other words the
sample paths of B are almost surely of infinite variation on all intervals.

The second proprery implies that we cannot hope to define an integral
∫ b

a ϕt dBt (ω) with ϕ continuous
as in Theorem 1.7.2 because t 7→ Bt (ω) is of infinite variation on all intervals for almost all ω. However, and
following Itô, the first property will be the key to give a sort of L2 or inPmeaning to such stochastic integrals.

The quadratic variation of square integrable continuous martingales is considered in Theorem 4.1.4.
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3.3 Blumenthal zero-one law and its consequences on the trajectories 33

Proof. We could use Lemma 4.1.2 to get that the sample path of B have infinite variation on the time interval
[0, t ]. Let us be more precise by using the special explicit nature of Brownian motion.

1. If Z ∼N (0,1) then E(Z 4) = 3, hence

E((r2(δ))2) = E((∑
i
|Bti+1 −Bti |2

)2)
=∑

i
E(|Bti+1 −Bti |4)+2

∑
i< j

E(|Bti+1 −Bti |2|Bt j+1 −Bt j |2)

= 3
∑

i
(ti+1 − ti )2 +2

∑
i< j

(ti+1 − ti )(t j+1 − t j )

= 2
∑

i
(ti+1 − ti )2+(∑

i
(ti+1 − ti )

)2

= 2
∑

i
(ti+1 − ti )2 + (v −u)2.

Moreover E(r2(δ)) =∑
i (ti+1 − ti ) = v −u. Thus

E((r2(δ)− (v −u))2) = 2
∑

i
(ti+1 − ti )2 ≤ 2max

i
(ti+1 − ti )(v −u) −→

|δ|→0
0.

2. From the first part, there exists a sequence of subdivisions (δk )k of [u, v] such that

lim
k→∞

r2(δk ) = lim
k→∞

∑
i
|Bt k

i+1
−Bt k

i
|2 = v −u almost surely

and thus, almost surely,

sup
δ

r1(δ) ≥ r1(δk ) =∑
i
|Bt k

i+1
−Bt k

i
| ≥

∑
i |Bt k

i+1
−Bt k

i
|2

maxi |Bt k
i+1

−Bt k
i
| −→

k→∞
+∞,

where used the fact that almost surely, maxi |Bt k
i+1

−Bt k
i
| → 0 as k → ∞ since B• is continuous and

hence uniformly continuous on every compact interval such as [u, v] (Heine theorem).

■

3.3 Blumenthal zero-one law and its consequences on the trajectories

This can be skipped at first reading.

Theorem 3.3.1: Properties of Brownian trajectories

If B = (Bt )t≥0 is a one-dimensional BM on R issued form the origin, and Ft =σ(Bs : s ∈ [0, t ]),
then:

1. Blumenthala 0-1 law. The σ-algebra F0+ =∩t>0Ft is trivial: for all A ∈F0+ , P(A) ∈ {0,1}

2. Almost surely, for all ε> 0, infs∈[0,ε] Bs < 0 and sups∈[0,ε] Bs > 0

3. For all a ∈R, almost surelyb, Ta = inf{t ≥ 0 : Bt = a} <∞
4. Almost surelyc, limt→∞ Bt =−∞ and limt→∞ Bt =+∞
5. Almost surely, the function t ∈R+ → Bt is not monotone on any non singleton interval.

aNamed after Robert McCallum Blumenthal (1931 – 2012), American mathematician.
bHowever Ta is not bounded, see Remark 2.5.4.
cThis does not imply that a.s. limt→∞ |Bt | = +∞.
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34 3 Brownian motion

Proof.

1. The idea is to show that F0+ is independent of itself. For all A ∈ F0+ , all k ≥ 1, all bounded
continuous f :Rk →R, and all 0 < t1 < ·· · < tk , we have

E(1A f (Bt1 , . . . ,Btk )) = lim
ε→0+E(1A f (Bt1 −Bε, . . . ,Btk −Bε)).

Now when 0 < ε< t1, the random variables Bt1−Bε, . . . ,Btk−Bε are independent of Fε (structure
of the increments of simple Markov property), and thus independent of F0+ . It follows that

E(1A f (Bt1 , . . . ,Btk )) = lim
ε→0+P(A)E( f (Bt1 −Bε, . . . ,Btk −Bε)) =P(A)E( f (Bt1 , . . . ,Btk )).

Hence F0+ is independent of σ(Bt1 , . . . ,Btk ) for all ti ’s, and thus is independent of σ(Bt , t > 0).
But σ(Bt , t > 0) =σ(Bt , t ≥ 0) since B0 = 0. It remains to note that F0+ ⊂σ(Bt , t ≥ 0).

2. For the statement with the sup, it suffices to show that P(A) = 1 where

A =⋂
n

{
sup

s∈[0,1/n]
Bs > 0

}
.

We can restrict the intersection to n ≥ N for an arbitrary large threshold N , therefore A ∈F0+ .
Next, thanks to the Blumenthal zero-one law, it suffices to show that P(A) > 0. Now

P
(

sup
s∈[0,1/n]

Bs > 0
)

↘
n→∞

P(A)

while

P
(

sup
s∈[0,1/n]

Bs > 0
)
≥P(B1/n > 0) = 1

2
,

giving P(A) ≥ 1/2 and thus P(A) = 1. The statement with inf follows by using −B instead of B .

3. Thanks to the previous property,

P
(

sup
s∈[0,1]

Bs > ε
)
↗
ε→0

P
(

sup
s∈[0,1]

Bs > 0
)
= 1.

But by the scale invariance (Corollary 3.1.2),

P
(

sup
s∈[0,1]

Bs > ε
)
=P

(
sup

s∈[0,ε−2]
ε−1Bε2s > 1

)
=P

(
sup

s∈[0,ε−2]
Bs > 1

)
Now, since

P
(

sup
s∈[0,ε−2]

Bs > 1
)
↗
ε→0

P
(

sup
s≥0

Bs > 1
)
,

we get

P
(

sup
s≥0

Bs > 1
)
= 1.

Again by scaling, we obtain, for all R > 0, and also by replacing B by −B ,

P
(

sup
s≥0

Bs > R
)
= 1 and P

(
inf
s≥0

Bs <−R
)
= 1.

This implies that for all a ∈R, almost surely Ta <∞.

4. This is implied directly by the end of the proof of the previous item.

5. From the item about the inf and sup, and the structure of increments, we have, almost surely,
for all t ∈Q∩R+ and all ε> 0, infs∈[t ,t+ε] Bs < Bt and sups∈[t ,t+ε] Bs > Bt , hence the result.

■
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Corollary 3.3.2: Law of hitting time via Laplace transform

Let (Bt )t≥0 be a one-dimensional Brownian motion with B0 = 0. For all a > 0, let us consider
the hitting time Ta = inf{t ≥ 0 : Bt = a}, which is almost surely finite thanks to Theorem 3.3.1.

Then its Laplace transform is given by λ≥ 0 7→ E(e−λTa ) = e−a
p

2λ, and it has density

t ∈R+ 7→ a
p

2πt
3 e−

a2

2t .

Proof. For all c > 0 and n, the Doob stopping (Theorem 2.5.1) with the martingale (ecBt− c2

2 t )t≥0 and

the bounded stopping time Ta ∧n gives E(ecBTa∧n− c2

2 (Ta∧n)) = 1. Now, since ecBTa∧n− c2

2 (Ta∧n) ≤ eca ,

we get, by dominated convergence, E(ecBTa − c2

2 Ta ) = 1. Next, since B has almost surely continuous
trajectories, we have BTa = a almost surely, and this gives the formula for the Laplace transform. The
formula for the density follows then by the inversion formula for the Laplace transform. ■
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3.4 Strong law of large numbers, invariance by time inversion, law of iterated logarithm

The nature of the increments of Brownian motion leads to formulate the following theorem.

Theorem 3.4.1. Strong law of large numbers.

If (Bt )t≥0 is BM on Rwith B0 = 0 then lim
t→∞

Bt

t
= 0 almost surely and in Lp for all p ∈ [1,∞).

The central limit theorem would be the trivial statement
p

t Bt
t

law−→
t→∞ N (0,1).

The a.s. remains valid for an arbitrary B0, and the Lp convergence if B0 ∈ Lp .

Proof. Since for all t > 0 and all p > 0, E
(∣∣∣Bt

t

∣∣∣p)
= E(|B1|p )

t p/2 and B1 ∼N (0,1), we have immediately

Bt

t
Lp

−→
t→∞ 0 and in particular

Bt

t
P−→

t→∞ 0.

To get the almost sure convergence, we need some tightness, a control of tails that can be done via moments.
Let us prove the a.s. convergence. Let a and b be real numbers such that 0 < a < b. We have

E

(
sup

a≤t≤b

(
Bt

t

)2)
≤ 1

a2 E

(
sup

a≤t≤b
B 2

t

)
.

The Doob maximal inequality of Theorem 2.5.7 applied to the martingale (Ba+t )t>0 on [0,b −a] yields

E

(
sup

a≤t≤b

(
Bt

t

)2)
≤ 1

a2 4E(B 2
b) = 4b

a2 .

Applying this to a = 2n and b = 2n+1 we obtain

E

(
sup

2n≤t≤2n+1

(
Bt

t

)2)
≤ 8

2n

Thus, by the Markov inequality, for any ε> 0,

P

(
sup

2n≤t≤2n+1

∣∣∣∣Bt

t

∣∣∣∣> ε)≤ 1

ε2 E

(
sup

2n≤t≤2n+1

(
Bt

t

)2)
≤ 8

2nε2 ,

which gives
∞∑

n=0
P

(
sup

2n≤t≤2n+1

∣∣∣∣Bt

t

∣∣∣∣> ε)<∞.

Now, according to the Borel – Cantelli lemma, there exists an almost sure event Aε such that for all ω ∈ Aε,

there exists a threshold nω such that for all n ≥ nω, sup2n≤t≤2n+1

∣∣∣Bt (ω)
t

∣∣∣≤ ε. Thus, for all ε> 0, there exists an

a.s. event Aε such that for all ω ∈ Aε, there exists tω, such that for all t ≥ tω,∣∣∣∣Bt (ω)

t

∣∣∣∣≤ ε.

It remains to consider the almost sure event A =⋂∞
r=1 A1/r , on which limt→∞ Bt

t = 0. ■

Corollary 3.4.2. Invariance by time inversion.

If B = (Bt )t≥0 is a BM on Rwith B0 = 0 then X = (tB1/t )t≥0 with the convention X0 = 0 is also BM.

Proof. The process X is Gaussian, centered, with E(Xs X t ) = s ∧ t for all s, t ≥ 0. It remains to prove that X is
continuous. By definition X is continuous on (0,∞). It remains to prove the almost sure continuity at t = 0.
This follows from Theorem 3.4.1, namely, almost surely, limt→0+ X t = limt→0+ tB1/t = limt→+∞ Bt

t = 0. ■
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Theorem 3.4.3. Law of Iterated Logarithm.

