This course is a modern overview on logarithmic Sobolev inequalities, from the probabilistic side. These inequalities have been the subject of intense activity in the recent decades in relation with the analysis and geometry of Markov processes and diffusion evolution equations. This course is designed to be accessible to a wide audience. It is divided into seven lectures. The examination will consist in reading a research paper in the field and giving a short talk on it.

Short bibliography:
- Analysis and Geometry of Markov Diffusion Operators, by Bakry, Gentil, and Ledoux;
- An Initiation to Logarithmic Sobolev inequalities by Royer;
- Sur les inégalités de Sobolev logarithmiques, by Ané et al.
Contents

1 Introduction 5

1.1 Generalities on Markov processes .. 6
1.2 Ornstein–Uhlenbeck semigroup .. 8
1.3 Poincaré and logarithmic Sobolev inequalities 11
1.4 Convergence to equilibrium ... 14
1.5 Amnesia and long time behavior .. 15
1.6 Tensorization and Central Limit Theorem 17

2 Hypercontractivity, spectral gap, information theory 21

2.1 Hypercontractivity ... 21
2.2 Spectral gap and Hermite polynomials ... 24
2.3 Information theory ... 28

3 Sub-Gaussian concentration and transportation 35

3.1 Concentration of measure ... 35
3.2 Transportation inequalities ... 37

4 Isoperimetric inequalities 43

4.1 Proof of the second Bobkov inequality ... 49

5 Bakry-Émery criterion 51

5.1 Gamma calculus ... 51
5.2 The Poincaré inequality .. 53
5.3 The Langevin semigroup ... 54
5.4 Diffusions ... 56
5.5 The log–Sobolev inequality for a diffusion 57

6 Brenier and Caffarelli theorems 61

6.1 Brenier theorem ... 61
6.2 Caffarelli contraction theorem .. 62

7 Discrete space 65

7.1 Bernoulli distributions ... 65
7.2 Poisson distributions ... 67
7.2.1 Poisson process and A modified inequality 70
7.2.2 M/M/∞ queue and B modified inequality 70
7.2.3 Concentration and C modified inequality 72
7.3 Geometric distributions .. 73
7.4 Distributions on finite sets and Markov chains 73
Chapter 1

Introduction

The first chapters focus on a Gaussian model formed with the product space \mathbb{R}^n equipped with the Gaussian probability measure $\gamma_n = \gamma_1^\otimes n$. It allows explicit computations. It appears asymptotically in other models due to the central limit phenomenon1 in particular from spheres and from cubes, both equipped with the uniform measure. In a way γ_n plays the role of a uniform measure on \mathbb{R}^n.

The standard Gaussian measure γ_n on \mathbb{R}^n has expectation 0, covariance the identity matrix I_n, and density with respect to the Lebesgue measure given by

$$x \mapsto (2\pi)^{-n/2} e^{-|x|^2/2}$$

where $|x| = \left(\sum_{i \leq n} x_i^2\right)^{1/2}$ denotes the Euclidean norm.

Let U_n be the uniform distribution on the unit sphere $\{s \in \mathbb{R}^n : |s| = 1\}$.

Theorem 1.1 (Polar factorization of spheres). If $X = (X_1, \ldots, X_n) \sim \gamma_n$ then

$$|X| = \sqrt{X_1^2 + \cdots + X_n^2} \quad \text{and} \quad \frac{X}{|X|}$$

are independent, with $|X|^2 \sim \chi^2(n)$ and $X/|X| \sim U_n$. Conversely if R and U are independent with $R^2 \sim \chi^2(n)$ and $U \sim U_n$, then $RU \sim \gamma_n$.

Proof. Follows from $e^{-|x|^2/2}dx = e^{-r^2/2}r^{n-1}drdu$ where $x = ru$. \hfill \square

The following result, known as the Borel or Poincaré observation, states that one can see the standard Gaussian as a the projection of the uniform distribution on high dimensional spheres with radius equal to the square root of the dimension.

Theorem 1.2 (Central Limit Theorem for spheres). If $U_n \sim U_n$ for any $n \geq 1$, then for any fixed $k \geq 1$,

$$\proj(\sqrt{n}U_n, \mathbb{R}^k) \rightarrow \gamma_k \text{ in law as } n \rightarrow \infty.$$

Proof. Let $(X_n)_{n \geq 1}$ be independent and identically distributed random variables with law γ_1. By the preceding theorem and the strong law of large numbers,

$$\proj(\sqrt{n}U_n, \mathbb{R}^k) \overset{d}{=} \sqrt{n} \frac{(X_1, \ldots, X_k)}{\sqrt{X_1^2 + \cdots + X_n^2}} \xrightarrow{n \rightarrow \infty} (X_1, \ldots, X_k) \sim \gamma_k.$$

\hfill \square

1If X_1, X_2, \ldots are i.i.d. real random variables with zero mean and unit variance then $\frac{X_1 + \cdots + X_n}{\sqrt{n}}$ converges in law as $n \rightarrow \infty$ to the standard Gaussian distribution.
Definition 1.3 (Variance and entropy). If f is a square integrable function with respect to γ_n, then its variance is

$$\text{Var}_{\gamma_n}(f) = \int_{\mathbb{R}^n} f^2 \, d\gamma_n - \left(\int_{\mathbb{R}^n} f \, d\gamma_n \right)^2 = \text{Var}(f(X)) \quad \text{where} \ X \sim \gamma_n.$$

If f is a non-negative function, integrable with respect to γ_n, then its entropy is

$$\text{Ent}_{\gamma_n}(f) = \int_{\mathbb{R}^n} f \log f \, d\gamma_n - \log \left(\int_{\mathbb{R}^n} f \, d\gamma_n \right).$$

The function $f \log f$ may not be integrable, but since the function $x \log x$ is bounded from below, the integral of $f \log f$ always makes sense in $\mathbb{R} \cup \{+\infty\}$.

Remark (φ entropies). One can define a more general object: Given a convex function ϕ on an interval $I \subset \mathbb{R}$ the ϕ–entropy of $f : \mathbb{R} \to I$ is

$$E_{\gamma_n}^\phi(f) = \int_{\mathbb{R}^n} \phi(f) \, d\gamma_n - \phi \left(\int_{\mathbb{R}^n} f \, d\gamma_n \right).$$

We recover the variance for $\phi(x) = x^2$ and $I = \mathbb{R}$ and the entropy for $\phi(x) = x \log(x)$ and $I = \mathbb{R}_+$. By Jensen’s inequality, a ϕ–entropy is always non-negative, and if the function ϕ is strictly convex, which is indeed the case for x^2 and $x \log(x)$, then the ϕ–entropy only vanishes on constant functions.

The Poincaré inequality for the Gaussian measure states as follows:

$$\text{Var}_{\gamma_n}(f) \leq \int_{\mathbb{R}^n} |\nabla f|^2 \, d\gamma_n,$$

while the logarithmic Sobolev inequality reads

$$\text{Ent}_{\gamma_n}(f) \leq \frac{1}{2} \int_{\mathbb{R}^n} \frac{|\nabla f|^2}{f} \, d\gamma_n.$$

We will explain in the sequel why these are interesting inequalities and how they are related to the Ornstein–Uhlenbeck process and its numerous properties.

1.1 Generalities on Markov processes

In this section, we give a very brief recap on Markov processes. We give the main definitions alongside with a couple of very basic properties.

Let E be a set and \mathcal{B} be a σ–field on E. A process (X_t) taking values in E is said to be Markovian if for every $t \geq 0$, the conditional law of $(X_s)_{s \geq t}$ given $\mathcal{F}_t = \sigma(X_{s \leq t})$ coincides with the law of $(X_s)_{s \geq t}$ given X_t and with the law of $(X_s)_{s \geq 0}$ given X_0. We associate a semigroup to the process (X_t): Let

$$P_t f(x) = \mathbb{E}_x[f(X_t)]$$

for every bounded and measurable function f, for every $t \geq 0$, for every $x \in E$, and where \mathbb{E}_x denotes expectation given $X_0 = x$.

