17. ON THE THEORY OF CONTINUOUS RANDOM PROCESSES*

Let \mathcal{S} be a physical system with n degrees of freedom; this means that the admissible states x of \mathcal{S} form a Riemannian manifold \mathcal{R} of dimension n. The process of variation of \mathcal{S} is said to be stochastically determined if under an arbitrary choice of x, the region \mathcal{E} (in \mathcal{R}) and times t' and t'' ($t' < t''$), the probability $P(t', x, t'', \mathcal{E})$ that the system in state x at time t' will be in one of the states of \mathcal{E} at time t'' is defined. It is further assumed that the probability $P(t', x, t'', \mathcal{E})$ can be given by the formula

$$P(t', x, t'', \mathcal{E}) = \int_{\mathcal{E}} f(t', x, t'', y) dV_y,$$

where dV_y denotes the volume element. Here $f(t', x, t'', y)$ has to satisfy the following fundamental equations:

$$\int_{\mathcal{R}} f(t', x, t'', y) dV_y = 1,$$

$$f(t_1, x, t_3, y) = \int_{\mathcal{R}} f(t_1, x, t_2, y) f(t_2, z, t_3, y) dV_z, \quad t_1 < t_2 < t_3.$$

The integral equation (3) was studied by Smolukhovski and then by other authors. In the paper 'Über die analytischen Methoden in der Wahrscheinlichkeitsrechnung' I have proved that, under certain additional conditions, $f(t', x, t'', y)$ satisfies certain differential equations of parabolic type. But in A.M. there was no answer to the question as to what extent $f(t', x, t'', y)$ is uniquely determined by the coefficients $A(t, x)$ and $B(t, x)$. In this paper the theory is developed in the general case of a Riemannian manifold \mathcal{R} and the question of uniqueness is answered affirmatively for a closed manifold \mathcal{R}.

§1. The first differential equation

Let \mathcal{R} be a Riemannian manifold of dimension n. Because of the assumptions made, $f(t', x, t'', y)$ is defined for $t' < t''$ and any pair of points x, y. Moreover,

3 These differential equations were introduced by Fokker and Planck independently of Smolukhovski's integral equation. See: A. Fokker, Ann. Phys. 43 (1914), 812; M. Planck, Sitzungsber. Preuss. Acad. Wiss. (1917) 10 May.
4 See A.M. §15.
we assume that \(f(t', x, t'', y) \) has continuous derivatives up to the third order with respect to all the arguments \((t', t'' \text{ and the coordinates } x_1, x_2, \ldots, x_n, y_1, y_2, \ldots, y_n \text{ of the points } x \text{ and } y)\) and satisfies the continuity condition

\[
\frac{\int_{\mathbb{R}} f(t, x, t + \Delta, z) \rho^3(z, z) dV_z}{\int_{\mathbb{R}} f(t, x, t + \Delta, z) \rho^2(z, z) dV_z} \rightarrow 0 \quad \text{as } \Delta \rightarrow 0,
\]

(4)

where \(\rho(x, z) \) denotes the geodesic distance\(^5\) between \(x \) and \(z \).

We choose a coordinate system \(z = (z_1, \ldots, z_n) \) in a neighbourhood \(\mathfrak{A} \) of \(x \). Then we set

\[
\int_{\mathfrak{A}} f(s, x, s + \Delta, z) (z_i - x_i) dV_z = a_i(s, x, \Delta),
\]

(5)

\[
\int_{\mathfrak{A}} f(s, x, s + \Delta, z) (z_i - x_i)(z_j - x_j) dV_z = b_{ij}(s, x, \Delta),
\]

(6)

\[
\int_{\mathfrak{A}} f(s, x, s + \Delta, z) \rho^2(z, z) dV_z = \beta(s, x, \Delta),
\]

(7)

\[
\int_{\mathfrak{A}} f(s, x, s + \Delta, z) \rho^3(z, z) dV_z = \nu(s, x, \Delta).
\]

(8)