If (Bt )t≥0 is a Brownian motion on R then

P
(

lim
t↘0

Bt√
2t log(log(1/t ))

=−1, lim
t↘0

Bt√
2t log(log(1/t ))

= 1
)
= 1

and

P
(

lim
t→∞

Bt√
2t log(log(t ))

=−1, lim
t→∞

Bt√
2t log(log(t ))

= 1
)
= 1.

This can be skipped at first reading.

Proof. The second property follows from the first one by using invariance by time inversion (Corol-
lary 3.4.2). Let us prove the first property. We can assume without loss of generality that B0 = 0. Since
the intersection of two almost sure events is almost sure, and since the law of B is symmetric in the
sense that −B and B have same law, it follows that it suffices to show that

P
(

lim
t↘0

Bt√
2t log(log(1/t ))

= 1
)
= 1.

Let us first prove that

P
(

lim
t↘0

Bt√
2t log(log(1/t ))

≤ 1
)
= 1. (⋆)

Let us define h(t ) =√
2t log(log(1/t )). For all α> 0 and β> 0, the Doob maximal inequality of Theo-

rem 2.5.7 used for the “exponential” martingale (eαBt− α2

2 t )t≥0 gives, for all t ≥ 0,

P
(

max
s∈[0,t ]

(
Bs − α

2
s
)
>β

)
=P

(
max
s∈[0,t ]

eαBs− α2

2 s ≥ eαβ
)
≤ e−αβ.

For all θ,δ ∈ (0,1) and n ≥ 1, this inequality with t = θn , α= (1+δ)h(θn)/θn and β= h(θn)/2 gives

P
(

max
s∈[0,θn ]

(
Bs − (1+δ)h(θn)

2θn s
)
> h(θn)

2

)
=On→∞(n−(1+δ)).

By the Borel – Cantelli lemma, we get that for almost allω ∈Ω, there exists nω such that for all n ≥ nω,

max
s∈[0,θn ]

(
Bs − (1+δ)h(θn)

2θn s
)
≤ 1

2
h(θn).

This inequality implies that for all t ∈ [θn+1,θn],

Bt (ω) ≤ max
s∈[0,θn ]

Bs(ω) ≤ 1

2
(2+δ)h(θn) ≤ (2+δ)h(t )

2
p
θ

.

Therefore

P
(

lim
t↘0

Bt√
2t log(log(1/t ))

≤ 2+δ
2
p
θ

)
= 1.

Now we let θ→ 1 and δ→ 0 to get (⋆). It remains to prove that

P
(

lim
t↘0

Bt√
2t log(log(1/t ))

≥ 1
)
= 1.

For that, for all n ≥ 1 and θ ∈ (0,1), we define the event

An = {ω ∈Ω : Bθn (ω)−Bθn+1 (ω) ≥ (1−
p
θ)h(θn)}.
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We have, denoting an = (1−p
θ)h(θn)/(θn/2

p
1−θ),

P(An) = 1p
2π

∫ ∞

an

e−
u2

2 du ≥ an

1+a2
n

e−
a2

n
2 =On→∞

(
n− 1+θ−2

p
θ

1−θ
)
.

Thus
∑

n≥1P(An) = +∞. Now the independence of the increments of B and the Borel – Cantelli
lemma give that almost surely, for an infinite number of values of n, we have

Bθn −Bθn+1 ≥ (1−
p
θ)h(θn).

But the first part of the proof gives, for almost all ω ∈Ω, that there exists nω such that for all n ≥ nω,

Bθn+1 >−2h(θn+1) ≥−2
p
θh(θn).

Therefore, almost surely, for an infinite number of values of n, we have

Bθn > h(θn)(1−3
p
θ).

This gives

P
(

lim
t↘0

Bt√
2t log(log(1/t ))

≥ 1−3
p
θ
)
= 1.

It remains to send θ to 0. Note that this proof uses both sides of the Borel – Cantelli lemma. ■

Corollary 3.4.4. Regularity of Brownian motion sample paths.

If (Bt )t≥0 is a Brownian motion on R then for all s ≥ 0, we have

P
(

lim
t↘0

Bt+s −Bs√
2t log(log(1/t ))

=−1, lim
t↘0

Bt+s −Bs√
2t log(log(1/t ))

= 1
)
= 1.

In particular almost surely the sample paths t ∈R+ 7→ Bt of B are not 1
2 -Höldera continuous on finite

intervals and in particular are nowhere differentiable on R+.

a f : I →R is γ-Hölder continuous when (∀ε> 0)(∃η> 0)(∀s, t ∈ I )(|s − t |γ ≤ η⇒| f (s)− f (t )| ≤ ε).

Proof. Follows from Theorem 3.4.3 and the fact that (Bt+s −Bs)t≥0 and (Bt )t≥0 have same law. ■

3.5 Strong Markov property, reflection principle, hitting time

If (Bt )t≥0 is BM then we easily check that for all fixed T > 0, the process (Bt+T −BT )t≥0 is a BM, issued
form the origin, independent of FT . This is the simple Markov property. It extends to stopping times T :

Theorem 3.5.1. Strong Markova property.

aNamed after Andrey Markov (1856 – 1922), Russian mathematician.

If B = (Bt )t≥0 is a d-dimensional Brownian motion issued from the origin, then for all stopping time
T such that P(T <∞) > 0, under the probability measure P(· | T <∞), the following properties hold:

1. ((Bt+T −BT )1{T<∞})t≥0 is a Brownian motion issued from the origin, independent of FT

2. For all measurable and bounded f :Rd →R, we have, for all t > 0,

E( f (Bt+T )1{T<∞} |FT ) = Pt ( f )(BT )1{T<∞}

where

Pt ( f )(x) = E( f (x +Bt )) = 1

(
p

2πt )d

∫
Rd

e−
|x−y |2

2t f (y)dy = (pt ∗ f )(x).
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3.5 Strong Markov property, reflection principle, hitting time 39

We say then that Brownian motion is a strong Markov process.

Proof. Suppose first that P(T <∞) = 1. Let us define B∗ = (BT+t −BT )t≥0. For all n ≥ 1, let us define

Tn = ∑
k≥0

k +1

2n 1T∈[
k

2n , k+1
2n

).
We have that T ≤ Tn , and Tn takes its values in the set of dyadics Dn = {k/2n : k ≥ 0}. We check easily that
Tn is a stopping time, and that Tn ↘ T as n → ∞. Let A ∈ FT , m ≥ 0, and 0 = t0 < ·· · < tm < ∞. By the
dominated convergence theorem, we have, for all continuous and bounded ϕ : (Rd )m →R,

E(1Aϕ(B∗
t1

, . . . ,B∗
tm

)) = E(1Aϕ(Bt1+T −BT , . . . ,Btm+T −BT ))

= lim
n→∞E(1Aϕ(Bt1+Tn −BTn , . . . ,Btm+Tn −BTn )).

Moreover, for all n ≥ 1, we have A ∈FT ⊂FTn since T ≤ Tn and, using the fact that A ∈FTn ,

E(1Aϕ(Bt1+Tn −BTn , . . . ,Btm+Tn )) = ∑
r∈Dn

E(1A∩{Tn=r }ϕ(Bt1+r −Br , . . . ,Btm+r −Br ))

= ∑
r∈Dn

E(1A∩{Tn=r }E(ϕ(Bt1+r −Br , . . . ,Btm+r −Br ) |Fr ))

= ∑
r∈Dn

P(A∩ {Tn = r })E(ϕ(Bt1+r −Br , . . . ,Btm+r −Br ))

=P(A)E(ϕ(Bt1 −B0, . . . ,Btm −B0)).

This implies the first property since (Bt −B0)t≥0 is a Brownian motion issued from the origin. Note that
this proves in the same time the fact that B∗ has the law of B and is independent of FT . To prove only the
identity in law, we can remove 1A in other words take A =Ω.

The second property follows immediately from the first one, namely since for all t ≥ 0, B∗
t is independent

of FT while BT is measurable with respect to FT we get, using Remark 1.5.2,

E( f (Bt+T ) |FT ) = E( f (B∗
t +BT ) |FT ) = g t (BT )

where
g t (x) = E( f (x +B∗

t )) = E( f (x +Bt )) = (pt ∗ f )(x).

Finally, for a T taking values in [0,+∞], the same argument works with A replaced by A∩ {T <∞}. ■

This can be skipped at first reading.

Corollary 3.5.2: Reflection principle

Let B be a one-dimensional Brownian motion issued from the origin. For all t ≥ 0, let us define
St = sups∈[0,t ] Bs . Then, for all t ≥ 0, the following properties hold:

• For all a ≥ 0 and all b ∈ (−∞, a], P(St ≥ a,Bt ≤ b) =P(Bt ≥ 2a −b).

• The random variables St and |Bt | have same law.

The reflection principle simply says that on the event {Ta ≤ t }, the probability of being, at time t ,
below level b = a− (a−b), is equal to the one of being above level a+ (a−b), hence the name. This is
related to the fact that the process after time Ta is again BM, which has a symmetric law.

Proof.

• We know from Theorem 3.3.1 that Ta = inf{t ≥ 0 : Bt = a} <∞ almost surely. We have

P(St ≥ a,Bt ≤ b) =P(Ta ≤ t ,Bt ≤ b) =P(Ta ≤ t ,B ′
t−Ta

≤ b −a)

with B ′
t = BTa+t − BTa , where we have used in the last step B ′

t−Ta
= BTa+t−Ta − BTa = Bt − a
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which makes sense on {Ta ≤ t }. Now by the strong Markov property (Theorem 3.5.1), B ′ is
independent of Ta and has the same law as B . Since B ′ and −B ′ have same law, it follows that
(Ta ,B ′) has the same law as (Ta ,−B ′). Also

P(Ta ≤ t ,B ′
t−Ta

≤ b −a) =P(Ta ≤ t ,−B ′
t−Ta

≤ b −a)

=P(Ta ≤ t ,−(Bt −a) ≤ b −a)

=P(Ta ≤ t ,Bt ≥ 2a −b)

=P(Bt ≥ 2a −b)

where we have use in the last step the fact that {Ta ≤ t } contains a.s. {Bt ≥ 2a −b}.

• Follows from the first identity with b = a, the inequality Bt ≤ St , and the fact that Bt and −Bt

have same law, which give, for all a ≥ 0,

P(St ≥ a) =P(St ≥ a,Bt ≤ a)+P(St ≥ a,Bt ≥ a)

=P(Bt ≥ a)+P(Bt ≥ a)

=P(Bt ≥ a)+P(Bt ≤−a)

=P(|Bt | ≥ a).

■

Corollary 3.5.3: Densities

Let (Bt )t≥0 be a one-dimensional Brownian motion issued from the origin.

• For all t > 0, the law of the couple (sups∈[0,t ] Bs ,Bt ) has density

(a,b) ∈R2 7→ 2(2a −b)p
2πt 3

e−
(2a−b)2

2t 1a≥0,b≤a .