Proposition 1.4 (Markov semigroup). For every $s, t \geq 0$, we have

(i) $P_{s+t} = P_s \circ P_t$;
(ii) If \(f \geq 0 \) then \(P_t f \geq 0 \);

(iii) \(P_1 1 = 1 \).

We say that \((P_t) \) is a Markov semigroup.

Proof. Since \((X_t) \) is a Markov process and by definition of \(P_t \)

\[
E[f(X_{s+t}) | X_s] = P_t f(X_s)
\]

Taking expectation again we get

\[
P_{s+t} f(x) = P_s (P_t f)(x),
\]

which is the first property. The other two properties are obvious from the definition.

The semigroup \((P_t) \) also acts on measures through the duality

\[
\int_E f d(\mu P_t) = \int_E P_t f d\mu.
\]

If \(\mu \) is a probability measure, this has a probabilistic interpretation: \(\mu P_t \) is the law of \(X_t \) under \(\mathbb{P}_\mu \), in other words the law of \(X_t \) when \(X_0 \) has law \(\mu \).

Definition 1.5 (Stationary measure). A measure \(\mu \) is called stationary if \(\mu P_t = \mu \) for all \(t \), in other words if

\[
\int_E P_t f d\mu = \int_E f d\mu, \quad \forall t \geq 0
\]

for every bounded and measurable \(f \).

Remark. If \(\mu \) is a probability measure, this can be reformulated as

\[
X_0 \sim \mu \implies X_t \sim \mu, \quad \forall t \geq 0.
\]

Stationary measures have the following fundamental property.

Lemma 1.6 (Contractivity). If \(\mu \) is stationary then \(P_t \) extends to a continuous operator on \(\mathbb{L}^p(\mu) \) for any \(p \in [1, \infty] \). Moreover \(P_t \) is a contraction:

\[
\|P_t f\|_p \leq \|f\|_p, \quad \forall p \in [1, \infty], \quad \forall f \in \mathbb{L}^p(\mu).
\]

Proof. Let \(f \) be bounded and in \(\mathbb{L}^p(\mu) \). By Jensen’s inequality we have \(|P_t f|^p \leq P_t(|f|^p) \), pointwise. Integrating and using stationarity we get

\[
\int_E |P_t f|^p d\mu \leq \int_E P_t(|f|^p) d\mu = \int_E |f|^p d\mu.
\]

Since bounded functions are dense in \(\mathbb{L}^p(\mu) \) this is the result.

It is pretty clear from the semigroup property, that \((P_t) \) is completely determined by its behavior when \(t \) tends to 0. For this reason, it is natural to try and differentiate \(P_t f \) at \(t = 0 \). For functions \(f \) such that

\[
\lim_{t \to 0} \frac{P_t f - f}{t} = \tag{1.1}
\]

\[
\lim_{t \to 0} \frac{P_t f - f}{t}
\]
exists (let us not specify in what sense at this stage) we let L_f be this limit. The operator L is called the \textit{generator} of the semigroup P_t. Then using the semigroup property and assuming that P_t is continuous for whatever topology was considered at (1.1) we get

$$L P_t f = \lim_{s \to 0} \frac{P_s(P_t f) - P_t f}{s} = P_t \left(\lim_{s \to 0} \frac{P_s f - f}{s} \right) = P_t(L f).$$

So P_t and L commute.

Let us give a last definition before moving on to the particular case of the Ornstein–Uhlenbeck semigroup.

\textbf{Definition 1.7 (Reversible measure).} A measure μ is called reversible if

$$\int_E (P_t f) g \, d\mu = \int_E f(P_t g) \, d\mu$$

for every bounded and measurable f, g.

\textbf{Remarks.} Reversibility is stronger than stationarity (just take $g = 1$). Reversibility also has a probabilistic interpretation, a probability measure μ is reversible if and only if

$$X_0 \sim \mu \Rightarrow (X_0, X_t) \sim (X_t, X_0), \forall t \geq 0.$$

At the level of the generator reversibility reads

$$\int_E (L f) g \, d\mu = \int_E f(L g) \, d\mu.$$

In other words L is a symmetric operator on $L^2(\mu)$.

\subsection*{1.2 Ornstein–Uhlenbeck semigroup}

Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space equipped with a filtration (\mathcal{F}_t) carrying a standard n–dimensional Brownian motion (B_t). We consider the following stochastic differential equation

$$dX_t = \sqrt{2} \, dB_t - X_t \, dt. \tag{1.2}$$

Recall that a process (X_t) is a solution to (1.2) if (X_t) is adapted to the filtration (\mathcal{F}_t) and if

$$X_t = \sqrt{2}B_t - \int_0^t X_s \, ds, \quad \forall t \geq 0$$

almost surely. Note that this imply implicitly that the integral above should be well defined, so we should have

$$\int_0^t |X_s| \, ds < +\infty, \quad \forall t \geq 0,$$

almost surely. Actually (1.2) can be solved explicitly. Indeed it implies that

$$d(e^{t} X_t) = e^{t} dX_t + e^{t} X_t dt = \sqrt{2} e^{t} \, dB_t.$$

Hence

$$X_t = e^{-t} X_0 + \sqrt{2} \int_0^t e^{s-t} \, dB_s. \tag{1.3}$$
Conversely, if \((X_t)\) is defined by (1.3) then it clearly satisfies all the previous requirements. We claim that \((X_t)\) is a Markov process. Indeed, an easy computation shows that

\[
X_{t+s} = e^{-t} X_s + \sqrt{2} \int_0^t e^{-u} \, dB_u
\]

where \(\tilde{B}_u = B_u + u - B_s\). Since \(\tilde{B}\) is a Brownian motion independent of \(\mathcal{F}_s\) we obtain that the conditional law of \((X_{t+s})_{t \geq 0}\) given \(\mathcal{F}_s\) coincides with that of an independent OU process \((\tilde{X}_t)\) initiated from \(X_s\).

Let \((P_t)\) be the associated semigroup. Note that \(\sqrt{2} \int_0^t e^{-u} \, dB_u\) is a Gaussian vector centered at 0 and having covariance matrix

\[
2 \left(\int_0^t e^{2(s-t)} \, ds \right) I_n = (1 - e^{2t}) I_n.
\]

Therefore if \(X_0 = x\) then \(X_t \sim \mathcal{N}(\sqrt{\rho} x, (1 - \rho) I_n)\) where \(\rho = e^{-2t}\). We thus have the following expression for \(P_t f\), called the Mehler formula.

Lemma 1.8 (Mehler formula). For every test function \(f\) and every \(x \in \mathbb{R}^n\)

\[
P_t f(x) = \int_{\mathbb{R}^n} f \left(\sqrt{\rho} x + \sqrt{1 - \rho} y \right) \gamma_n(dy)
= f * g_{1-\rho}(\sqrt{\rho} x),
\]

where \(\rho = e^{-2t}\), and \(g_{1-\rho}\) is the density of the \(\mathcal{N}(0, (1 - \rho) I_n)\) law.

Remark. The semigroup property \(P_{s+t} = P_s \circ P_t\) is easily retrieved using convolution properties of the Gaussian density.

Lemma 1.9. The standard Gaussian measure is reversible for \((P_t)\).