Our purpose is to prove that the ratios

\[
a_i(s, x, \Delta)/\Delta, \quad b_{ij}(s, x, \Delta)/\Delta
\]

tend to limits \(A_i(s, x) \) and \(B_{ij}(s, x) \) as \(\Delta \rightarrow 0 \), independently of \(\mathfrak{A} \). Below this is proved under the assumption that all \(N = n + n(n + 1)/2 \) functions

\[
\frac{\partial}{\partial x_i} f(s, x, t, y), \quad \frac{\partial^2}{\partial x_i \partial x_j} f(s, x, t, y)
\]

of \(y \) and \(t \) (for fixed \(s \) and \(x \)) are linearly independent, that is, that \(t_1, y_1, t_2, y_2, \ldots, t_k, y_k, \ldots, t_N, y_N \) can be chosen so that the determinant

\[
D^N(s, x) = \begin{vmatrix}
\frac{\partial}{\partial x_i} f(s, x, t_k, y_k) \\
\frac{\partial^2}{\partial x_i \partial x_j} f(s, x, t_k, y_k)
\end{vmatrix}
\]

(9)

is non-zero.\(^6\)

\(^5\) See A.M., §13, formula (112).

\(^6\) See A.M., §13, determinant (119).
In \mathfrak{X} we have
\[\rho^3(x, z) = \sum g_{ij}(z_i - x_i)(z_j - x_j) + \Theta \rho^3(x, z), \quad |\Theta| \leq C, \]
while outside \mathfrak{X} we clearly have
\[\rho^3(x, z) = \Theta' \rho^3(x, z), \quad |\Theta'| \leq C', \]
where C' and C are constants independent of z. Hence
\begin{align*}
\beta(s, x, \Delta) &= \int_{\mathfrak{X}} f(s, x, s + \Delta, z) \rho^3(x, z) dV_z = \\
&= \sum g_{ij} \int_{\mathfrak{X}} f(s, x, s + \Delta, z)(z_i - x_i)(z_j - x_j) dV_z + \\
&\quad + \int_{\mathfrak{X}} f(s, x, s + \Delta, z) \Theta \rho^3(x, z) dV_z + \\
&\quad + \int_{\mathfrak{X}} f(s, x, s + \Delta, z) \Theta' \rho^3(x, z) dV_z = \\
&= \sum g_{ij}b_{ij}(s, x, \Delta) + \Theta'' \nu(s, x, \Delta), \quad |\Theta''| \leq C''.
\end{align*}
(10)

But since, by the continuity condition (4),
\[\frac{\beta(s, x, \Delta)}{\nu(s, x, \Delta)} \to +\infty \text{ as } \Delta \to 0, \]
(11)
formula (10) implies that
\[\frac{\sum g_{ij}b_{ij}(s, x, \Delta)}{\nu(s, x, \Delta)} \to +\infty \text{ as } \Delta \to 0. \]
(12)

Now, for fixed x, y, s, τ, t, $s < \tau < t$, we consider only Δ so small that $s + \Delta < \tau$. Then $f(s + \Delta, z, t, y)$ and its derivatives with respect to z up to the fourth order are uniformly bounded and continuous in \mathfrak{X} (we assume that \mathfrak{X} is compact). Hence, for every point z in \mathfrak{X} we have
\begin{align*}
f(s + \Delta, z, t, y) - f(s + \Delta, z, t, y) &= \sum (z_i - x_i) \frac{\partial}{\partial z_i} f(s + \Delta, z, t, y) + \\
&\quad + \frac{1}{2} \sum (z_i - x_i)(z_j - x_j) \frac{\partial^2}{\partial z_i \partial z_j} f(s + \Delta, z, t, y) + \Theta \rho^3(x, z), \quad |\Theta| \leq C,
\end{align*}
(13)
where \(C \) does not depend on \(\Delta \) or \(z \). On the other hand, the fundamental equation (3) implies that

\[
f(s, x, t, y) = \int_{\mathcal{M}} f(s, x, s + \Delta, z)f(s + \Delta, x, t, y)dV_z =
\]

\[
= \int_{\mathcal{M}} f(s, x, s + \Delta, z)f(s + \Delta, x, t, y)dV_z +
\]

\[
+ \int_{\mathcal{M}} f(s, x, s + \Delta, z)\{ f(s + \Delta, z, t, y) - f(s + \Delta, x, t, y) \}dV_z +
\]

\[
+ \int_{\mathcal{M}} f(s, x, s + \Delta, z)\{ f(s + \Delta, z, t, y) - f(s + \Delta, x, t, y) \}dV_z =
\]

\[
= I_1 + I_2 + I_3. \tag{14}
\]