• For all a ∈R, the law of Ta = inf{t ≥ 0 : Bt = a} is equal to the law of a2

B 2
1

with density

t ∈R 7→ |a|p
2πt 3

e−
a2

2t 1t>0.

See Corollary 3.3.2 for the law of Ta via stopped martingales instead of Markov property.

The law of Ta is known as the Lévy or Bachelier distribution.
It is, up to scaling by a2, an inverse χ2 distribution.

Proof.

• Direct consequence of Corollary 3.5.2.

• Thanks to Corollary 3.5.2, we have, for all t ≥ 0, denoting St = sups∈[0,t ] Bs ,

P(Ta ≤ t ) =P(St ≥ a) =P(|Bt | ≥ a) =P(B 2
t ≥ a2) =P(tB 2

1 ≥ a2) =P(a2/B 2
1 ≤ t ).

■

3.6 A construction of Brownian motion

A natural and intuitive idea to construct Brownian motion is to try to realize it as a scaling limit of a ran-
dom walk with Gaussian increments. More precisely, if (Xn)n≥1 are independent and identically distributed
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real random variables with law N (0,1), then this would consist for all n ≥ 1 to define the Gaussian process
(X n

t )t≥0 obtained by linear interpolation as

X n
t = X1 +·· ·+X⌊nt⌋p

n
∼N

(
0,

⌊nt⌋
n

)
,

and to consider the limit in law of (X n
t1

, . . . , X n
tk

) as n →∞, for all k ≥ 1 and 0 ≤ t1 ≤ ·· · ≤ tk . Actually X n
t is a

good approximation for numerical simulation. The central limit phenomenon suggests that the Brownian
motion scaling limit is the same if we start from non Gaussian ingredients: we only need zero mean and
unit variance. Such a functional central limit phenomenon is known as the Donsker invariance principle.
From this point of view, Brownian motion is just a universal Gaussian limiting object.

Beyond intuition, the mathematical existence of Brownian motion is not obvious. Historically, Norbert
Wiener seems to be the first scientist to give a rigorous construction, around 1923, and for this reason,
Brownian motion is sometimes called the Wiener process. For more information on history, see [18, 8].

The construction of Brownian motion provided below is based on another very natural idea: by seeing
Brownian motion as an infinite family of orthogonal Gaussian random variables, we could start from our
favorite infinite dimensional Hilbert space, such as L2(R,dx), and construct a Gaussian random variable by
using a linear combination of the elements of a Hilbert basis with Gaussian i.i.d. weights. This will produce
a Gaussian process with the desired covariance. It will then remain to obtain the continuity, which can be
done by using a general tightness criterion on the increments due to Kolmogorov.

Theorem 3.6.1. Pre-Brownian motion or Gaussian measures.

Let us consider the Hilbert space G = L2(R,dx) and

〈 f , g 〉G =
∫

f (x)g (x)dx, f , g ∈G .

Then there exists a centered Gaussian family B̃ = (B̃g )g∈G defined on a probability space (Ω,A ,P)

such that g ∈ G 7→ B̃g ∈ L2(Ω,A ,P) is a linear isometry, in other words for all f , g ∈ G and α,β ∈R,

E(B̃ f B̃g ) = 〈 f , g 〉G and B̃α f +βg =αB̃ f +βB̃g .

Proof. Let (Xn)n≥0 be i.i.d. real random variables with law N (0,1), defined on a probability space (Ω,A ,P),
and let (en)n≥0 be an orthonormal sequence of the Hilbert space G = L2(R,dx). For all g ∈ G, the series

B̃g =
∞∑

n=0
Xn〈g ,en〉G

is well defined in L2(Ω,A ,P). Indeed the Cauchy criterion is satisfied:

E
(( p+q∑

n=p
Xn〈g ,en〉G

)2)= p+q∑
n=p

〈g ,en〉2
G −→

p,q→∞ 0.

We see from Lemma 3.6.2 that B̃ is a centered Gaussian random variable and that

∥B̃g∥2 = E((B̃g )2) = 〈g , g 〉G = ∥g∥2
G

hence g 7→ B̃g is an isometry. Its linearity is immediate. By polarization we get, for all f , g ∈ G,

4E(B̃ f B̃g ) = E((B̃ f + B̃g )2)−E((B̃ f − B̃g )2) = E(B̃ 2
f +g )−E(B̃ 2

f −g ) = ∥∥ f + g
∥∥2

G −∥∥ f − g
∥∥2

G = 〈 f , g 〉G.

The sub-space H = span{B̃g : g ∈ G} of L2(Ω,A ,P) is isomorphic via g 7→ B̃g to G = L2(R,dx).
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Lemma 3.6.2. Convergence of Gaussians.

If (Xn)n are Gaussian real random variables with Xn
P−→

n→∞ X for a random variable X , then the conver-

gence holds in Lp for all p ≥ 1, X ∼N (m,σ2), limn→∞E(Xn) = m, and limn→∞E((Xn −E(Xn))2) =σ2.

Proof of Lemma 3.6.2. Let us show now that X is Gaussian. Since Xn → X in law, we get, for all t ∈ R,

ϕXn (t ) = eitmn− t2

2 σ
2
n → ϕX (t ). Thus, for all ε > 0, |ϕXn (ε)| = exp(− ε2

2 σ
2
n) → |ϕX (ε)|. Since ϕX is a charac-

teristic function, it is non vanishing in a neighborhood of the origin, and thus σn → σ∗ for some σ∗ ≥ 0. It
follows in turn that for all t ∈R, eitmn → eitm∗ for some m∗. Now by dominated convergence,

p
2πe−

m2
n

2 =
∫
R

eitmn e−
t2

2 dt −→
n→∞

∫
R

eitm∗e−
t2

2 dt =p
2πe−

m2∗
2

thus mn → m∗. Hence X ∼ N (m∗,σ2∗), and (m∗,σ2∗) = (m,σ2). Finally, for all p ≥ 1, since E(|Xn |p ) is a
continuous function of mn and σn , it is bounded in n, thus (Xn)n is u.i. and therefore Xn → X in Lp . ■

■

With B̃ being as in Theorem 3.6.1, let us define, for all t ≥ 0, the random variable

Bt = B̃1[0,t ] .

Now B = (Bt )t≥0 is a centered Gaussian process, with covariance given for all s, t ≥ 0 by

E(BsBt ) = 〈1[0,s],1[0,t ]〉L2(R,dx) = s ∧ t .

However the “pre-BM” B has no reason to be continuous. Let us remark however that for all 0 ≤ s < t ,

Bt −Bsp
t − s

∼N (0,1), thus1 E((Bt −Bs)2n) = cn(t − s)n .

The fourth moment case n = 2 allows, thanks to Theorem 3.6.3 below (p = 4, ε = 1, γ < ε/p = 1/4), to
construct a continuous modification B∗ of B , which is a Brownian motion on R issued from the origin.
Moreover using the higher moments for all values of n gives the optimal Hölder regularity: γ< n−1

2n → 1
2 .

Theorem 3.6.3. Kolmogorov continuity criterion.

Let X = (X t )t≥0 be a process defined on a probability space (Ω,A ,P) taking its values in a Banach
space B with norm ∥·∥, and such that the following tightness of increments property holds: there
exist p ≥ 1, ε> 0, and c > 0 such that for all s, t ≥ 0,

E(∥X t −Xs∥p ) ≤ c|t − s|1+ε.

Then there exists a modificationa of X that is a continuous process whose trajectories are, on each
finite interval, γ-Hölder continuous for all γ ∈ [0,ε/p), in the sense that a.s. for all t > 0, there exists a
constant C =C (ω, t ) > 0 such that for all u, v ∈ [0, t ] and all η, if |u − v | ≤ η then |Xu −Xv | ≤Cηγ.

aThere exists X∗ = (X∗
t )t≥0 such that for all t ≥ 0, Xt = X∗

t as random variables in other words almost surely.

Proof. It suffices to prove the result on a finite time interval [0, t ]. Let us first show that X is Hölder contin-
uous on the dyadics D =∪n≥0Dn where Dn = {tk/2n : k ∈ {0, . . . ,2n}} ⊂Dn+1. For notation simplicity we take
t = 1. For all n ≥ 1, all ε> 0, and all γ> 0, the Markov inequality gives

P

(
max

1≤k≤2n
∥X k

2n
−X k−1

2n
∥ ≥ 2−γn

)
≤

2n∑
k=1

P
(
∥X k

2n
−X k−1

2n
∥ ≥ 2−γn

)
1We have cn = E(Z 2n ) = (2n)!

2n n! where Z ∼N (0,1) but this explicit formula for cn is useless for our purposes.
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≤
2n∑

k=1
2γpnE

(
∥X k

2

n −X k−1
2n

∥p
)

≤ c2n2−n(1+ε)+γpn = c2−n(ε−γp).

Now, by taking ε> γp we get
∞∑

n=1
P( max

1≤k≤2n
∥X k

2n
−X k−1

2n
∥ ≥ 2−γn) <∞.

Thus, the Borel – Cantelli lemma provides A ∈ A such that P(A) = 1 and for all ω ∈ A, there exists nω such
that for all n ≥ nω, we have max1≤k≤2n ∥X k

2n
−X k−1

2n
∥ ≤ 2−γn . Hence there exists a random variable C such that

C <∞ a.s. and max
1≤k≤2n

∥X k
2n

−X k−1
2n

∥ ≤C 2−γn .

Let us prove that on A, the paths of X are γ-Hölder continuous on D, Let s, t ∈ D with s ̸= t and n ≥ 0 such
that |s− t | ≤ 2−n . Let (sk )k≥1 be increasing, with sk = s for k large enough (stationarity), and sk ∈Dk for all k.
Let (tk )k≥1 be a similar sequence for t , such that sk and tk are neighbors in Dn for all k. Then

X t −Xs =
∞∑

k=n
(X tk+1 −X tk )+Xsn −X tn −

∞∑
k=n

(Xsk+1 −Xsk ),

where the sums are actually finite since the sequences are stationary. Now

∥X t −Xs∥ ≤
∞∑

k=n
∥X tk −X tk+1∥+∥Xsn −X tn∥+

∞∑
k=n

∥Xsk+1 −Xsk∥,

and thus

∥X t −Xs∥ ≤C 2−γn +2
∞∑

k=n
C 2−γ(k+1) ≤ 2C

∞∑
k=n

2−γk ≤ 2C

1−2−γ 2−γn ,

meaning that |s − t | ≤ 2−n implies ∥X t −Xs∥ ≤C ′2−γn for some random variable C ′. Thus, on A, the sample
paths of X are γ-Hölder continuous on D. The set D is dense in R+. Now for all ω ∈ A, let t 7→ X ∗

t (ω) be the
unique continuous function2 agreeing with t 7→ X t (ω) on D.