Proof. Let \(\rho = e^{-2t}\). From (1.3) we see that if \(X_0\) is a standard Gaussian vector then the couple \((X_0, X_t)\) is Gaussian on \(\mathbb{R}^{2n}\) with expectation 0 and covariance matrix

\[
\begin{pmatrix}
I_n & \sqrt{\rho} I_n \\
\sqrt{\rho} I_n & I_n
\end{pmatrix}.
\]

In particular \((X_0, X_t) = (X_t, X_0)\), in law. \(\square\)

Lemma 1.10. For any initial distribution \(\mu\), we have \(X_t \rightarrow \gamma_n\), in law.

Proof. Let \(G\) be a standard Gaussian vector independent of \(X_0\). We have seen that

\[
X_t = \sqrt{\rho} X_0 + \sqrt{1 - \rho} G, \quad \text{in law.}
\]

If \(t \rightarrow +\infty\) then \(\rho \rightarrow 1\) and

\[
\sqrt{\rho} X_0 + \sqrt{1 - \rho} G \rightarrow G
\]

almost surely. Hence the result. \(\square\)

Corollary 1.11. \(\gamma_n\) is the only stationary distribution of the process.

Proof. Let \(\mu\) be a probability distribution satisfying \(\mu P_t = \mu\) for all \(t\). Taking the limit as \(t \rightarrow \infty\) yields \(\mu = \gamma_n\). \(\square\)
Now we compute the generator of the Ornstein–Uhlenbeck semigroup. Observe first that the path \((X_t)\) of the Ornstein–Uhlenbeck process is almost surely continuous. For every \(t\) we have \(\lim_{s \to t} X_s = X_t\) almost surely, hence in law. Therefore for every fixed \(x\) and continuous and bounded function \(f\) we have \(\lim_{s \to t} P_s f(x) = P_t f(x)\). In other words the map \(t \mapsto P_t f(x)\) is continuous. We now investigate its differentiability. Let \(C^2\) be the space of twice continuously differentiable functions which are bounded with bounded partial derivatives of order 1 and 2.

Lemma 1.12 (Infinitesimal generator). Let \(f \in C^2\) and let

\[
Lf(x) = \Delta f(x) - \langle \nabla f(x), x \rangle.
\]

Then for every \(x \in \mathbb{R}^n\) we have

\[
\lim_{t \to 0} \frac{P_t f(x) - f(x)}{t} = Lf(x).
\]

Actually for fixed \(x \in \mathbb{R}^n\) the map \(t \mapsto P_t f(x)\) is continuously differentiable and

\[
\partial_t P_t f(x) = P_t (Lf)(x).
\]

Lastly, \(P_t\) preserves the class \(C^2\) and commutes with \(L\), namely \(L(P_t f) = P_t (Lf)\).

Proof. By definition of \((X_t)\) and applying Itô’s formula we have

\[
f(X_t) - f(X_0) = \int_0^t \langle \nabla f(X_s), dX_s \rangle + \int_0^t \Delta f(X_s) ds,
\]

\[
= \int_0^t \langle \nabla f(X_s), \sqrt{2} dB_s - X_s ds \rangle + \Delta f(X_s) ds
\]

\[
= \sqrt{2} \int_0^t \langle \nabla f(X_s), dB_s \rangle + \int_0^t Lf(X_s) ds.
\]

The hypothesis made on \(f\) imply in particular that \(\langle |\nabla f(X_t)| \rangle\) is bounded. So the stochastic integral of the previous equation is a martingale. In particular it has expectation 0. So taking expectation with respect to \(P_x\) in \((1.4)\) yields the “Duhamel formula”

\[
P_t f(x) - f(x) = \int_0^t P_s (Lf)(x) ds.
\]

Since \(Lf\) is continuous and bounded, \(s \to P_s (Lf)(x)\) is continuous and we get the first part of the Lemma. The fact that \(P_t\) preserves \(C^2\) is clear from Mehler’s formula, and we have explained why \(P_t\) and \(L\) commute in the previous section.

Remark. The formula for the generator \(L\) can also be derived directly from the Mehler formula using a Taylor formula or the fact that \(g_t\) solves the heat equation (we speak about the heat kernel): \(\partial_t g_t = \frac{1}{2} \Delta g_t\). We used the SDE \((1.2)\) and Itô’s formula instead because this proof extends to processes whose semigroups do not have an explicit expression.

Observe that if \(f\) and \(g\) belong to \(C^2\) then so does their product \(fg\). Then an easy computation shows that

\[
L(fg) = (Lf)g + f(Lg) + 2 \langle \nabla f, \nabla g \rangle.
\]

Lemma 1.13 (Integration by parts formula). For \(f\) and \(g\) in \(C^2\) we have the following integration by parts formula

\[
\int_{\mathbb{R}^n} (Lf)g \, d\gamma_n = - \int_{\mathbb{R}^n} \langle \nabla f, \nabla g \rangle \, d\gamma_n.
\]
1.3. POINCARÉ AND LOGARITHMIC SOBOLEV INEQUALITIES

Proof. By dominated convergence, for \(f, g \in C^2 \) we can differentiate at \(t = 0 \) the equality
\[
\int_{\mathbb{R}^n} (P_t f) g \, d\gamma_n = \int_{\mathbb{R}^n} f(P_t g) \, d\gamma_n.
\]
and get
\[
\int_{\mathbb{R}^n} (L f) g \, d\gamma_n = \int_{\mathbb{R}^n} f(L g) \, d\gamma_n.
\]
In the same way, we have
\[
\int_{\mathbb{R}^n} (P_t f) g \, d\gamma_n = \int_{\mathbb{R}^n} f(P_t g) \, d\gamma_n.
\]
Plugging in (1.5) and using the previous equality, we get the result. \(\square \)

For a general Markov process having generator \(L \) the operator
\[
\Gamma(f, g) = \frac{1}{2} (L(fg) - (Lf)g - f(Lg))
\]
is a fundamental object called carré du champ (even in English). The above proof shows that if there is a reversible measure \(\mu \) we will have
\[
-\int (L f) g \, d\mu = \int \Gamma(f, g) \, d\mu
\]
for every \(f, g \) in the appropriate space. This quantity is called the Dirichlet form (this is general notion of quadratic forms for unbounded operators).

1.3 Poincaré and logarithmic Sobolev inequalities

Lemma 1.14 (Semigroup expression of entropies). Let \(\phi : I \to \mathbb{R} \) be convex and \(C^2 \) on an interval \(I \subset \mathbb{R} \) and \(f : \mathbb{R}^n \to I \) be \(C^2 \). Then
\[
\mathbb{E}^\phi_{\gamma_n}(f) = \int_0^{+\infty} \int_{\mathbb{R}^n} \phi''(P_t f)|\nabla P_t f|^2 \, d\gamma_n \, dt. \tag{1.6}
\]

Proof. Let us give a formal proof first. Let us define, for all \(t \geq 0 \),
\[
\alpha(t) = \int_{\mathbb{R}^n} \phi(P_t f) \, d\gamma_n.
\]
We have \(\alpha(0) = \int \phi(f) \, d\gamma \) and
\[
\lim_{t \to +\infty} \alpha(t) = \lim_{t \to +\infty} \phi(P_t f) \, d\gamma_n = \phi \left(\int_{\mathbb{R}^n} f \, d\gamma_n \right).
\]
Therefore
\[
\mathbb{E}^\phi_{\gamma_n}(f) = \phi(0) - \phi(+\infty).
\]
Now using chain rule and integration by parts we get
\[
\alpha'(t) = \int_{\mathbb{R}^n} \partial_t \phi(P_t f) = \int_{\mathbb{R}^n} \phi'(P_t f)(LP_t f) \, d\gamma_n
\]
\[
= -\int_{\mathbb{R}^n} \langle \nabla \phi'(P_t f), \nabla P_t f \rangle \, d\gamma_n
\]
\[
= -\int_{\mathbb{R}^n} \phi''(P_t f)|\nabla P_t f|^2 \, d\gamma_n,
\]
hence the result. Now we let the reader check that every step of this argument is valid if \(f \) belongs to \(C^2 \) and takes values in some interval \(I \) on which \(\phi \) is twice continuously differentiable with bounded derivatives. \(\square \)
Lemma 1.15. If f is smooth with bounded derivative then

$$\nabla P_t f(x) = e^{-t} P_t (\nabla f)(x)$$

Remark. $P_t(\nabla f)$ is defined by extending P_t to \mathbb{R}^n-valued function coordinate wise.