By (2),

\[
I_1 = \int_{\mathcal{M}} f(s, x, s + \Delta, z)f(s + \Delta, x, t, y)dV_z =
\]

\[
= f(s + \Delta, x, t, y)\int_{\mathcal{M}} f(s, x, s + \Delta, z)dV_z = f(s + \Delta, x, t, y). \tag{15}
\]

Then (13), (5) and (6) imply that

\[
I_2 = \int_{\mathcal{M}} f(s, x, s + \Delta, z)\{ f(s + \Delta, z, t, y) - f(s + \Delta, x, t, y) \}dV_z =
\]

\[
= \int_{\mathcal{M}} f(s, x, s + \Delta, z)\left\{ \sum (z_i - x_i) \frac{\partial}{\partial z_i} f(s + \Delta, x, t, y) +
\right.
\]

\[
+ \frac{1}{2} \sum (z_i - x_i)(z_j - x_j) \frac{\partial^2}{\partial z_i \partial z_j} f(s + \Delta, x, t, y) +
\]

\[
+ \Theta \rho^3(x, z) \right\}dV_z = \sum a_i(s, x, \Delta) \frac{\partial}{\partial z_i} f(s + \Delta, x, t, y) +
\]

\[
+ \frac{1}{2} \sum b_{ij}(s, x, \Delta) \frac{\partial^2}{\partial z_i \partial z_j} f(s + \Delta, x, t, y) +
\]

\[
+ \int_{\mathcal{M}} f(s, x, s + \Delta, z)\Theta \rho^3(x, z)dV_z. \tag{16}
\]

Finally, since throughout \(\mathcal{M} - \mathfrak{A} \) we have

\[
\rho^3(x, z) > K > 0,
\]

where \(K \) does not depend on \(z \), in \(\mathcal{M} - \mathfrak{A} \) we can set

\[
f(s + \Delta, x, t, y) - f(s + \Delta, x, t, y) = \Theta' \rho^3(x, z).
\]
Then

\[I_3 = \int_{\mathbb{R}^n} f(s, x, s + \Delta, z) \{ f(s + \Delta, z, t, y) - f(s + \Delta, x, t, y) \} dv_z = \]

\[= \int_{\mathbb{R}^n} f(s, x, s + \Delta, z) \Theta' \rho^3(x, z) dv_z, \quad |\Theta'| \leq C' = \frac{1}{K}. \]

(17)

Substituting (15)–(17) into (14) we finally obtain

\[f(s, x, t, y) = f(s + \Delta, x, t, y) + \sum a_i(s, x, \Delta) \frac{\partial}{\partial x_i} f(s + \Delta, x, t, y) + \]

\[+ \frac{1}{2} \sum b_{ij}(s, x, \Delta) \frac{\partial^2}{\partial x_i \partial x_j} f(s + \Delta, x, t, y) + \]

\[+ \int_{\mathbb{R}} f(s, x, s + \Delta, z) \Theta'' \rho^3(x, z) dv_z, \quad |\Theta''| \leq C''. \]

(18)

If we also take into account the obvious equality

\[\int_{\mathbb{R}} f(s, x, s + \Delta, z) \Theta'' \rho^3(x, z) dv_z = \Theta'' \int_{\mathbb{R}} f(s, x, s + \Delta, z) \rho^3(x, z) dv_z = \]

\[= \Theta'' \nu(s, x, \Delta), \quad |\Theta''| \leq C''', \]

then (18) can be rewritten as follows:

\[f(s + \Delta, x, t, y) - f(s, x, t, y) \]

\[\Delta \]

\[= - \sum a_i(s, x, \Delta) \frac{\partial}{\partial x_i} f(s + \Delta, x, t, y) - \]

\[- \sum b_{ij}(s, x, \Delta) \frac{\partial^2}{\partial x_i \partial x_j} f(s + \Delta, x, t, y) - \Theta'' \nu(s, x, \Delta) \]

(19)

The left-hand side in (19) tends to \(\frac{\partial}{\partial \Delta} f(s, x, t, y) \) as \(\Delta \to 0 \).