It remains to show that X ∗ is a modification of X . By construction, X t = X ∗
t for all t ∈D. Let t ∈R+. Since

D is dense in R+, there exists (tn)n in D with limn→∞ tn = t , thus limn→∞ X tn = X t in Lp ((Ω,A ,P), (B,∥·∥))
thanks to the hypothesis. Hence there exists a subsequence (tnk )k such that limk→∞ X tnk

= X t almost surely
(here we use (B,∥·∥)). Finally, the continuity of X ∗ gives X tnk

= X ∗
tnk

→ X ∗
t = X t almost surely as k →∞.

■

Corollary 3.6.4. Existence.

One-dimensional Brownian motion exists, and thus d-dimensional Brownian motion for all d ≥ 1.
Moreover, almost surely, the trajectories of real Brownian motion are, on each finite time interval,
Hölder continuous of order γ for all γ ∈ (0,1/2), not more.

Proof. Theorem 3.6.3 with p = 2n and n →∞ gives γ ∈ (0,1/2), while Theorem 3.4.4 gives the optimality. ■

3.7 Wiener measure, canonical Brownian motion

Let (Bt )t≥0 be an arbitrary d-dimensional Brownian motion issued from 0, and defined on a probability
space (Ω,A ,P). Since (Bt )t≥0 is a continuous process, we know, from Theorem 2.1.3, that we can consider
(Bt )t≥0 as a random variable from (Ω′,A ′,P) to (W,BW) where W =C (R+,Rd ) is equipped with the topology
of uniform convergence on every compact subset of R+ and where BW is the associated Borel σ-algebra.

As a random variable on trajectories, Brownian motion is not unique. We can construct an infinite num-
ber of versions of it. What is unique is its law µ. This law is known as the Wiener measure. There exists how-
ever a special realization of Brownian motion as a random variable, which is called the canonical Brownian

2We can use here the following general property of metric spaces: if S and T are metric spaces with S complete, if D is a dense
subset of S, and if f : D → T is uniformly continuous, then there exists a unique continuous f̃ : S → T that agrees with f on D .
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motion, defined on a canonical space (W,BW ,µ). Namely, on the probability space (W =C (R+,Rd ),Bw ,µ),
where µ is the Wiener measure, let us consider the coordinates process π= (πt )t≥0 defined by

πt (w) = wt

for all t ≥ 0 and w ∈C (R+,Rd ). Under µ, the process π is a d-dimensional Brownian motion issued from the
origin. It is called the canonical Brownian motion.

Theorem 3.7.1. Wiener measure.

There exists a unique probability measure µ on the canonical space (W,Bw), called the Wiener mea-
sure, such that for all n ≥ 1, 0 < t1 < ·· · < tn , A1, . . . , An ∈BRd ,

µ({w ∈ W : wt1 ∈ A1, . . . , wtn ∈ An}) =
∫

A1×···×An

pt1−t0 (x1 −x0) · · ·ptn−tn−1 (xn −xn−1)dx1 · · ·dxn

where t0 = 0, x0 = 0, p is the heat or Gaussian kernel defined for all t > 0 and x ∈Rd by

pt (x) = e−
|x|2
2t

(
p

2πt )d
.

Moreover for all d-dimensional Brownian motion B = (Bt )t≥0 issued from the origin, we have, for all
measurable and bounded or positive Φ : W →R,

E(Φ(B)) =
∫

W
Φ(w)µ(dw).

Proof. We know how to construct a d-dimensional Brownian motion B = (Bt )t≥0 issued form the origin. If µ
is the law of B seen as a random variable taking values on the canonical space (W,BW), then it is immediate
to get the first desired property since

µ(Bt1 ∈ A1, . . . ,Btn ∈ An) =µ({w ∈ W : wt1 ∈ A1, . . . , wtn ∈ An}).

Finally µ is unique because it is entirely determined on the family C of cylindrical subsets of W, which is
stable by finite intersections and generates BW (monotone class argument, Corollary 1.8.4). ■

Recall that a notion of density of Wiener measure would require a notion of Lebesgue measure on
Wiener space, which is missing3.

3It can be shown that on an infinite-dimensional separable Banach space equipped with its Borel σ-algebra, the only locally
finite and translation-invariant Borel measure is the trivial measure identically equal to zero. Equivalently, every translation-
invariant measure that is not identically zero assigns infinite measure to all open subsets. See for instance https://en.
wikipedia.org/wiki/Infinite-dimensional_Lebesgue_measure and references therein.
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Chapter 4

More on martingales

For simplicity, this chapter is about continuous processes only.

4.1 Quadratic variation, square integrable martingales, increasing process

Definition 4.1.1. Quadratric variation if square integrable processes.

Let X = (X t )t≥0 be a square integrable real process such that X0 = 0. The quadratic variation process
[X ] = ([X ]t )t≥0 of X is defined for all t ≥ 0 by the limit (when it exists)

[X ]t =
P

lim
|δ|→0

∑
k

(X tk+1 −X tk )2

where the convergence takes place in probability, and where δ : 0 = t0 < ·· · < tn = t , n = nδ ≥ 1, runs
over all the partitions or sub-divisions of [0, t ], and where |δ| = max1≤k≤n |tk+1 − tk | is the mesh of
δ. More generally, the quadratic covariation process of a couple of square integrable real processes
X = (X t )t≥0 and Y = (Yt )t≥0 is defined for all t ≥ 0 by the following limit when it exists:

[X ,Y ]t =
P

lim
|δ|→0

∑
k

(X tk+1 −X tk )(Ytk+1 −Ytk ).

We have [X ] = [X , X ]. The set of processes with quadratic variation is a vector space. The operator [·] is
bilinear on this space and we have by polarization [X ,Y ] = 1

4 ([X +Y ]− [X −Y ]).

We use convergence in probability because we do not know if the process has high enough moments.
Recall that for Brownian motion we have used the fourth moment for L2 convergence of quadratic variation.

Theorem 3.2.1 states that for a BM B , we have, for all t ≥ 0, [B ]t = t . Theorem 4.1.4 states that for all any
square integrable continuous martingale M issued form the origin, for all t ≥ 0, E([M ]t ) = E(M 2

t ).

Lemma 4.1.2. Continuity and finite variation implies zero quadratic variation.

If a process X = (X t )t≥0 is continuous and has finite variation then it has zero quadratic variation. In
other words, for a continuous process, non-zero quadratic variation implies infinite variation.

On the same topic, Lemma 4.1.6 states that a finite variation continuous martingale is constant.

Proof. Indeed, for all t > 0 and all partition δ : 0 = t0 < ·· · < tn = t of [0, t ], n = nδ ≥ 1,∑
k

(X tk+1 −X tk )2 ≤ max
k

|X tk+1 −X tk |
∑
k
|X tk+1 −X tk | −→|δ|→0

0.

The max part of the right hand side tends to 0 since X is continuous and thus uniformly continuous (Heine),
while the

∑
part is bounded by the 1-variation of X on [0, t ] which is finite since X has finite variation. ■

45/61



46 4 More on martingales

Coding in action 4.1.3. Quadratic variation of BM.

Could you write a code simulating approximate trajectories of one-dimensional Brownian motion
and their approximate quadratic variation, and plotting both on the same graphic?

We denote by M 2 the set of square integrable continuous martingales.
We denote by M 2

0 the set of square integrable continuous martingales issued from the origin.
We often use the following properties for any M ∈M 2:

• Squared L2 norm of increments: for all 0 ≤ s ≤ t ,

E((Mt −Ms)2) = E(E(M 2
t −2Ms Mt +M 2

s |Fs)) = E(M 2
t )−E(M 2

s )

and thus for any subdivision s = t0 < ·· · < tn = t , by telescoping summation,

n∑
i=1
E((Mti −Mti−1 )2) = E(M 2

t )−E(M 2
s ).

• (Conditional) orthogonal increments in L2: for all 0 ≤ s ≤ t ≤ u ≤ v we have

E((Mt −Ms)(Mv −Mu) |Ft ) = (Mt −Ms)E(Mv −Mu |Ft )︸ ︷︷ ︸
=Mt−Mt=0.

= 0.

The following theorem is a crucial result of martingale theory.

Theorem 4.1.4. Increasing process or angle bracket.

Let M ∈M 2
0 .

• There exists a unique continuous and non-decreasing process denoted 〈M〉 = (〈Mt 〉)t≥0 such
that 〈M〉0 = 0 and (M 2

t −〈Mt 〉)t≥0 is a martingale. In particular 〈M〉 is adapted.

• For all t ≥ 0, the quadratic variation [M ]t exists and [M ]t = 〈M〉t .

Uniqueness is up to indistinguishability.
The process 〈M〉 is called the increasing process or angle bracket of M , or even the compensator of M 2.
If M ∈M 2 with M0 ̸= 0 then we define [M ] = [M −M0] and 〈M〉 = 〈M −M0〉.
If B is a Brownian motion, Theorem 3.1.6 gives that 〈B〉t = t for all t ≥ 0 by showing that (B 2

t − t )t≥0 is a
martingale, while Theorem 3.2.1 gives that [B ]t = t for all t ≥ 0 by computing the quadratic variation. More
generally Lemma 4.2.6 states that for all continuous local martingale M issued from the origin, [M ] = 〈M〉.

In Theorem 4.1.4, M 2 is a sub-martingale, and actually Theorem 4.1.4 states a special case of the more
general Doob – Meyer1 decomposition of sub-martingales which is beyond the scope of this course.

Corollary 4.1.5. Boundedness in L2.

If M ∈M 2
0 then there exists a random variable 〈M〉∞ taking values in [0,+∞] such that almost surely

〈M〉t ↗
t→∞

〈M〉∞,

and moreover M is bounded in L2 if and only if 〈M〉∞ ∈ L1, more precisely, in [0,+∞],

E(〈M〉∞) = sup
t≥0

E(M 2
t ).

1Named after Paul-Anré Meyer (1934 – 2003), French mathematician.
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Proof of Corollary 4.1.5. The first property follows from the monotony and positivity of 〈M〉. For the second
property, since M 2−〈M〉 is a martingale we get E(M 2

t ) = E(〈M〉t ) for all t ≥ 0, and by monotone convergence,

E(M 2
t ) = E(〈M〉t ) ↗

t→∞
E(〈M〉∞) ∈ [0,+∞].

■

This can be skipped at first reading.

Proof of Theorem 4.1.4.

• Existence of 〈M〉 and [M ] and their equality when M is bounded. Let us fix t > 0 and let (δn)n be
a sequence of partitions of [0, t ], δn : 0 = t n

0 < ·· · < t n
rn

= t with |δn | = max1≤k≤rn (t n
k − t n

k−1) → 0
as n →∞. It can be checked that the process X = (Xs)s∈[0,t ] defined by

X n
s =

rn∑
k=1

Mt n
k−1

(Mt n
k ∧s −Mt n

k−1∧s)

is a (bounded) martingale (it is crucially zero when s ≤ t n
i ), and that

M 2
t n

k
−2X n

t n
k
=

k∑
i=1

(Mt n
i
−Mt n

i−1
)2.