Proof. This is a clear consequence of Mehler’s formula. \hfill \Box

Corollary 1.16. Under the same hypothesis, the following inequalities hold true

$$|\nabla P_t f|^2 \leq e^{-2t} P_t(|\nabla f|^2) \quad (1.7)$$

$$\frac{|\nabla P_t f|^2}{P_t f} \leq e^{-2t} P_t \left(\frac{|\nabla f|^2}{f} \right). \quad (1.8)$$

Proof. By the previous lemma and Cauchy–Schwarz we get

$$|\nabla P_t f|^2 = e^{-2t} |P_t(\nabla f)|^2 \leq e^{-2t} P_t(|\nabla f|^2)$$

which is the first inequality. Using Cauchy–Schwarz in a different way:

$$|P_t(\nabla f)|^2 = \left| P_t \left(\frac{\nabla f}{\sqrt{f}} \right) \right|^2 \leq P_t \left(\frac{|\nabla f|^2}{f} \right) P_t(f).$$

yields the second one. \hfill \Box

Theorem 1.17 (Poincaré inequality). For every function f whose gradient belongs to $L^2(\gamma_n)$ we have

$$\text{Var}_{\gamma_n}(f) \leq \int_{\mathbb{R}^n} |\nabla f|^2 \, d\gamma_n.$$

Exercise (Optimality). Check on affine functions $f(x) = \langle x, u \rangle$ that the inequality is sharp.

Proof. Clearly, if f belongs to C^2 and $\phi(x) = x^2$, equality (1.6) applies and we get

$$\text{Var}_{\gamma_n}(f) = 2 \int_0^{+\infty} \int_{\mathbb{R}^n} |\nabla P_t f|^2 \, d\gamma_n.$$

Moreover, by (1.7) and stationarity

$$\int_{\mathbb{R}^n} |\nabla P_t f|^2 \, d\gamma_n \leq e^{-2t} \int_{\mathbb{R}^n} P_t(|\nabla f|^2) \, d\gamma_n = e^{-2t} \int_{\mathbb{R}^n} |\nabla f|^2 \, d\gamma_n.$$

Plugging this back in the previous equality we get the result, at least when f is in C^2. \hfill \Box

Theorem 1.18 (logarithmic Sobolev inequality). Let f be a non negative, C^1–smooth, integrable function. The following inequality holds true:

$$\text{Ent}_{\gamma_n}(f) \leq \frac{1}{2} \int_{\mathbb{R}^n} \frac{|\nabla f|^2}{f} \, d\gamma_n. \quad (1.9)$$

Exercise (Optimality). Check on functions f of the form $f(x) = e^{\langle u, x \rangle}$ for some vector u in \mathbb{R}^n that the inequality is sharp.
1.3. POINCARÉ AND LOGARITHMIC SOBOLEV INEQUALITIES

Proof. Assume that \(f \) is in \(C^2 \) and satisfies \(f \geq \epsilon \) for some positive \(\epsilon \). Then we can apply (1.6) with the function \(\phi = x \log x \). We obtain

\[
\text{Ent}_{\gamma_n}(f) = \int_0^{+\infty} \int_{\mathbb{R}^n} \frac{\lvert \nabla P_t f \rvert^2}{P_t f} \, d\gamma_n \, dt
\]

Then using (1.8) and stationarity, we get the result. \(\square \)

Let us conclude this section by showing that the Poincaré inequality can formally be derived from the log–Sobolev inequality. Let \(h \) be a bounded, \(C^1 \)-smooth function. If \(\epsilon \) is small enough then \(1 + \epsilon h \) is non negative. Since

\[
(1 + t) \log(1 + t) = t + \frac{t^2}{2} + o(t^2)
\]
as \(t \) tends to 0 we easily get

\[
\text{Ent}_{\gamma_n}(1 + \epsilon h) = \frac{\epsilon^2}{2} \text{Var}_{\gamma_n}(h) + o(\epsilon^2),
\]

where \(\text{Var}_{\gamma_n}(h) \) denotes the variance of \(h \) under the Gaussian measure:

\[
\text{Var}_{\gamma_n}(h) = \int_{\mathbb{R}^n} h^2 \, d\gamma_n - \left(\int_{\mathbb{R}^n} h \, d\gamma_n \right)^2.
\]

Similarly

\[
\int_{\mathbb{R}^n} \frac{\lvert \nabla (1 + \epsilon h) \rvert^2}{1 + \epsilon h} \, d\gamma_n = \epsilon^2 \int_{\mathbb{R}^n} \lvert \nabla h \rvert^2 \, d\gamma_n + o(\epsilon^2).
\]

Therefore, applying (1.9) to the function \(f = 1 + \epsilon h \) and sending \(\epsilon \) to 0, we obtain the Poincaré inequality for \(h \).

Remark (Alternative proof). Let us give an alternative proof of the Poincaré and logarithmic Sobolev inequalities. Fix \(t \geq 0, x \in \mathbb{R}^d, f : \mathbb{R}^d \to I, \) and define

\[
s \in [0,t] \mapsto \beta(s) = P_s(\phi(P_{t-s}f)) \quad \text{where} \quad \phi(x) = x^2 \quad \text{or} \quad \phi(x) = x \log x.
\]

Note that we dropped the \(x \) in the notation, namely \(P_s(\cdot) = P_s(\cdot)(x) \). We have

\[
\beta(t) - \beta(0) = P_t(\phi(f)) - \phi(P_t f) = \mathbb{E}_{P_t(\cdot)}(\phi).
\]

Here \(P_t(\cdot) = P_t(\cdot)(x) \) is a probability measure defined by \(\mathbb{E}_{P_t(\cdot)}(f) = P_t f(x) \). On the other hand, setting \(g = P_{t-s} f, \) a computation reveals that

\[
\beta'(s) = P_s(L(\phi(g)) - L\phi' (g)).
\]

Now a direct computation gives \(L(\phi(g)) - L\phi' (g) = \phi''(g) \lvert \nabla g \rvert^2, \) and thus

\[
\beta'(s) = P_s(\phi''(P_{t-s}f) \lvert \nabla P_{t-s}f \rvert^2).
\]

Mehler’s formula gives the sub-commutation \(\lvert \nabla P_{t-s} f \rvert \leq e^{-(t-s)} P_{t-s}(\lvert \nabla f \rvert) \) and therefore

\[
\beta'(s) \leq e^{-2(t-s)} P_s(\phi''(P_{t-s}f)) P_{t-s}(\lvert \nabla f \rvert^2).
\]

Jensen’s inequality for the convex function \((u,v) \mapsto \phi''(u)v^2 \) gives

\[
\phi''(P_{t-s}f) P_{t-s}(\lvert \nabla f \rvert^2) \leq P_{t-s}(\phi''(f) \lvert \nabla f \rvert^2).
\]
Therefore, we obtain
\[\beta'(s) \leq e^{-2(t-s)}P_t(\phi''(f)|\nabla f|^2). \]

By integrating on \([0,t]\) we get that for any \(t \geq 0\) and \(x \in \mathbb{R}\), the probability measure \(P_t(\cdot)(x) = \mathcal{N}(xe^{-t}, 1 - e^{-2t})\) satisfies, for any \(C^2\) test function \(f\),
\[P_t(\phi(f))(x) - \phi(P_t(f)(x)) \leq \frac{1 - e^{-2t}}{2}P_t(\phi''(f)|\nabla f|^2)(x). \]

in particular a Poincaré and a logarithmic Sobolev inequality with constants \((1 - e^{-2t})\) and \((1 - e^{-2t})/2\) respectively. By sending \(t\) to infinity or by using a translation and a dilation we can get these inequalities for \(\gamma_n = \mathcal{N}(0, I_n)\) with (optimal) constants 2 and 1 respectively.