Suppose that the determinant \(D_N(s, x) \) is non-zero for \(t_1, y_1, t_2, y_2, \ldots, t_N, y_N \). Then \(D_N(s + \Delta, x) \neq 0 \) for sufficiently small \(\Delta \). Hence, there exist \(\lambda_k(\Delta) \), \(k = 1, 2, \ldots, N \), such that

\[\sum_k \lambda_k(\Delta) \frac{\partial}{\partial x_i} f(s + \Delta, x, t_k, y_k) = \alpha_i, \]

\[\sum_k \lambda_k(\Delta) \frac{\partial^2}{\partial x_i \partial x_j} f(s + \Delta, x, t_k, y_k) = \alpha_{ij}. \]

(20)

If we multiply (19) by \(\lambda_k(\Delta) \) with \(t = t_k \) and \(y = y_k \) and sum all the \(N \) equalities thus obtained, then we have

\[\sum_k \lambda_k(\Delta) f(s + \Delta, x, t_k, y_k) - f(s, x, t_k, y_k) \]

\[= - \sum_i \frac{a_i(s, x, \Delta)}{\Delta} \alpha_i - \sum_{i,j} \frac{b_{ij}(s, x, \Delta)}{2\Delta} \alpha_{ij} - \sum_k \lambda_k(\Delta) \Theta'' \nu(s, x, \Delta) \]

(21)
If Δ tends to zero, then the $\lambda_k(\Delta)$, as solutions of (20), tend to the solution $\lambda_k(0)$ of the equations

\[
\sum_k \lambda_k(0) \frac{\partial}{\partial x_i} f(s, x, t_k, y_k) = \alpha_i,
\]

\[
\sum_k \lambda_k(0) \frac{\partial^2}{\partial x_i \partial x_j} f(s, x, t_k, y_k) = \alpha_{ij}.
\]

(22)

Hence, the left-hand side of (21) has a finite limit

\[
\Lambda_0 = \sum_k \lambda_k(0) \frac{\partial}{\partial s} f(s, x, t_k, y_k)
\]

(23)

as $\Delta \to 0$.

In particular, if we set $\alpha_i = 0$, $\alpha_{ij} = g_{ij}$, then

\[
\frac{\sum g_{ij} b_{ij}(s, x, \Delta)}{2\Delta} + \sum \lambda_k(\Delta) \Theta_k^{\nu} \frac{\nu(s, x, \Delta)}{\Delta} \to \Lambda_0 \text{ as } \Delta \to 0.
\]

(24)

By (12), the second term in (24) is infinitesimally small as compared with the first one (since the $\lambda_k(\Delta)$ are bounded). Hence we have

\[
\sum g_{ij} b_{ij}(s, x, \Delta)/2\Delta \to \Lambda_0 \text{ as } \Delta \to 0.
\]

(25)

But (25) and (12) imply

\[
\nu(s, x, \Delta)/\Delta \to 0 \text{ as } \Delta \to 0.
\]

(26)

If we now equate all but one of the coefficients α_i and α_{ij} in (21) to zero, then a similar passage to the limit using (26) shows that all the limits

\[
A_i(s, x) = \lim_{\Delta \to 0} \frac{\alpha_i(s, x, \Delta)}{\Delta}
\]

(27)

\[
B_{ij}(s, x) = \lim_{\Delta \to 0} \frac{b_{ij}(s, x, \Delta)}{2\Delta}
\]

(28)

exist and do not depend on the choice\footnote{See A.M.,§13, formulas (122)-(124).} of Θ. Then (27), (28), (26) and (19) immediately imply the first differential equation

\[
\frac{\partial}{\partial s} f(s, x, t, y) = -\sum A_i(s, x) \frac{\partial}{\partial x_i} f(s, x, t, y) -
\]

\[-\sum B_{ij}(s, x) \frac{\partial^2}{\partial x_i \partial x_j} f(s, x, t, y).
\]

(29)
Certainly the condition that \(D_N(s, z) \) does not vanish identically can be replaced by the direct requirement that the limits (27) and (28) exist, since (28) implies the existence of a finite limit (25) and therefore of (26).