Now it turns out that
lim

m,n→∞E((X n
s −X m

s )2) = 0.

It follows by the Doob maximal inequality (Theorem 2.5.7) that

lim
m,n→∞E

(
sup

s∈[0,t ]
(X n

s −X m
s )2

)
= 0.

Next, for some subsequence nk and continuous process Y , we have that almost surely X nk → Y
as k →∞. Moreover Y inherits the martingale property from X . Now the process

M 2
t n

k
−2X n

t n
k
=

k∑
i=1

(Mt n
i
−Mt n

i−1
)2

is non-decreasing along t n
k , 1 ≤ k ≤ rn . Letting n →∞ gives that M 2 −2Y is almost surely non-

decreasing. This shows that [M ] exists, is equal to M 2 −2Y , and that we can take 〈M〉 = [M ].

• Existence of 〈M〉 and [M ] and their equality when M is not bounded. For all N , we intro-
duce the stopping time TN = inf{t ≥ 0 : |Mt | ≥ N }. From the bounded case applied to the
bounded martingale (Mt∧TN )t≥0, there exists a unique increasing process (AN

t )t≥0 such that
(M 2

t∧Tn
− AN

t )
t≥0

is a martingale. The uniqueness gives AN
t∧TN

= AN
t , and the we can define a

process (At )t≥0 by setting At = AN
t on the event {TN ≥ t }. Finally by monotone and dominated

converge, (M 2
t − At )t≥0 is a martingale.

For the quadratic variation, it suffices to write

P
(
|At −

n∑
k=1

(Mt n
k
−Mt n

k−1
)2| ≥ ε

)
≤P(TN ≤ t )+P

(
|AN

t −
n∑

k=1
(Mt n

k ∧TN −Mt n
k−1∧TN )2| ≥ ε

)
.

In contrast with the bounded case, here At = 〈M〉t belongs to L1 but not necessarily to L2, and
in particular, the convergence of S(δn) =∑

k (Mt n
k
−Mt n

k−1
)2 holds in P but not necessarily in L2.

• Uniqueness of 〈M〉. If (At )t≥0 and (A′
t )t≥0 are continuous, increasing, issued from 0, such that

(M 2
t − At )t≥0 and (M 2

t − A′
t )t≥0 are continuous martingales, then (At − A′

t )t≥0 is a continuous
finite variation martingale, and by Lemma 4.1.6, it is constant. Since A0 = A′

0 = 0, we get A = A′.

Lemma 4.1.6

If (Ms)s∈[0,t ] is a finite variation continuous martingale then it is constant.
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Proof of Lemma 4.1.6. Let (Ms)s∈[0,t ] be a finite variation continuous martingale. We may as-
sume without loss of generality that M0 = 0. For all N ≥ 1, we introduce the stopping time

TN = t ∧ inf{s ∈ [0, t ] : |Ms | ≥ N , sup
∑
k
|Mtk+1 −Mtk | ≥ N }

where the supremum runs over all sub-divisions of [0, t ]. By Theorem 2.5.1, the stopped pro-
cess (Ms∧TN )s∈[0,t ] is a bounded martingale and thus, for all s ≤ t ,

E((Mt∧TN −Ms∧TN )2) = E(E((Mt∧TN −Ms∧TN )2 |Fs)) = E(M 2
t∧TN

)−E(M 2
s∧TN

).

This gives, using a telescoping sum, for an arbitrary sub-division δ : 0 = t0 < ·· · < tn = t ,

E(M 2
TN

) = E(M 2
t∧TN

)−E(M 2
0∧TN

)

= E∑
k

(Mtk+1∧TN −Mtk∧TN )2

≤ Esup
k

|Mtk+1∧TN −Mtk∧TN |
∑
k
|Mtk+1∧TN −Mtk∧TN |

≤ NEsup
k

|Mtk+1∧TN −Mtk∧TN |.

Since M is continuous, the sup in the right hand side tends a.s. to 0 as |δ| = maxi (ti+1− ti ) → 0.
Since it is bounded, by dominated convergence, E(M 2

TN
) = 0. Thus MTN = 0, which gives in turn

Mt = 0 by sending N to ∞ and using the fact that M is continuous with finite variation. ■

■

Remark 4.1.7: Stochastic integral

In the proof of Theorem 4.1.4, we have approximated [M ]t as M 2
t minus 2 times a sort of

Riemann sum approximating in probability the stochastic integral
∫ t

0 MsdMs making this ap-
proximation and its limit a martingale. This corresponds to the following calculus formula

f (Mt ) = f (M0)+
∫ t

0
f ′(Ms)dMs + 1

2

∫ t

0
f ′′(Ms)d〈M〉s

in the special case f (x) = x2. This is a remarkable special case of the Itô formula. The
quadratic variation term, the second term in the right hand side, is due the roughness of M .

Corollary 4.1.8. Angle bracket, square bracket, quadratic covariation.

Let M , N ∈M 2
0 .

• There exists a unique continuous finite variation process 〈M , N〉 = (〈M , N〉t )t≥0 such that
〈M , N〉0 = 0 and (Mt Nt −〈Mt , Nt 〉)t≥0 is a martingale. In particular 〈M , N〉 is adapted.

• The quadratic covariation of (M , N ) exists and [M , N ]t = 〈M , N〉t for all t ≥ 0.

It is important that M and N are martingales with respect to the same filtration, the underlying (Ft )t≥0.
By Theorem 3.1.6, if B is a d-dimensional Brownian motion then for all 1 ≤ j ,k ≤ d and all t ≥ 0,

〈B j ,B k〉t = [B j ,B k ]t = t1 j=k .

Proof. We proceed by quadratic polarization. First the processes (Mt +Nt )t≥0 and (Mt −Nt )t≥0 are square
integrable continuous martingales with respect to (Ft )t≥0. Next, for all t ≥ 0, if we define 〈M , N〉t as

〈M , N〉t = 1

4
(〈M +N〉t −〈M −N〉t ),
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then Mt Nt −〈M , N〉t = 1
4 ((Mt + Nt )2 −〈M + N〉t − ((Mt − Nt )2 −〈M − N〉t )), and thus (Mt Nt −〈M , N〉t )t≥0

is a martingale by Theorem 4.1.4. Moreover 〈M , N〉 is continuous with finite variation as the difference of
continuous and increasing processes. The uniqueness follows as in the proof of Theorem 4.1.4. The link
with the quadratic covariation follows by polarization and Theorem 4.1.4. ■

Corollary 4.1.9. Stopped angle brackets.

If M , N ∈M 2
0 and S,T are stopping times then 〈M T , N S〉 = 〈M , N〉S∧T .

Proof. Theorem 2.5.1 gives that (M 2 −〈M〉)T = (M T )2 −〈M〉T is a martingale. Now (〈M〉T )0 = 〈M〉0 = 0 and
〈M〉T is a continuous increasing process, and thus, by the uniqueness property of the increasing process
provided by Theorem 4.1.4, we have 〈M T 〉 = 〈M〉T . By polarization we get 〈M T , N T 〉 = 〈M , N〉T . Finally,
〈M T , N〉 = 〈M T , N T 〉 from the equality with quadratic covariation (sum of products of increments). ■

4.2 Local martingales and localization by stopping times

If (Mt )t≥0 is a martingale, then the Doob stopping theorem states that for every stopping time T , the
stopped process (Mt∧T )t≥0 is again a martingale. Stopping can be used in general to truncate the trajectories
of a process with a cutoff, in order to gain more integrability or tightness. Typically if (X t )t≥0 is an adapted
process, we could consider the sequence of stopping times (Tn)n≥0 defined by Tn = inf{t ≥ 0 : |X t | ≥ n},
which satisfies almost surely Tn ↗ +∞ as n → ∞ and for which for all n the stopped process (X t∧Tn )t≥0
is bounded. We say that (Tn)n≥0 is a localizing sequence. Now a local martingale is simply an adapted
processes (X t )t≥0 such that for all n ≥ 0 the stopped process (X t∧Tn )t≥0 is a (bounded) martingale. Every
martingale is a local martingale. However the converse is false, and strict local martingales do exist.
Local martingales popup naturally when constructing the stochastic integral.

Definition 4.2.1. Local martingale.

• A continuous process (Mt )t≥0 issued from the origin is a local martingale if it is adapted and
for all n ≥ 0, introducing the stopping time Tn = inf{t ≥ 0 : |Mt | ≥ n}, the stopped process
M Tn = (Mt∧Tn )t≥0 is a martingale. It is bounded since supt≥0 |Mt∧Tn | ≤ |M0|∨n = n <∞.

• Since the process M is continuous, almost surely Tn ↗+∞ as n →∞, and thus, for all t ≥ 0,
limn→∞ Mt∧Tn = Mt almost surely. We say that the sequence (Tn)n≥0 localizes or reduces M .

• If we do not have M0 ̸= 0, then we say that M is a local martingale when M −M0 is a local mar-
tingale however we still impose that M is adapted and in particular that M0 is F0 measurable.

• We denote by M loc the set of continuous local martingales w.r.t. the default filtration (Ft )t≥0.
We denote by M loc

0 the subset issued from the origin.

Remark 4.2.2. Alternative or relaxed definitions.

Equivalently we could say that a continuous adapted process (Mt )t≥0 issued from the origin is a local
martingale when there exists a sequence (Sn)n≥0 of stopping times such that

1. almost surely Sn ↗+∞ as n →∞
2. for all n ≥ 1, the continuous process M Sn = (Mt∧Sn )t≥0 is a martingale.

Moreover in this definition we could replace martingale by the stronger conditions square integrable
martingale, or u.i. martingale, or bounded in L2 martingale, or bounded martingale. Indeed, it suf-
fices to show that M is then localized by Tn = inf{t ≥ 0 : |Mt | ≥ n}. Indeed, since M is continuous,
almost surely Tn ↗ +∞ as n → ∞. Next, if (Sn)n≥0 localizes M , then for all n,k ≥ 0, by the Doob
stopping theorem (Theorem 2.5.1) for the martingale M Sk and the stopping time Tn , the process
(M Sk )Tn = (Mt∧Sk∧Tn )t≥0 is a martingale, thus for all 0 ≤ s ≤ t , E(Mt∧Sk∧Tn | Fs) = Ms∧Sk∧Tn . More-
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over since M0 = 0 and M is continuous, by definition of Tn , we have supt≥0 |Mt∧Sk∧Tn | ≤ n, and by
dominated convergence, as k →∞, we have E(Mt∧Tn |Fs) = Ms∧Tn , hence (Mt∧Tn )t≥0 is a martingale.

• Localization is a truncation for processes by cutoff that has the advantage of preserving the continuity
of the process and the martingale structure thanks to Doob stopping theorems.

• A martingale is always a local martingale: take Tn = inf{t ≥ 0 : |Mt | ≥ n} and use Doob stopping (The-
orem 2.5.1). Note that thanks to the convention inf∅=∞ we have Tn =∞ on {supt≥0 |Mt | < n}.