1.4 Convergence to equilibrium

We have seen that \(X_t \to \gamma_n\) in law as \(t\) tends to \(+\infty\). We shall see now that the Poincaré inequality and the logarithmic Sobolev inequalities allow to quantify this convergence.

Theorem 1.19. For every \(f \in \mathbb{L}^2(\gamma_n)\) we have
\[\text{Var}_{\gamma_n}(P_t f) \leq e^{-2t}\text{Var}_{\gamma_n}(f). \]

For every non negative integrable \(f\) we have
\[\text{Ent}_{\gamma_n}(P_t f) \leq e^{-t}\text{Ent}_{\gamma_n}(f). \]

Proof. Let \(\alpha(t) = \text{Var}(P_t f)\). By stationarity
\[\alpha(t) = \int_{\mathbb{R}^n} (P_t f)^2 \, d\gamma_n - \left(\int_{\mathbb{R}^n} f \, d\gamma_n \right)^2. \]

As we have seen before
\[\alpha'(t) = \frac{d}{dt} \left(\int_{\mathbb{R}^n} (P_t f)^2 \, d\gamma_n \right) = -2 \int_{\mathbb{R}^n} |\nabla P_t f|^2 \, d\gamma_n. \]

So applying Poincaré inequality to \(P_t f\) we obtain \(\alpha'(t) \leq -2\alpha(t)\) for every \(t \geq 0\). By Gronwall’s lemma we get \(\alpha(t) \leq e^{-2t}\) which is the first inequality. For the second inequality, let
\[\beta(t) = \text{Ent}_{\gamma_n}(P_t f) \]

and observe that the logarithmic Sobolev inequality yields \(\beta'(t) \leq -1/2\beta\) which gives the result by Gronwall’s lemma. \(\square\)

Lemma 1.20 (Partial differential equation). For any \(t \geq 0\), let \(\mu_t\) be the law of \(X_t\). If \(\mu_0\) has density \(h_0\) with respect to \(\gamma_n\) then \(\mu_t\) has density \(h_t = P_t^* (h_0)\) with respect to \(\gamma_n\), where \(P_t^*\) is the transpose of \(P_t\) in \(\mathbb{L}^2(\gamma_n)\). Since \(\gamma_n\) is reversible, \(P_t^* = P_t\) and
\[\partial_t h_t(x) = \partial_t P_t(h_0) = L P_t(h_0) = L h_t(x) = \Delta_x h_t(x) - \langle \nabla_x h_t(x), x \rangle. \]

How about densities with respect to the Lebesgue measure? If \(\varphi_n\) is the density of \(\gamma_n\) with respect to the Lebesgue measure, then \(\mu_t\) has density \(g_t = h_t \varphi_n\) with respect to the Lebesgue measure, and is solution of the Fokker-Planck partial differential equation given by
\[\partial_t g_t(x) = \Delta_x g_t(x) + \text{div}_x (x g_t(x)). \]

This corresponds to the transpose of the semigroup in \(\mathbb{L}^2(dx)\) instead of \(\mathbb{L}^2(\gamma_n)\). Moreover, the equilibrium corresponds in a way to \(h_\infty = 1\) and to \(g_\infty = \varphi_n\) respectively.
1.5. AMNESIA AND LONG TIME BEHAVIOR

Proof. Exercise!

Reformulate in terms of convergence of measure:

\[
\begin{align*}
\chi^2(\mu | \gamma_n) &\leq e^{-t}\chi^2(\mu | \gamma_n) \\
H(\mu | \gamma_n) &\leq e^{-t/2}H(\mu | \gamma_n).
\end{align*}
\]

Here \(\chi^2(\nu | \mu)\) denotes the chi-square divergence defined by

\[
\chi^2(\nu | \mu) := \text{Var}_\mu(f) \quad \text{where} \quad f := \frac{d\nu}{d\mu};
\]

while \(H\) denotes the relative entropy or Kullback-Leibler divergence defined for any probability measures \(\mu\) and \(\nu\) by

\[
H(\nu | \mu) := \text{Ent}_\mu(f) = \int f \log f \, d\mu \quad \text{where} \quad f = \frac{d\nu}{d\mu}.
\]

It is customary to set \(\chi^2(\nu | \mu) = +\infty\) and \(H(\nu | \mu) = +\infty\) if \(\nu\) is not absolutely continuous with respect to \(\mu\), or when \(f \not\in L^2(\mu)\) or \(f \log f \not\in L^1(\mu)\) respectively.

1.5 Amnesia and long time behavior

We can measure the way that the Ornstein–Uhlenbeck process forgets its initial position along the time by using for instance the relative entropy between the law of the process at time \(t\) started from two different positions. It is also customary to use the Wasserstein distance instead of the relative entropy. Recall that the Wasserstein distance of order \(2\) between two probability measures \(\mu\) and \(\nu\) is

\[
W_2(\mu, \nu) = \inf_{X_1 \sim \mu, X_2 \sim \nu} \sqrt{\mathbb{E}(|X_1 - X_2|^2)},
\]

where the infimum runs over the couples \((X_1, X_2)\) with marginals \(\mu\) and \(\nu\).

Theorem 1.21 (Relative entropy and Wasserstein distance for Gaussians). If \(\mu_1 = \mathcal{N}(m_1, \Sigma_1)\) and \(\mu_2 = \mathcal{N}(m_2, \Sigma_2)\) on \(\mathbb{R}^n\) then

\[
W_2(\mu_1, \mu_2)^2 = |m_1 - m_2|^2 + \text{Tr}(\Sigma_1 + \Sigma_2 - 2(\Sigma_1^{1/2}\Sigma_2\Sigma_1^{1/2})^{1/2}),
\]

and in particular \(W_2(\mu_1, \mu_2)^2 = |m_1 - m_2|^2 + \text{Tr}((\Sigma_1 - \Sigma_2)^2)\) when \(\Sigma_1\) and \(\Sigma_2\) commute. Moreover if \(\Sigma_1\) et \(\Sigma_2\) are invertible then

\[
H(\mu_1 | \mu_2) = \frac{1}{2} \left(\log \frac{\det \Sigma_2}{\det \Sigma_1} + \text{Tr}(\Sigma_2^{-1}\Sigma_1) - n + (m_1 - m_2)^T \Sigma_2^{-1}(m_1 - m_2) \right).
\]

In dimension \(n = 1\), if \(\mu_1 = \mathcal{N}(m_1, \sigma_1)\) and \(\mu_2 = \mathcal{N}(m_2, \sigma_2)\) on \(\mathbb{R}\) then

\[
W_2(\mu_1, \mu_2)^2 = (m_1 - m_2)^2 + (\sigma_1 - \sigma_2)^2,
\]

while if \(\sigma_1 > 0\) and \(\sigma_2 > 0\) then

\[
H(\mu_1 | \mu_2) = \log \frac{\sigma_2}{\sigma_1} + \frac{\sigma_1^2 - \sigma_2^2 + (m_1 - m_2)^2}{2\sigma_2^2}.
\]
Proof when $n = 1$. Let us start with the formula for W_2. If (X_1, X_2) is a couple of random variables such that $X_i \sim \mu_i = \mathcal{N}(m_i, \sigma_i^2)$ for $i = 1, 2$. We have

$$E(|X_1 - X_2|^2) = E(X_1^2) + E(X_2^2) - 2E(X_1X_2)$$

$$= (m_1 - m_2)^2 + \sigma_1^2 + \sigma_2^2 - 2\text{Cov}(X_1, X_2).$$

This formula depends only on the mean and on the covariance matrix of the random vector (X_1, X_2). We have

$$W_2(\mu_1, \mu_2)^2 = (m_1 - m_2)^2 + \sigma_1^2 + \sigma_2^2 - 2\sup_{C \in \mathcal{C}} C_{12}$$

where \mathcal{C} is the set of 2×2 covariance matrices with a diagonal prescribed by $C_{11} = \sigma_1^2$ and $C_{22} = \sigma_2^2$. Since the set of covariance matrices coincides with the set of symmetric matrices with non-negative spectrum, $C \in \mathcal{C}$ gives the constraint $\det(C) = \sigma_1^2 \sigma_2^2 - C_{12}^2 \geq 0$, hence $C_{12} = \sigma_1 \sigma_2$, and we are done.