At certain exceptional points the limits (27) and (28) need not exist. This was illustrated in A.M.\(^8\) by the following example: \(\mathcal{A} \) is the ordinary number axis and

\[
f(s, x, t, y) = \frac{3y^2}{2\sqrt{\pi(t-s)}} \exp\left[-\frac{(y^3-x^3)^2}{4(t-s)} \right];
\]

for \(x = 0 \) we easily obtain

\[
b(s, x, \Delta)/2\Delta \to +\infty \quad \text{as} \quad \Delta \to 0.
\]

Hence there is no finite limit \(B(s, x) \).

§2. The second differential equation

Assume now that in a neighbourhood \(\mathcal{A} \) of the point \(y_0 \) for a given \(t \) the limits \(A_i(t, y) \) and \(B_{ij}(t, y) \) exist uniformly and that \(\nu(t, y, \Delta)/\Delta \) tends uniformly to 0 in \(\mathcal{A} \). Suppose further that \(R(y) \) is a non-negative function vanishing outside \(\mathcal{A} \) with bounded derivatives up to the third order. Then for \(y \in \mathcal{A}, \; z \in \mathcal{A} \) we have

\[
R(y) = R(z) + \sum (y_i - z_i) \frac{\partial}{\partial z_i} R(z) + \frac{1}{2} \sum (y_i - z_i)(y_j - z_j) \frac{\partial^2}{\partial z_i \partial z_j} R(z) + \Theta \rho^3(y, z), \quad |\Theta| \leq C', \quad (31)
\]

whereas for \(y \in \mathcal{A} - \mathcal{A} \) and \(z \in \mathcal{A} \),

\[
R(y) = R(z) + \Theta'' \rho^3(y, z), \quad |\Theta''| \leq C''. \quad (32)
\]

Finally, for \(y \in \mathcal{A} - \mathcal{A}, \; z \in \mathcal{A} - \mathcal{A} \)

\[
R(y) = 0. \quad (33)
\]

\(^8\) See A.M., §13, formula (126).
If in the corresponding regions $R(y)$ is replaced by (31)--(33), we obtain

\[
\int_{\mathbb{R}} R(y) \frac{\partial}{\partial t} f(s, x, t, y) dV_y =
\]

\[
= \frac{\partial}{\partial t} \int_{\mathbb{R}} R(y) f(s, x, t, y) dV_y = \frac{\partial}{\partial t} \int_{\mathbb{R}} R(y) f(s, x, t, y) dV_y =
\]

\[
= \lim_{\Delta} \frac{1}{\Delta} \int_{\mathbb{R}} R(y) \left[f(s, x, t + \Delta, y) - f(s, x, t, y) \right] dV_y =
\]

\[
= \lim_{\Delta} \frac{1}{\Delta} \left\{ \int_{\mathbb{R}} R(y) \int_{\mathbb{R}} f(s, x, t, z) f(t, z, t + \Delta, y) dV_z dV_y - \int_{\mathbb{R}} R(y) f(s, x, t, y) dV_y \right\} =
\]

\[
= \lim_{\Delta} \frac{1}{\Delta} \left\{ \int_{\mathbb{R}} f(s, x, t, z) \int_{\mathbb{R}} R(y) f(t, z, t + \Delta, y) dV_y dV_z - \int_{\mathbb{R}} R(z) f(s, x, t, z) dV_z \right\} =
\]

\[
= \lim_{\Delta} \frac{1}{\Delta} \left\{ \int_{\mathbb{R}} f(s, x, t, z) \int_{\mathbb{R}} R(z) f(t, z, t + \Delta, y) dV_y dV_z + \int_{\mathbb{R}} f(s, x, t, z) \int_{\mathbb{R}} \left[\sum (y_i - z_i) \frac{\partial}{\partial z_i} R(z) \right] f(t, z, t + \Delta, y) dV_y dV_z + \right.
\]

\[
+ \frac{1}{2} \sum (y_i - z_i)(y_j - z_j) \frac{\partial^2}{\partial z_i \partial z_j} R(z) \right] f(t, z, t + \Delta, y) dV_y dV_z +
\]