• If M is a local martingale, then no integrability is guaranteed for Mt for a fixed deterministic t ≥ 0, and
we may have Mt ̸∈ L1. Moreover for every stopping time T , the stopped process M T = (Mt∧T )t≥0 is a
local martingale but the Doob stopping theorem does not hold in general even if T is bounded.

Remark 4.2.3. Domination as a martingale criterion.

If M is a continuous local martingale dominated by an integrable random variable, in the sense that
Esupt≥0 |Mt | <∞, then, for all t ≥ 0 and s ∈ [0, t ], by continuity and dominated convergence,

Ms = lim
n→∞Ms∧Tn = lim

n→∞E(Mt∧Tn |Fs) = E( lim
n→∞Mt∧Tn |Fs) = E(Mt |Fs)

for any localization sequence (Tn)n for M , hence M is a u.i. martingale. However, there exists con-
tinuous local martingales which are bounded in L2 and thus u.i. and which are not a martingale!

Remark 4.2.4. Strict local martingales.

Are there local martingales which are not martingales? Yesa.

• If M is a martingale, for instance Brownian motion, and if U is measurable with respect to F0,
then (U +Mt )t≥0 is a local martingale, and a martingale if and only if U ∈ L1. Note that if M0 is
constant and F =σ(M0) = {Ω,∅} then necessarily U is constant and we cannot have U ̸∈ L1.

• Let M be a martingale such that M0 = 1, such as the Doléans-Dade exponential. Let U be a
random variable independent of M . Then (U Mt )t≥0 is a local martingale with respect to the
enlarged filtration (σ(σ(U )∪Ft ))t≥0, localized by Tn = inf{t ≥ 0 : |U Mt | ≥ n}. This is in fact an
Itô stochastic integral, see Exercise 4 of the 2020-2021 exam.

• Let (Bt )t≥0 be a 3-dimensional BM with B0 = x ̸= 0. The process (|Bt |)t≥0 is a Bessel process.
It can be shown that the inverse Bessel process (|Bt |−1)t≥0 is a local martingale, localized by
Tn = inf{t ≥ 0 : |Bt | ≤ 1/(|x|+n)}, but is not a martingale. Moreover it is bounded in L2 and thus
u.i.! For a proof, see Exercise 3 of the 2020-2021 examb.

aSome other famous examples are listed on https://en.wikipedia.org/wiki/Local_martingale
bOr https://djalil.chafai.net/blog/2020/10/31/back-to-basics-local-martingales/

Remark 4.2.5. Vector spaces.

The set M loc and M loc
0 are real vector spaces. Indeed if M , M ′ ∈ M loc

0 are localized respectively by
(Tn)n≥1 and (T ′

n)n≥1, then by the Doob stopping theorem (Theorem 2.5.1), (Sn)n≥0 = (Tn ∧T ′
n)n≥0

localizes both M and M ′. For all n ≥ 0, the process (M +M ′)Sn = M Sn +M ′Sn is a square integrable
martingale. Note that we have also the following (strict) inclusions:

M2
0 ⊂ M 2

0 ⊂ M loc
0

∩ ∩ ∩
M2 ⊂ M 2 ⊂ M loc
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Lemma 4.2.6. Increasing process, angle bracket, quadratic variation, square bracket.

Let M , N ∈M loc
0 .

1. there exists a unique continuous finite variation process denoted (〈M , N〉t )t≥0 with

〈M , N〉0 = 0 and (Mt Nt −〈M , N〉t )t≥0 ∈M loc
0 .

Moreover 〈M , N〉 = 1
4 (〈M +N〉−〈M −N〉) where 〈M〉 = 〈M , M〉.

2. 〈M〉 is the unique non-decreasing process such that M 2−〈M〉 is a continuous local martingale

3. M is localized by Tn = inf{t ≥ 0 : |Mt | ≥ n or 〈M〉t ≥ n} and for all n ≥ 0,

sup
t≥0

|M Tn
t | ≤ n and sup

t≥0
〈M Tn 〉t ≤ n.

4. For all t ≥ 0 if (δn)n≥1 is a sequence of sub-divisions of [0, t ], δn : 0 = t n
0 < ·· · < t n

mn
= t , then

S(δn) =
mn∑
k=1

(Mt n
k
−Mt n

k−1
)(Nt n

k
−Nt n

k−1
)

P−→
n→∞ [M , N ]t = 〈M , N〉t

provided that |δn | = max1≤k≤mn (t n
k − t n

k−1) → 0 as n →∞. Furthermore

[M , N ] = 1

4
([M +N ]− [M −N ]) where [M ] = [M , M ].

We say that 〈M〉 is the increasing process of M .
We say that 〈M , N〉 is the finite variation process or angle bracket of the couple (M , N ).
We say that [M ] is the quadratic variation of M .
We say that [M , N ] is the quadratic covariation or square bracket of the couple (M , N ).
As for martingales, if M ∈M loc then we set 〈M〉 = 〈M−M0〉 and [M ] = [M−M0], in particular 〈M〉 = [M ].
As for martingales, 〈M〉t is not necessarily in L2, and in particular S(δ) →〈M〉 may not hold in L2.

Proof.

1. If (Sn)n≥0 localizes M and (Tn)n≥0 localizes N then (Un)n≥0 = (Tn ∧Sn)n≥0 localizes both M and N .
By uniqueness of the increasing process of square integrable continuous martingales (Theorem 4.1.4)
used for the square integrable martingales MUn and NUn , we get that for all 0 ≤ n ≤ m and t ≥ 0,

〈MUm , NUm 〉t∧Un = 〈MUn , NUn 〉t ,

hence (〈MUm , NUm 〉)t≥0 and (〈MUn , NUn 〉)t≥0 are equal up to time Un . We then define, for all t ≥ 0,

〈M , N〉t = lim
n→∞〈MUn , NUn 〉t .

This is the unique continuous process with finite variations and issued from the origin, denoted
〈M , N〉 such that for all t ≥ 0 and all n ≥ 0, 〈M , N〉t∧Un = 〈MUn , NUn 〉t . We then set 〈M〉 = 〈M , M〉.

2. Take M = N in the previous item.

3. It suffices to proceed as in Remark 4.2.3. Note that 〈M Tn 〉 = 〈M〉Tn gives |〈M Tn 〉| ≤ n.

4. We reduce to M = N by polarization. Next, let (Tn)n≥0 be a localization sequence for M . For all n ≥ 0,
Theorem 4.1.4 used for the square integrable martingale M Tn gives

STn (δ) =∑
i

(M Tn
ti+1

−M Tn
ti

)
L2

−→
|δ|→0

〈M Tn 〉t = 〈M〉Tn∧t .
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Now for all ε> 0 and all n ≥ 0,

P(|S(δ)−〈M〉t | > ε) ≤P(Tn ≤ t )+P(|S(δ)−〈M〉t | > ε, t < Tn)

≤P(Tn ≤ t )+P(|STn (δ)−〈M〉Tn∧t | > ε),

and therefore lim|δ|→0P(|S(δ)−〈M〉t | > ε) = 0.

■

Lemma 4.2.7. Martingale criterion.

Let M be a continuous local martingale with M0 ∈ L2.

1. The following properties are equivalent:

(a) M is a martingale which is square integrable

(b) E(〈M〉t ) <∞ for all t ≥ 0.

2. The following properties are equivalent:

(a) M is a martingale which is bounded in L2 and supt≥0E(M 2
t ) = E(〈M〉∞)

(b) E(〈M〉∞) <∞
Moreover, in this case M 2 −〈M〉 is a u.i. martingale and E(M 2∞) = E(M 2

0 )+E(〈M〉∞).

The proof of the lemma is rather short but uses many typical martingale ingredients!

Proof. By replacing M with M −M0, we assume without loss of generality that M0 = 0.

1. If M is a square integrable martingale then M 2−〈M〉 is a martingale and in particular 〈M〉t ∈ L1 for all
t ≥ 0. Conversely, if M is a continuous local martingale with 〈M〉t ∈ L1 for all t ≥ 0 then since M 2−〈M〉
is a continuous local martingale, it follows that there exists a sequence (Tn)n≥0 of stopping times
such that almost surely Tn ↗+∞ as n →∞ and for all n ≥ 0 the process (M Tn )2 −〈M〉Tn is a square
integrable continuous martingale issued from 0. Hence, for all t ≥ 0, using monotone convergence,

E(M 2
t∧Tn

) = E(〈M〉t∧Tn ) −→
n→∞ E(〈M〉t ) <∞.

This implies that (Mt∧Tn )n≥0 is bounded in L2. On the other hand, it follows by the Fatou lemma that

E(M 2
t ) = E

(
lim

n→∞
M 2

t∧Tn

)
≤ lim

n→∞
E(M 2

t∧Tn
) <∞.

Finally, since for all t ≥ 0, (Mt∧Tn )n≥0 is bounded in L2, it is u.i., and thus, for all 0 ≤ s ≤ t , since
limn→∞ Mt∧Tn = Mt a.s., this convergence holds in L1 and we obtain the martingale property via

E(Mt |Fs) = E
(

lim
n→∞Mt∧Tn |Fs

)
= lim

n→∞E(Mt∧Tn |Fs) = lim
n→∞Ms∧Tn = Ms .

2. If M is a martingale bounded in L2 then, by Corollary 4.1.5, 〈M〉∞ ∈ L1. Conversely, if M is a local
martingale with 〈M〉∞ ∈ L1, then, by monotony and positivity of 〈M〉, 〈M〉t ∈ L1 for all t ≥ 0, next, by
the first part, M is a square integrable martingale, and thus, by Corollary 4.1.5, M is bounded in L2.

Finally if M is a martingale bounded in L2, then the Doob maximal inequality (Theorem 2.5.7) gives

E
(

sup
s∈[0,t ]

M 2
s

)
≤ 4E(M 2

t )

for all t ≥ 0, and by sending t to ∞, we get, by monotone convergence,

E
(

sup
t≥0

M 2
t

)
≤ 4sup

t≥0
E(M 2

t ).
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This gives the domination
sup
t≥0

|M 2
t −〈M〉t | ≤ sup

t≥0
M 2

t +〈M〉∞ ∈ L1,

which implies that M 2 −〈M〉 is uniformly integrable.

■

Remark 4.2.8. Vocabulary.

If X and A are continuous adapted processes with X0 = A0 = 0 with A of finite variation and such that
X − A is a local martingale then A is unique and is called the compensator of X . For instance if X is a
continuous local martingale with X0 = 0 then the compensator of X 2 is 〈X 〉.

Remark 4.2.9. Advanced link with Brownian motion.

The Lévy characterization of Brownian motion states that among all continuous local martingales,
Brownian motion is characterized by its angle bracket. On the other hand, the Dubins – Schwarz
theorem states that all continuous local martingales with angle bracket tending to infinity at infinity
are time changed Brownian motion by the angle bracket.

The following result is essential for the Dubins – Schwarz theorem.