For the entropy formula, we write,

$$\mathcal{H}(\mu_1 \mid \mu_2) = \int \log \frac{d\mu_1}{d\mu_2} d\mu_1$$

$$= \int \left(\log \frac{\sigma_2}{\sigma_1} - \frac{(x - m_1)^2}{2\sigma_1^2} + \frac{(x - m_2)^2}{2\sigma_2^2} \right) \mu_1(dx)$$

$$= \log \frac{\sigma_2}{\sigma_1} - \frac{1}{2} + \frac{\sigma_1^2 + m_1^2 - 2m_1m_2 + m_2^2}{2\sigma_2^2}$$

$$= \log \frac{\sigma_2}{\sigma_1} + \frac{\sigma_1^2 - \sigma_2^2 + (m_1 - m_2)^2}{2\sigma_2^2}. $$

\[\square\]

Since the Ornstein–Uhlenbeck process is a Gaussian process, we may use the preceding formulas to quantify the long time behavior when the initial condition is itself Gaussian. Namely for any $x_1, x_2 \in \mathbb{R}$ and any $t \geq 0$, if $\mu_1 = P_t(\cdot)(x_1) = \mathcal{N}(x_1 e^{-t}, 1 - e^{-2t})$ and $\mu_2 = P_t(\cdot)(x_2) = \mathcal{N}(x_2 e^{-t}, 1 - e^{-2t})$,

$$W_2(P_t(\cdot)(x_1), P_t(\cdot)(x_2))^2 = e^{-2t}(x_1 - x_2)^2 \xrightarrow{t \to \infty} 0$$

and

$$\mathcal{H}(P_t(\cdot)(x_1) \mid P_t(\cdot)(x_2)) = \frac{e^{-2t}(x_1 - x_2)^2}{2(1 - e^{-2t})} \xrightarrow{t \to \infty} 0.$$

This can be extended to more general initial distributions, and the case of the Wasserstein distance is particularly simple due to its relation with coupling.

Theorem 1.22 (Convergence in Wasserstein distance). If μ_0 and μ'_0 are probability measures with finite second moment, and if μ_t (respectively μ'_t) is the law of X_t (respectively X'_t) when $X_0 \sim \mu_0$ (respectively $X'_0 \sim \mu'_0$), then for any $t \geq 0$,

$$W_2(\mu_t, \mu'_t) \leq e^{-t} W_2(\mu_0, \mu'_0).$$

In particular if $\mu'_0 = \gamma_1$ then for any $t \geq 0$,

$$W_2(\mu_t, \gamma_1) \leq e^{-t} W_2(\mu_0, \gamma).$$
1.6 Tensorization and Central Limit Theorem

This section is devoted to the tensorization property of the variance and the entropy. This property is at the heart of the dimension free nature of the Poincaré and the logarithmic Sobolev inequalities. It allows to provide a proof of the Poincaré and of the logarithmic Sobolev inequalities for the Gaussian measure by using the Central Limit Theorem, starting from elementary inequalities on the two-point space. We also explain how this strategy can be used for the Bobkob functional form of the isoperimetric inequality, the one with Sobolev inequalities. It allows to provide a proof of the Poincaré and of the logarithmic property is at the heart of the dimension free nature of the Poincaré and the logarithmic

1.6 Tensorization and Central Limit Theorem

Proof. Let \((X_0, X_0')\) be a coupling of \(\mu_0 \) and \(\mu'_0\) independent of a Brownian motion \(B = (B_t)_{t \geq 0}.\) We construct two processes \((X_t)_{t \geq 0}\) and \((X'_t)_{t \geq 0}\) with respective initial conditions \(X_0\) and \(X'_0\) and driven by the same Brownian motion \(B.\) We say that the processes are coupled. We have then

\[X_t - X'_t = X_0 - X'_0 - \int_0^t (X_s - X'_s)ds.
\]

It follows that

\[|X_t - X'_t|^2 = e^{-2t}|X_0 - X'_0|^2.
\]

By definition of \(W_2(\mu_t, \mu'_t),\) we obtain

\[W_2(\mu_t, \mu'_t)^2 \leq e^{-2t}\mathbb{E}(|X_0 - X'_0|^2).
\]

It remains to take the infimum over all couplings of \(\mu_0\) and \(\mu'_0.\)

The Gaussian measure appears as a limiting distribution in the asymptotic analysis of product spaces, due to the central limit phenomenon. The simplest product space is the discrete cube \(\{0, 1\}^n\) equipped with the product Bernoulli probability measure \(\mu_n = (\frac{1}{2} \delta_0 + \frac{1}{2} \delta_1)^\otimes n,\) which is the uniform probability measure. This model is called “the two-point-space” when \(n = 1.\) Thanks to the Central Limit Theorem states, if \(X_n = (X_{n,1}, \ldots, X_{n,n}) \sim \mu_n\) for every \(n\) then the \(X_{n,i}\) are i.i.d. with mean \(m = 1/2\) and variance \(\sigma^2 = 1/4,\) and therefore

\[
\frac{X_{n,1} + \cdots + X_{n,n} - nm}{\sqrt{n} \sigma^2} = \frac{2(X_{n,1} + \cdots + X_{n,n}) - n}{\sqrt{n}} \xrightarrow{d} \gamma_1.
\]

In other words, for any continuous and bounded \(f : \mathbb{R} \to \mathbb{R},\)

\[
\int_{\{0,1\}}^{n} g_n \, d\mu_n \xrightarrow{n \to \infty} \int f \, d\gamma_1 \quad \text{where} \quad g_n(x) := f \left(\frac{2(x_1 + \cdots + x_n) - n}{\sqrt{n}}\right).
\]

Theorem 1.23 (Tensorization). Let \((E_1, \mathcal{A}_1, \mu_1), \ldots, (E_n, \mathcal{A}_n, \mu_n)\) be probability spaces. Let \(\mu_1 \otimes \cdots \otimes \mu_n\) be the product probability measure on \((E_1 \times \cdots \times E_n, \mathcal{A}_1 \otimes \cdots \otimes \mathcal{A}_n)\). Let \(\phi : \mathcal{I} \to \mathbb{R}\) be convex and such that \((u, v) \mapsto \phi''(u)v^2\) is convex. Then, for any \(f : E_1 \times \cdots \times E_n \to \mathbb{R}\) such that \(\phi(f) \in L^1(\mu_1 \otimes \cdots \otimes \mu_n),\)

\[
E^\phi_{\mu}(f) \leq \sum_{i=1}^{n} E_{\mu_i} \mathbb{E}_{\mu_i}(f),
\]

where the subscript \(\mu_i\) indicates that the integration concerns the \(i\)-th variable only.
For $\phi(u) = u^2$ on $\mathcal{I} = \mathbb{R}$ we get the variance and the result reads
\[
\text{Var}_{\mu_1 \otimes \cdots \otimes \mu_n}(f) \leq \mathbb{E}_{\mu_1 \otimes \cdots \otimes \mu_1}(\text{Var}_{\mu_1}(f) + \cdots + \text{Var}_{\mu_n}(f))
\] (1.10)
while for $\phi(u) = u \log(u)$ on $\mathcal{I} = [0, \infty)$ we get the entropy and the result reads
\[
\text{Ent}_{\mu_1 \otimes \cdots \otimes \mu_n}(f) \leq \mathbb{E}_{\mu_1 \otimes \cdots \otimes \mu_1}(\text{Ent}_{\mu_1}(f) + \cdots + \text{Ent}_{\mu_n}(f)).
\] (1.11)