\[
+ \int_{\mathbb{R}} f(s, x, t, z) \int_{\mathbb{R}} \Theta'' \rho^3(y, z) f(t, z, t + \Delta, y) dV_y dV_z - \int_{\mathbb{R}} R(z) f(s, x, t, z) dV_z \right\} = \lim_{\Delta} \frac{1}{\Delta} \left\{ \int_{\mathbb{R}} f(s, x, t, z) R(z) dV_z + \right.
\]

\[
+ \int_{\mathbb{R}} f(s, x, t, z) \left[\sum a_i(t, z, \Delta) \frac{\partial}{\partial z_i} R(z) + \right.
\]

\[
+ \frac{1}{2} \sum b_{ij}(t, z, \Delta) \frac{\partial^2}{\partial z_i \partial z_j} R(z) \right] dV_z + \left. \right\}
\]

\[
+ \Theta \int_{\mathbb{R}} f(s, x, t, z) \nu(t, z, \Delta) dV_z - \int_{\mathbb{R}} f(s, x, t, z) R(z) dV_z \right\} =
\]
\begin{align*}
= \int_{\mathcal{A}} f(s, x, t, z) & \left[\sum A_i(t, z) \frac{\partial}{\partial z_i} R(z) + \\
+ \sum B_{ij}(t, z) \frac{\partial^2}{\partial z_i \partial z_j} R(z) \right] dV_z.
\end{align*}

Replacing \(z \) by \(y \) in the right-hand side of the equation we obtain

\begin{align*}
\int_{\mathcal{A}} R(y) \frac{\partial}{\partial t} f(s, x, t, y) dV_y = \int_{\mathcal{A}} f(s, x, t, y) & \left[\sum A_i(t, y) \frac{\partial}{\partial y_i} R(y) + \\
+ \sum B_{ij}(t, y) \frac{\partial^2}{\partial y_i \partial y_j} R(y) \right] dV_y.
\end{align*}

(34)

Now assume that \(A_i(t, z) \) and \(B_{ij}(t, z) \) are twice continuously differentiable in \(\mathcal{A} \). Then we set

\[Q(t, y) = |g_{ij}(t, y)| \]

and after integration by parts, we obtain

\begin{align*}
\int_{\mathcal{A}} f(s, x, t, y) A_i(t, y) \frac{\partial}{\partial y_i} R(y) dV_y = \\
= \int_{\mathcal{A}} f(s, x, t, y) A_i(t, y) Q(t, y) \frac{\partial}{\partial y_i} R(y) dy_1 dy_2 \ldots dy_n = \\
= - \int_{\mathcal{A}} \frac{\partial}{\partial y_i} [f(s, x, t, y) A_i(t, y) Q(t, y)] R(y) dy_1 dy_2 \ldots dy_n.
\end{align*}

(35)

Double integration by parts (since all the derivatives vanish on the boundary of \(\mathcal{A} \)) yields

\begin{align*}
\int_{\mathcal{A}} f(s, x, t, y) B_{ij}(t, y) & \frac{\partial^2}{\partial y_i \partial y_j} R(y) dV_y = \\
= \int_{\mathcal{A}} \frac{\partial^2}{\partial y_i \partial y_j} [f(s, x, t, y) B_{ij}(t, y) Q(t, y)] R(y) dy_1 dy_2 \ldots dy_n.
\end{align*}

(36)

Formulas (34)–(36) immediately imply that

\begin{align*}
\int_{\mathcal{A}} R(y) Q(t, y) \frac{\partial}{\partial t} f(s, x, t, y) dy_1 dy_2 \ldots dy_n = \\
= \int_{\mathcal{A}} R(y) \{ - \sum \frac{\partial}{\partial y_i} [A_i(t, y) Q(t, y) f(s, x, t, y)] + \\
+ \sum \frac{\partial^2}{\partial y_i \partial y_j} [B_{ij}(t, y) Q(t, y) f(s, x, t, y)] \} dy_1 dy_2 \ldots dy_n.
\end{align*}
Since \(R(y) \) is arbitrary, apart from the above conditions, it is easy to conclude that at interior points of \(\mathfrak{A} \) the second differential equation

\[
Q(t, y) \frac{\partial}{\partial t} f(s, x, t, y) = -\sum \frac{\partial}{\partial y_i} [A_i(t, y) Q(t, y) f(s, x, t, y)] + \\
+ \sum \frac{\partial^2}{\partial y_i \partial y_j} [B_{ij}(t, y) Q(t, y) f(s, x, t, y)]
\]

(37)

also holds.