Theorem 4.2.10. Simultaneous flatness for M and 〈M〉.

Let M be a continuous local martingale. Then the processes M and 〈M〉 are constant on same inter-
vals, in the sense that almost surely, for all 0 ≤ a < b,

∀t ∈ [a,b], Mt = Ma if and only if 〈M〉b = 〈M〉a .

Proof of Theorem 4.2.10. Since M and 〈M〉 are continuous, it suffices to show that for all 0 ≤ a ≤ b, a.s.

{∀t ∈ [a,b] : Mt = Ma} = {〈M〉b = 〈M〉a}.

The inclusion ⊂ comes from the approximation of the quadratic variation 〈M〉 = [M ]. Let us prove the
converse. To this end, we consider the continuous local martingale (Nt )t≥0 = (Mt −Mt∧a)t≥0. We have

〈N〉 = 〈M〉−2〈M , M a〉+〈M a〉 = 〈M〉−2〈M〉a +〈M〉a = 〈M〉−〈M〉a .

For all ε> 0, we set the stopping time Tε = inf{t ≥ 0 : 〈N〉t > ε}. The continuous semi-martingale N Tε satisfies
N Tε

0 = 0 and 〈N Tε〉∞ = 〈N〉Tε ≤ ε. By Lemma 4.2.7, N Tε is a martingale bounded in L2, and for all t ≥ 0,

E(N 2
t∧Tε

) = E(〈N〉t∧Tε) ≤ ε.

Let us define the event A = {〈M〉b = 〈M〉a}. Then A ⊂ {Tε ≥ b} and, for all t ∈ [a,b],

E(1A N 2
t ) = E(1A N 2

t∧Tε
) ≤ E(N 2

t∧Tε
) ≤ ε.

By sending ε to 0 we obtain E(1A N 2
t ) = 0 and thus Nt = 0 almost surely on A. ■

4.3 Convergence in L2 and the Hilbert spaceM2
0

Let M2
0 be the set of continuous martingales issued from the origin and bounded in L2, for some fixed

underlying filtered probability space (Ω,F , (Ft )t≥0,P).
The elements ofM2

0 are centered: for all M ∈M2
0 and all t ≥ 0, E(Mt ) = E(M0) = 0.

For all M ∈M2
0, we have M0 = 0 and supt≥0E(M 2

t ) <∞. By Theorem 2.1.3, we see the elements of M2
0 as

random variables taking values in (C (R+,R),BC (R+,R)). In particular for all M , N ∈M2
0, we have M = N iff M

and N are indistinguishable in other words P(∀t ≥ 0 : Mt = Nt ) = 1. Also M = 0 iff for all t ≥ 0, Mt = 0.
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Theorem 4.3.1. Hilbert structure onM2
0.

The setM2
0 is a Hilbert space with scalar product 〈M , N〉M2

0
= E(〈M , N〉∞).

Moreover, for all M ∈M2
0, we have ∥M∥2

M2
0
= E(〈M〉∞) = supt≥0E(〈M〉t ) = supt≥0E(M 2

t ).

More generally, it can be shown similarly that for all fixed T > 0, the set M2
0,T of square integrable

continuous martingales (Mt )t∈[0,T ] such that M0 = 0 is a Hilbert space for the scalar product 〈M , N〉M2
0,T

=
E(〈M , N〉T ). In this case, for all M ∈M2

0,T , we have ∥M∥2
M2

0,T
= supt∈[0,T ]E(〈M〉t ) = supt∈[0,T ]E(M 2

t ).

Proof. The facts thatM2
0 is a vector space and that 〈·〉 is bilinear, symmetric, and non-negative on the diago-

nal are almost immediate. For the positivity, if M ∈M2
0 with E(〈M〉∞) = 0 then we have 〈M〉t = 0 for all t ≥ 0,

hence E(M 2
t ) = 0 for all t ≥ 0, thus Mt = 0 for all t ≥ 0. To prove completeness, let (M (n))n≥1 be a Cauchy

sequence inM2
0. Then for all ε> 0, there exists r ≥ 1 such that for all m,n ≥ r , ∥M (n) −M (m)∥M2

0
≤ ε. Thus

sup
t≥0

E(|M (n)
t −M (m)

t |2) ≤ ε2.

This implies that for all t ≥ 0, (M (n)
t )t≥0 is a Cauchy sequence in L2, and thus converges to an element

Mt ∈ L2. It follows that M = (Mt )t≥0 is a square integrable martingale, issued from the origin. It remains
to prove that M is continuous. To this end, the idea is to use uniform convergence on finite time intervals.
Namely, let us fix t > 0. From the L2 convergence, there exists a sub-sequence (nk )k≥1 such that for all k ≥ 1,

E(|M (nk )
t −M (nk+1)

t |2) ≤ 2−k .

Now the Doob maximal inequality (Theorem 2.5.7) for the martingale (M (n)
t −M (n+1)

t )t≥0 gives

E( sup
s∈[0,t ]

|M (nk )
s −M (nk+1)

s |2) ≤ 4E(|M (nk )
t −M (nk+1)

t |2) ≤ 2−k+2,

and thus, by monotone convergence or the Fubini – Tonelli theorem,

E
( ∑

k≥1
sup

s∈[0,t ]
|M (nk )

s −M (nk+1)
s |2

)
= ∑

k≥1
E
(

sup
s∈[0,t ]

|M (nk )
s −M (nk+1)

s |2
)
<∞.

Therefore for all t > 0, almost surely ∑
k≥1

sup
s∈[0,t ]

|M (nk )
s −M (nk+1)

s | <∞.

Lemma 4.3.2. Criterion.

In a Banach space if
∑∞

n=1 ∥un −un+1∥ <∞ then (un)n≥1 converges.

The converse is false, for instance un = (−1)n

n −→
n→∞ 0 but |un−un+1| ∼

n→∞
2
n and thus

∑∞
n=1 |un−un+1| =∞.

Proof of Lemma 4.3.2. The sequence (un)n≥1 is Cauchy since for all n ≥ 1 and m ≥ 1 we have

∥un+m −un∥ ≤
n+m−1∑

k=n
∥uk+1 −uk∥ ≤

∑
k≥n

∥uk+1 −uk∥ −→
n→∞ 0.

■

By using Lemma 4.3.2 with the Banach space (C ([0, t ],R),∥·∥ = sup[0,t ] |·|), this implies that for all t > 0,

almost surely, the sequence of continuous functions (s ∈ [0, t ] 7→ M (nk )
s )k≥1 converges uniformly towards a

limit denoted (M ′
s)s≥[0,t ] which is continuous thanks the uniform convergence. This almost sure event can

be chosen independent of t for instance by taking integer values for t . Now for all t ≥ 0, (M (nk )
t )k≥1 converges

to Mt in L2 and to M ′
t almost surely, and therefore Mt = M ′

t . ■
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Theorem 4.3.3. Convergence of martingales bounded in L2.

Let M be a square integrable martingale bounded in L2. Then there exists M∞ ∈ L2 such that

lim
t→∞Mt = M∞ almost surely and in L2.

Note that M is uniformly integrable because it is bounded in Lp with p = 2 > 1.

Proof. Let us show that M satisfies the L2 Cauchy criterion. Recall that for all 0 ≤ s ≤ t , we have

E((Mt −Ms)2) = E(M 2
t −2MsE(Mt |Fs)+M 2

s ) = E(M 2
t −M 2

s ).

But M 2 is a sub-martingale and t 7→ E(M 2
t ) grows and is bounded above by supt≥0E(M 2

t ) <∞. Thus limt→∞E(M 2
t )

exists. Hence (Mt )t≥0 is Cauchy in L2, and therefore it converges in L2 towards some M∞ ∈ L2. It remains to
establish the almost sure convergence. Now, by the Markov inequality, for all s ≥ 0 and all ε> 0,

P
(

sup
t≥s

|Mt −M∞| ≥ ε
)
≤ 1

ε2 E
(

sup
t≥s

(Mt −M∞)2
)

≤ 2

ε2

(
E
(
(Ms −M∞)2

)
+E

(
sup
t≥s

(Mt −Ms)2
))

.

Now the monotone convergence theorem gives

E
(

sup
t≥s

(Mt −Ms)2
)
= lim

T→∞
E
(

sup
t∈[s,T ]

(Mt −Ms)2
)
.

On the other hand, for all s ≥ 0, the process (|Mt −Ms |)t≥s is a continous non-negative sub-martingale, for
which the Doob maximal inequality of Theorem 2.5.7 gives

E
(

sup
t≥s

(Mt −Ms)2
)
≤ lim

T→∞
4E((MT −Ms)2) = 4E((M∞−Ms)2).

Therefore we obtain

P
(

sup
t≥s

|Mt −M∞| ≥ ε
)
≤ 10

ε2 E((Ms −M∞)2) −→
s→∞ 0.

Since the right hand side decreases as s grows, we get, for all ε> 0,

P
(
∩s∈Q+ {sup

t≥s
|Mt −M∞| ≥ ε}

)
= lim

s→∞P
(

sup
t≥s

|Mt −M∞| ≥ ε
)
= 0,

Similarly, the right hand side decreases as ε grows, and then

P
(
∪ε∈Q+ ∩s∈Q+{sup

t≥s
|Mt −M∞| ≥ ε}

)
= lim
ε→0

lim
s→∞P

(
sup
t≥s

|Mt −M∞| ≥ ε
)
= 0,

which means that limt→∞ Mt = M∞ almost surely! ■

4.4 Convergence in L1, closedness, uniform integrability

As for the sum of independent and identically distributed random variables, there is, for martingales, in
a way, an L2 theory and an L1 theory. The L2 theory is in a sense simpler due to the Hilbert structure.

Theorem 4.4.1. Doob convergence theorem for martingales bounded in L1.

Let M be a continuous martingale bounded in L1. Then there exists M∞ ∈ L1 such that

lim
n→∞Mt = M∞ almost surely.

Moreover the convergence holds in L1 if and only if M is uniformly integrable.

If M is a non-negative martingale, then it is always bounded in L1.
If M is martingale bounded in L1 but not u.i., then E(Mt ) = E(M0) for all t ≥ 0 but E(M∞) ̸= E(M0).
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This can be skipped at first reading.

Proof. We can assume that M0 = 0, otherwise consider the martingale M −M0 = (Mt −M0)t≥0 which
is also bounded in L1, making Mt → M0+ (M −M0)∞ a.s. We proceed by truncation and reduction to
the square integrable case. By the Doob maximal inequality (Theorem 2.5.7) with p = 1 and all r > 0,

P
(

sup
s∈[0,t ]

|Ms | ≥ r
)
≤ E(|Mt |)

r
.

By monotone convergence, with C = supt≥0E(|Mt |) <∞, for all r > 0,

P
(

sup
t≥0

|Mt | ≥ r
)
≤ C

r
.