Proof. By induction on n we only have to consider the case $n = 2$, for which the desired bound boils down after expansion and rearrangement of terms to
\[
\mathbb{E}^\phi \mathbb{E}_{\mu_2}(\mathbb{E}_{\mu_1}(f)) \leq \mathbb{E}_{\mu_1}(\mathbb{E}^\phi \mathbb{E}_{\mu_2}(f)).
\]
In the case of the variance this follows from the Cauchy–Schwartz inequality\footnote{\text{Var}_{\mu_2}(\mathbb{E}_{\mu_1}(f)) = \mathbb{E}_{\mu_2}(\mathbb{E}_{\mu_1}(f - \mathbb{E}_{\mu_1}(f))^2) \leq \mathbb{E}_{\mu_2}(\mathbb{E}_{\mu_1}(f - \mathbb{E}_{\mu_1}(f))^2) = \mathbb{E}_{\mu_1}(\text{Var}_{\mu_2}(f)).$}
The general proof is based on convexity. Namely the convexity of $A^\phi : (u, v) \mapsto \phi''(u)v^2$ implies the convexity of the functional
\[
f \mapsto \mathbb{E}^\phi \mathbb{E}_{\mu_2}(f) := \mathbb{E}_{\mu}(f) - \phi(\mathbb{E}_\mu f).
\]
As a consequence, the functional \mathbb{E}^ϕ is equal to the enveloppe of its directional tangents\footnote{Namely $c(0) = \sup_{s \in [0,1]}\{c(s) + c'(s)(0 - s)\}$ where $c(s) = \mathbb{E}^\phi_{\mu_1}(f + s(g - f))$ valid for any g.} namely the following variational formula holds\footnote{Variance case rewrites $\text{Var}_{\mu_1}(f) = \sup\{\text{Cov}_{\mu_1}(f, g) - 2\text{Var}_{\mu_1}(g) : g\}$, supremum achieved for $g = f$, while the entropy case rewrites $\text{Ent}_{\mu_1}(f) = \sup\{\mathbb{E}_1(fh) : \mathbb{E}_1(h) \leq 1\}$ and the supremum is achieved for $h = \log(f)$.} with equality when $f = g$,
\[
\mathbb{E}^\phi \mathbb{E}_{\mu_2}(f) = \sup_{g, \phi(g) \in L^1(\mu)} \{\mathbb{E}^\phi \mathbb{E}_{\mu_2}(f) + \mathbb{E}_\mu((\phi'(g) - \phi(\mathbb{E}_\mu g))(f - g))\}.
\]
By using this variational formula for μ_2, we obtain
\[
\mathbb{E}^\phi \mathbb{E}_{\mu_2}(\mathbb{E}_{\mu_1}(f)) = \sup_g \{\mathbb{E}^\phi \mathbb{E}_{\mu_2}(g) + \mathbb{E}_{\mu_2}(\phi'(g) - \phi(\mathbb{E}_\mu g))(\mathbb{E}_{\mu_1}f - g)\}
\]
\[
= \sup_g \mathbb{E}_{\mu_1} \{\mathbb{E}^\phi \mathbb{E}_{\mu_2}(g) + \mathbb{E}_{\mu_2}(\phi'(g) - \phi(\mathbb{E}_\mu g))(f - g)\}
\]
\[
\leq \mathbb{E}_{\mu_1} \{\sup_g \{\mathbb{E}^\phi \mathbb{E}_{\mu_2}(g) + \mathbb{E}_{\mu_2}(\phi'(g) - \phi(\mathbb{E}_\mu g))(f - g)\}\}
\]
\[
= \mathbb{E}_{\mu_1}(\mathbb{E}^\phi \mathbb{E}_{\mu_2}(f))
\]
where the suprema are taken over functions $g : E_2 \to \mathcal{I}$ such that $\phi(g) \in L^1(\mu_2)$.

Let us prove now the Poincaré inequality for γ_1. Let $\mu_n = (\frac{1}{2} \delta_0 + \frac{1}{2} \delta_1)^\otimes n$ be the uniform distribution on the cube $\{0, 1\}^n$. For any $g : \{0, 1\} \to \mathbb{R}$,
\[
\text{Var}_{\mu_1}(g) = \frac{g(0)^2 + g(1)^2}{2} - \left(\frac{g(0) + g(1)}{2}\right)^2 = \frac{(g(1) - g(0))^2}{4}.
\]
Using the tensorization property, for any $n \geq 1$ and $g : \{0, 1\}^n \to \mathbb{R}$,
\[
\text{Var}_{\mu_n}(g) \leq \frac{1}{4} \mathbb{E}_{\mu_n}((D_1g)^2 + \cdots + (D_ng)^2)
\]
where $(D_ig)^2(x) := (g(x + e_i) - g(x))^2$ where e_1, \ldots, e_n is the canonical basis of \mathbb{R}^n. Now, let $f : \mathbb{R} \to \mathbb{R}$ be C^2 and compactly supported, and set
\[
g(x) = g_n(x) = f(s_n(x)) \quad \text{with} \quad s_n(x) := \frac{2(x_1 + \cdots + x_n) - n}{\sqrt{n}}.
\]
Now, by using a Taylor formula, for any $i = 1, \ldots, n$ and $x \in \{0, 1\}^n$,

$$(D_i g)^2(x) = \left(\frac{2}{\sqrt{n}} f'(s_n(x)) + o\left(\frac{1}{\sqrt{n}}\right) \right)^2 = \frac{4}{n} f''(s_n(x)) + o\left(\frac{1}{n}\right)$$

where the o is uniform in x since f is C^2 and compactly supported. Now, the Central Limit Theorem yields

$$\text{Var}_{\gamma_1}(f) = \lim_{n \to \infty} \text{Var}_{\mu_n}(g) \leq \lim_{n \to \infty} E_{\mu_n}(f'^2(s_n)) = E_{\gamma_1}(f'^2).$$

This is nothing else but the Poincaré inequality for γ_1, with its optimal constant. It remains however to enlarge the class of test functions by using truncation and regularization and Fatou’s lemma. To pass from γ_1 to $\gamma_n = \gamma_1 \otimes \delta_n$, it suffices to use the tensorization property (1.10) again to get, for any sufficiently regular test function $f : \mathbb{R}^n \to \mathbb{R}$, thanks to the fact that $|\nabla f|^2 := \sum_{i=1}^{n} (D_i f)^2$,

$$\text{Var}_{\gamma_n}(f) \leq E_{\gamma_n}(|\nabla f|^2).$$

For the logarithmic Sobolev inequality, we can proceed exactly as we did above for the Poincaré inequality. The starting point is the following inequality on the two-points space: for any $g : \{0, 1\} \to \mathbb{R}$,

$$\text{Ent}_{\mu_1}(g^2) \leq \frac{(g(1) - g(0))^2}{2},$$

which reads, with $a := g(0)$ and $b := g(1)$, as the sharp inequality

$$\frac{a^2 \log(a^2) + b^2 \log(b^2)}{2} - \frac{a^2 + b^2}{2} \log \frac{a^2 + b^2}{2} \leq 2(a - b)^2.$$

By homogeneity, this reduces to the even simpler elementary inequality

$$u \log(u) + (2 - u) \log(2 - u) \leq (\sqrt{u} - \sqrt{2 - u})^2, \quad 0 \leq u \leq 2.$$

This strategy of proof of the logarithmic Sobolev inequality for γ_n using the Central Limit Theorem goes back to the seminal work [16] of Leonard Gross.
Hypercontractivity, spectral gap, information theory

This chapter is devoted first to a couple of important reformulations: hypercontractivity as a reformulation of the logarithmic Sobolev inequality, and spectral gap via Hermite polynomials as a reformulation of the Poincaré inequality. A link is made with the formula of the Gaussian Unitary Ensemble via the quantum harmonic oscillator. The third and last part of the chapter is devoted to a study of an Euclidean form of the logarithmic Sobolev inequality, in information theory, via Shannon entropy and Fisher information.