If at time \(t_0 \) the differential function of the probability distribution is given, that is, a non-negative function \(g(t_0, y) \) of \(y \) satisfying the condition

\[
\int_{\mathfrak{A}} g(t_0, y) dV_y = 1,
\]

(38)

then for arbitrary \(t > t_0 \) the distribution function \(g(t, y) \) is given by the formula

\[
g(t, y) = \int_{\mathfrak{A}} g(t_0, x) f(t_0, x, t, y) dV_x.
\]

(39)

The function \(g(t, y) \) satisfies the equation\(^9\)

\[
Q \frac{\partial g}{\partial t} = -\sum \frac{\partial}{\partial y_i} (A_i Q g) + \sum \frac{\partial^2}{\partial y_i \partial y_j} (B_{ij} Q g).
\]

(40)

§3. Uniqueness

Under a change of the coordinate system the coefficients \(A_i(s, x) \) and \(B_{ij}(s, x) \) are transformed in the following way:

\[
A_i' = \sum \frac{\partial x_i'}{\partial x_k} A_k + \sum \frac{\partial^2 x_i'}{\partial x_k \partial x_l} B_{kl},
\]

(41)

\[
B_{ij}' = \sum \frac{\partial x_i'}{\partial x_k} \frac{\partial x_j'}{\partial x_l} B_{kl}.
\]

(42)

Here we always have

\[
B_{ii} = \lim_{2\Delta \to 0} \frac{b_{ii}(s, x, \Delta)}{2\Delta} = \lim \frac{1}{2\Delta} \int_{\mathfrak{A}} f(s, x, s + \Delta, x)(x_i - x_i)^2 dV_x \geq 0.
\]

(43)

Hence the quadratic form

\[
\sum B_{ij} \xi_i \xi_j
\]

(44)

\(^9\) See A.M., §18, formulas (169) and (170).
is non-negative. This is crucial in the proof of the following theorem.10

Uniqueness Theorem 1. If \(R \) is closed, then (40) has at most one solution \(g(t, y) \) with given continuous initial condition \(g(t_0, y) = g(y) \).

Proof. Clearly it suffices to consider the initial condition \(g(t_0, y) = 0 \) and prove that \(g(t, y) = 0 \) also for \(t > t_0 \). We can transform (40) into the form

\[
\frac{\partial g}{\partial t} = \sum B_{ij} \frac{\partial^2 g}{\partial y_i \partial y_j} + \sum S_i \frac{\partial g}{\partial y_i} + Tg. \tag{45}
\]

Now set

\[
v(t, y) = g(t, y)e^{-ct}.
\]

The function \(v(t, y) \) satisfies the equation

\[
\frac{\partial v}{\partial t} = \sum B_{ij} \frac{\partial^2 v}{\partial y_i \partial y_j} + \sum S_i \frac{\partial v}{\partial y_i} + Tv - cv. \tag{46}
\]

For fixed \(t_0 \) and \(t_1 \) the constant \(c \) can be chosen so large that

\[
T(t, y) - c < 0
\]

for all \(y \) and \(t, t_0 \leq t \leq t_1 \). Under these conditions \(v(t, y) \) cannot have a positive maximum at any point \((t, y), t_0 < t < t_1\), since at such a maximum

\[
\frac{\partial v}{\partial t} = 0, \quad \frac{\partial v}{\partial y_i} = 0, \quad \sum B_{ij} \frac{\partial^2 v}{\partial y_i \partial y_j} \leq 0, \quad (T - c)v < 0,
\]

which contradicts (46). Neither can there be a negative minimum of \(v(t, y) \) within these limits. Since \(v(t_0, y) = 0 \) at \(t = t_0 \), we obtain for \(t_0 < t < t_1 \),

\[
v(t, y) < \max v(t_1, y) = e^{-ct_1} \max g(t_1, y)
\]

\[
g(t, y) < e^{-(t_1 - t)} \max g(t_1, y).
\]

Since \(c \) was arbitrarily large, it follows that

\[
g(t, y) = 0.
\]

Uniqueness Theorem 2. Let \mathcal{R} be closed. Then there is at most one non-negative continuous solution $f(s, x, t, y)$ for (2) and (3) that satisfies (29) with given twice continuously differentiable coefficients $A_i(t, y)$ and $B_{ij}(t, y)$, and the continuity condition (4).