It follows that
P
(

sup
t≥0

|Mt | =∞
)
≤ lim

r→∞P
(

sup
t≥0

|Mt | ≥ r
)
= 0,

in other words almost surely (Mt )t≥0 is bounded: supt≥0 |Mt | <∞. Thus, there exists an almost sure
event, say Ω′, on which for all n ≥ supt≥0 |Mt | (beware that this threshold on n is random),

Tn = inf{t ≥ 0 : |Mt | ≥ n} =∞.

Next, by Doob stopping (Theorem 2.5.1), for all n ≥ 0, (Mt∧Tn )t≥0 is a martingale, bounded since
supt≥0 |Mt∧Tn | ≤ |M0|∨n = n (M is continuous and M0 = 0). Now, since (Mt∧Tn )t≥0 is bounded in L2,

by Theorem 4.3.3, there exists M (n)∞ ∈ L2 such that limt→∞ Mt∧Tn = M (n)∞ almost surely (and in L2 but
this is useless). Let us denote by Ωn the almost sure event on which this holds. Then, on the almost
sure event Ω′ ∩ (∩nΩn), for all t ≥ 0 and n ≥ sups≥0 |Ms |, we have Mt∧Tn = Mt , thus the sequence
(M (n)∞ )n is stationary in the sense that M (n)∞ is constant when n ≥ sups≥0 |Ms |, hence, if M∞ is its limit,

lim
t→∞Mt = M∞.

Contrary to M (n)∞ , the limit M∞ has not reason to belong to L2. However M∞ ∈ L1 since from the
almost sure convergence, the boundedness in L1 of (Mt )t≥0, and by using the Fatou lemma, we have

E(|M∞|) = E( lim
t→∞

|Mt |) ≤ lim
t→∞

E(|Mt |) ≤C <∞.

Finally an almost sure convergence to an L1 limit holds in L1 if and only if the sequence is u.i. ■

The result remains valid for super-martingales.

Theorem 4.4.2: Doob convergence theorem for super-martingales bounded in L1

Let M be a continuous super-martingale bounded in L1. Then there exists M∞ ∈ L1 such that

lim
n→∞Mt = M∞ almost surely.

Note that a non-negative super-martingale is automatically bounded in L1.

Proof. See for instance [14, Theorem 3.19 page 58 – 59] for a classical proof using oscillations. ■

Remark 4.4.3. Non-negative local martingales are super-martingales.

If (Mt )t≥0 is a non-negative continuous local martingale, then it is a non-negative super-martingale
and by Theorem 4.4.2 it converges almost surely to an integrable random variable. Indeed, if (Tn)n is
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a localizing sequence then for all t ≥ 0 and s ∈ [0, t ], by the Fatou Lemma,

E(Mt |Fs) = E( lim
n→∞Mt∧Tn |Fs) ≤ lim

n→∞E(Mt∧Tn |Fs) = lim
n→∞Ms∧Tn = Ms .

Note that the conditional expectations are well defined in [0,+∞] because M is non-negative.

Corollary 4.4.4. Convergence of martingales bounded in Lp , p > 1.

If M is a continuous martingale bounded in Lp with p > 1 then there exists M∞ ∈ Lp such that

lim
t→∞Mt = M∞ almost surely and in Lp .

In particular, for p = 2 this gives an alternative to Theorem 4.3.3.

This can be skipped at first reading.

Proof. Since M is a super-martingale bounded in L1, Theorem 4.4.1 gives M∞ ∈ L1 such that
limt→∞ Mt = M∞ almost surely. But since M is bounded in Lp with p > 1, it follows that M is uni-
formly integrable, and therefore limt→∞ Mt = M∞ in L1. We have M∞ ∈ Lp since by the Fatou lemma,

E(|M∞|p ) = E( lim
t→∞

|Mt |p ) ≤ lim
t→∞

E(|Mt |p ) <∞.

On the other hand, by the Doob maximal inequality (Theorem 2.5.7), since M is bonded in Lp , for all
t ≥ 0, sups∈[0,t ] |Ms |p ∈ L1 and E(sups∈[0,t ] |Ms |p ) ≤ cpE(|Mt |p ). Therefore, by monotone convergence,

E
(

sup
t≥0

|Mt |p
)
≤ sup

t≥0
E(|Mt |p ) <∞.

Hence supt≥0 |Mt |p ∈ L1, and thus, by dominated convergence, limt→∞ Mt = M∞ in Lp . ■

Corollary 4.4.5. Doob theorem on closed martingales or Doob martingale convergence theorem.

Let M be a continuous martingale. The following properties are equivalent:

1. (convergence) Mt converges in L1 as t →∞
2. (closedness) there exists M∞ ∈ L1 such that for all t ≥ 0, Mt = E(M∞ |Ft )

3. (integrability) the family {Mt : t ≥ 0} is uniformly integrable.

In this case, for all t ≥ 0, Mt = E(M∞ |Ft ), and limt→∞ Mt = M∞ a.s. and in L1, and E(M0) = E(M∞).

If M is a martingale then for all fixed a ≥ 0, the stopped martingale M a = (Mt∧a)t≥0 is closed by Ma since
E(Ma |Ft ) = Ma1a≤t +Mt 1a>t = Mt∧a . Hence M a is uniformly integrable. Note that limt→∞ Mt∧a = Ma .

Note that in the proof below, Theorem 4.4.1 is used in every implication of the equivalence.

This can be skipped at first reading.

Proof. 1. ⇒ 2. If M converges in L1, then it is bounded in L1, and by Theorem 4.4.1, its converges
a.s. to M∞ ∈ L1 (the convergence holds also in L1 but we do not use this fact now). For all t ≥ 0
and s ∈ [0, t ] and all A ∈ Fs , the martingale property for M gives E(Mt 1A) = E(Ms 1A). By dominated
convergence as t →∞, we get E(M∞1A) = E(Ms 1A) therefore Ms = E(M∞ |Fs) for all s ≥ 0.
2. ⇒ 3. Let us assume that for some M∞ ∈ L1 we have Mt = E(M∞ | Ft ) for all t ≥ 0. Then
supt≥0E(|Mt |) ≤ E(|M∞|) < ∞ and thus, by Theorem 4.4.1, Mt converges a.s. as t → ∞. It follows

57/61



58 4 More on martingales

that almost surely M∗ = supt≥0 |Mt | <∞. Now limR→∞ 1M∗≥R = 0 almost surely, and for all R ≥ 0,

sup
t≥0

E(|Mt |1|Mt |≥R ) = sup
t≥0

E(|E(M∞ |Ft )|1|Mt |≥R ) ≤ sup
t≥0

E(|M∞|1|Mt |≥R ) ≤ E(|M∞|1M∗≥R ) −→
R→∞

0

where the convergence follows by dominated convergence. Therefore M is u.i.
3. ⇒ 1. If M is u.i. then it is bounded in L1, and from Theorem 4.4.1, there exists M∞ ∈ L1 such that
limt→∞ Mt = M∞ a.s. Since M is u.i., the convergence holds in L1. ■

The following generalizes the Doob stopping theorem (Theorem 2.5.1).

Corollary 4.4.6. Doob stopping for uniformly integrable martingales.

Let M be a u.i. continuous martingale and let T be a stopping time (not necessarily bounded or
finite). We set MT = M∞ on {T =∞} where M∞ = limt→∞ Mt is as in Corollary 4.4.5. Then:

1. (Mt∧T )t≥0 is a uniformly integrable martingale, MT ∈ L1, and for all t ≥ 0, Mt∧T = E(MT |Ft ).
In particular, for all t ≥ 0, E(M0) = E(Mt∧T ) = E(MT ).

2. Moreover if S is another stopping time with S ≤ T then MS = E(MT |FS).
In particular, for all stopping time S, MS = E(M∞ |FS) and E(MS) = E(M∞) = E(M0).

This can be skipped at first reading.

Proof. We will prove the first property by using the second property.

1. For all t ≥ 0, both t ∧T and T are stopping times. By the second property of the present the-
orem, Mt∧T ∈ L1 and MT ∈ L1. Moreover Mt∧T is measurable for Ft∧T , and thus for Ft since
t ≤ t ∧T . Now, in order to prove that E(MT |Ft ) = Mt∧T , it suffices to show that for all A ∈Ft ,

E(1A MT ) = E(1A Mt∧T ).

But for all A ∈Ft , we have immediately from T = t ∧T on {T ≤ t } that

E(1A∩{T≤t }MT ) = E(1A∩{T≤t }Mt∧T ).

The second property of the present theorem for the stopping times S = t ∧T and T gives

Mt∧T = E(MT |Ft∧T ).

Now since A∩ {T > t } ∈Ft and A∩ {T > t } ∈FT , we get A∩ {T > t } ∈Ft ∩FT =Ft∧T , and

E(1A∩{T>t }MT ) = E(1A∩{T>t }Mt∧T ).

By adding this to a previous formula we get the desired result E(1A MT ) = E(1A Mt∧T ).

Finally, the fact that M T = (Mt∧T )t≥0 is a martingale follows from what precedes used with the
u.i. martingale M a = (Mt∧a)t≥0 for all a ≥ 0, which gives M a

s∧T = E(M a
T | Fs) for all s ≥ 0, in

other words Ms∧a∧T = E(Ma∧T |Fs). Taking a = t ≥ s gives the martingale property for M T .

2. Following for instance [14, Theorem 3.22 page 59], we discretize as in the proof of Theorem
2.5.1 or Theorem 3.5.1. Namely, for all n ≥ 0, let us define the stopping times

Sn =
∞∑

k=0

k +1

2n 1k2−n<S≤(k+1)2−n +∞1S=∞ and Tn =
∞∑

k=0

k +1

2n 1k2−n<T≤(k+1)2−n +∞1T=∞.

We have Sn ↘ S and Tn ↘ T as n →∞, and Sn ≤ Tn for all n ≥ 0. Next, for all n ≥ 0, 2nSn and
2nTn are integer valued stopping times for the discrete time filtration (F (n)

k )
k≥0

= (Fk2−n )k≥0,
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while M (n) = (Mk2−n )k≥0 is a uniformly integrable discrete time martingale with respect to this
filtration. By using the Doob stopping theorem for u.i. discrete time martingales, we get

MSn = M (n)
2n Sn

= E(M (n)
2n Tn

|F (n)
2n Sn

) = E(MTn |FSn ).

Now, for all A ∈FS ⊂FSn , we have E(1A MSn ) = E(1A MTn ). Since M is (right) continuous, a.s.

MS = lim
n→∞MSn and MT = lim

n→∞MTn .

For the L1 convergence, the Doob stopping theorem for u.i. discrete time martingales gives
MSn = E(M∞ | FSn ) for all n ≥ 0 and thus (MSn )n≥0 and (MTn )n≥0 are u.i. This also gives that
MS ∈ L1 and MT ∈ L1. This also allows to pass to the limit in E(1A MSn ) = E(1A MTn ) to get
E(1A MS) = E(1A MT ). This holds for all A ∈FS , thus MS = E(MT |FS).

■
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