The continuity condition (4) can be replaced by the following, weaker one:

$$\int_{\mathcal{R}} f(s, x, t, y) \rho^2(x, y) dV_y \to 0 \quad \text{as} \quad t \to s. \quad (47)$$

Proof. Assume that two different functions $f_1(s, x, t, y)$ and $f_2(s, x, t, y)$ satisfy all our conditions. Then we can choose s and a continuous function $g(x)$ such that

$$g_1(t, y) = \int_{\mathcal{R}} g(x) f_1(s, x, t, y) dV_x,$$

$$g_2(t, y) = \int_{\mathcal{R}} g(x) f_2(s, x, t, y) dV_x$$

are also different. By (2) and (47), $g_1(t, y)$ and $g_2(t, y)$ tend to $g(y)$ as $t \to s$. Since the functions $g_1(t, y)$ and $g_2(t, y)$ satisfy (40), this contradicts Uniqueness Theorem 1.

§4. An example

The following example, which is interesting also for applications, demonstrates that the quadratic form (44) need not be positive definite: let \mathcal{R} be the usual Euclidean plane and let

$$f(s, x_1, x_2, t, y_1, y_2) = \frac{2\sqrt{3}}{\pi(t-s)^2} \exp\left\{ - \frac{(y_1 - x_1)^2}{4(t-s)} - \frac{3[y_2 - x_2 - (t-s)(y_1 + x_2)/2]^2}{(t-s)^3} \right\}. \quad (48)$$

A simple computation shows that

$$B_{11} = 1, \quad B_{12} = 0, \quad B_{22} = 0, \quad A_1 = 0, \quad A_2(s, x) = x_1.$$

§5. The limit solution

Let \mathcal{R} be closed and $f(s, x, t, y)$ everywhere positive and dependent only on the difference $t-s$:

$$f(s, x, t, y) = \phi(t-s, x, y). \quad (49)$$
Then general ergodic theorems11 imply the existence of the limit probability distribution. In other words, for any distribution $g(t,y)$ determined by (38) and (39) and any region E the relation

$$\int_E g(t,y) dV_y \rightarrow P(E) \quad \text{as} \ t \rightarrow +\infty, \quad (50)$$

holds, where $P(E)$ does not depend on $g(t_0,y)$. It can easily be proved that $g(t,y)$ is uniformly continuous for large t. From this we deduce that12

$$P(E) = -\int_E g(y) dV_y, \quad (51)$$

$$g(t,y) \rightarrow g(y) \quad \text{as} \ t \rightarrow +\infty. \quad (52)$$

Clearly, $g(y)$ and $P(E)$ do not depend on $g(t_0,y)$.

Now, let $g(y)$ be the solution of the equations

$$-\sum \frac{\partial}{\partial y_i} [A_i(y)Q(y)g(y)] + \sum \frac{\partial^2}{\partial y_i \partial y_j} [B_{ij}(y)Q(y)g(y)] = 0, \quad (53)$$

$$\int_{\mathbb{R}} g(y) dV_y = 1. \quad (53a)$$

Setting $g(t_0,y) = g(y)$ it can easily be seen that $g(t,y) = g(y)$ also for $t > t_0$ (see (40) and Uniqueness Theorem 1). From this we deduce that the solution of (53) and (53a) (if it exists) is uniquely determined and coincides with the limit function $g(y)$.

As a particular case, (52) implies

$$f(s,x,t,y) \rightarrow g(y) \quad \text{as} \ t \rightarrow +\infty. \quad (54)$$

Klyazma, near Moscow, 12 April 1932

11 See A.M., §4, Theorem IV.

12 See footnote 1.