2.1 Hypercontractivity

In this section we shall show that the semigroup \((P_t)\) is hypercontractive: if \(f\) belongs to \(L^p(\gamma_n)\) for some \(p > 1\) then \(P_tf\) belongs to \(L^q(\gamma_n)\) for some \(q > p\). The precise result states as follows.

Theorem 2.1 (Hypercontractivity (Nelson)). Let \(p > 1\) and let \(t > 0\) and set \(p(t) = 1 + (p - 1)e^{2t}\). Observe that \(p(t) > p\). Then for every \(f \in L^p(\gamma_n)\)

\[
\|P_t f\|_{p(t)} \leq \|f\|_p.
\]

In other words the operator \(P_t\) is bounded from \(L^p(\gamma_n)\) to \(L^{p(t)}(\gamma_n)\) and has norm 1. Moreover, if \(q > p(t)\) then \(P_t\) is not even bounded from \(L^p(\gamma_n)\) to \(L^q(\gamma_n)\).

The proof makes use of the logarithmic Sobolev inequality. The basic idea is that the derivative of the \(L^p\) norm with respect to \(p\) will bring the entropy, while the derivative of the semigroup \(P_t\) with respect to \(t\) will bring the generator.

Note that the critical exponent \(p(t)\) in hypercontractivity above does not depend on the dimension \(n\), just like the logarithmic Sobolev constant 1/2 in front of its right hand side.

Proof. One can assume that \(f \geq 0\) since \(|P_tf| \leq P_t|f|\). Set \(\alpha(t) = \log \|P_t f\|_{p(t)}\). To lighten the notation, let us set \(f_t = P_t f\). We have, for any \(t \geq 0\),

\[
\alpha'(t) = \left(\frac{1}{p(t)} \log \int f_t^{p(t)} d\gamma_n\right)' = \frac{p'(t)}{p(t)^2} \log \int f_t^{p(t)} d\gamma_n + \frac{1}{p(t)} \left(\int f_t^{p(t)} d\gamma_n\right)'
\]
\[-\frac{p'(t)}{p(t)^2} \log \int_{\mathbb{R}^n} f_t^{p(t)} \, d\gamma_n + \frac{1}{p(t)} \int \left(p'(t) \log f_t + p(t) \frac{L_{f_t}}{f_t} \right) f_t^{p(t)} \, d\gamma_n \]
\[= -\frac{p'(t)}{p(t)^2} \log \int_{\mathbb{R}^n} f_t^{p(t)} \, d\gamma_n + \frac{p'(t)}{p(t)^2} \int_{\mathbb{R}^n} f_t^{p(t)} \log f_t \, d\gamma_n + \int_{\mathbb{R}^n} (L_{f_t}) f_t^{p(t)-1} \, d\gamma_n \]
\[= \frac{p'(t)}{p(t)^2} \int_{\mathbb{R}^n} \nabla g \cdot \nabla g \, d\gamma_n \]
\[= \frac{1}{2} \int_{\mathbb{R}^n} \frac{\vert \nabla g \vert^2}{g^p} \, d\gamma_n \]
\[= \frac{p^2}{2} \int_{\mathbb{R}^n} \nabla g \cdot \nabla g t \, d\gamma_n \]
\[= \frac{p^2}{2(p-1)} \int_{\mathbb{R}^n} \langle \nabla g, \nabla g t \rangle \, d\gamma_n \]
\[= \frac{p^2}{2(p-1)} \int_{\mathbb{R}^n} (Lg) g t \, d\gamma_n. \]

Now the logarithmic Sobolev inequality and the integration by parts give
\[
\text{Ent}_{\gamma_n}(g^p) \leq \frac{1}{2} \int_{\mathbb{R}^n} \frac{\vert \nabla g \vert^2}{g^p} \, d\gamma_n
\]
\[
= \frac{p^2}{2} \int_{\mathbb{R}^n} \nabla g \cdot \nabla g t \, d\gamma_n
\]
\[
= \frac{p^2}{2(p-1)} \int_{\mathbb{R}^n} \langle \nabla g, \nabla g t \rangle \, d\gamma_n
\]
\[
= \frac{p^2}{2(p-1)} \int_{\mathbb{R}^n} (Lg) g t \, d\gamma_n. \]

Using this inequality for \(q = f_t \) and \(p = p(t) \), and using \(2(p(t)-1) = p'(t) \), we obtain that \(\alpha'(t) \leq 0 \) for any \(t \geq 0 \), and as a consequence
\[
\log \| P_t f \|_{p(t)} = \alpha(t) \leq \alpha(0) = \log \| f \|_p.
\]

Finally, if now \(q > p(t) \) then taking \(f_\lambda(x) = e^{\lambda x} \) for some parameter \(\lambda \in \mathbb{R}^n \) gives
\[
\| f_\lambda \|_p = e^{\frac{1}{2} p |\lambda|^2} \quad \text{and} \quad P_t f_\lambda = e^{\frac{1}{2} t |\lambda|^2 (1-e^{-2t})} f_{\lambda e^{-t}}
\]
and therefore
\[
\frac{\| P_t f_\lambda \|_q}{\| f_\lambda \|_p} = e^{\frac{1}{2} \lambda^2 (e^{-2t} - 1)p}.
\]
a quantity which tends to \(+\infty\) as \(\lambda \to \pm \infty \) since \(q > p(t) = 1 + (p-1)e^{2t} \).

Remark (Hypercontractivity and logarithmic Sobolev inequality). This proof show more generally that a semigroup satisfying the logarithmic Sobolev inequality is hypercontractive. Moreover, it is pretty clear from the argument that the implication can be reversed and that log–Sobolev and hypercontractivity are equivalent. This equivalence between hypercontractivity and logarithmic Sobolev inequality is due to Leonard Gross [17].

Let us rephrase the latter result in a slightly different way. Let \(p,q \geq 1 \), let \(t \geq 0 \). Observe that by duality
\[
\| P_t f \|_q = \sup_g \left\{ \int_{\mathbb{R}^n} (P_t f) g \, d\gamma_n \right\}
\]
where \(q' = 1 - 1/q \) is the conjugate exponent of \(q \). Observe also that if \((X_t) \) is an Ornstein–Uhlenbeck process in equilibrium then
\[
\int_{\mathbb{R}^n} (P_t f) g \, d\gamma_n = \mathbb{E} [P_t f(X_0) g(X_0)]
\]
\[
= \mathbb{E} [\mathbb{E} [f(X_t) \mid X_0] g(X_0)] = \mathbb{E} [f(X_t) g(X_0)].
\]
Hypercontractivity thus asserts that if \(q \leq 1 + (p - 1)e^{2t} \) then
\[
E[f(X_t)g(X_0)] \leq E[|f(X_t)|^p]^{1/p}E[|g(X_0)|^{q'/q'}],
\]
for every \(f, g \). Equivalently
\[
E[F(X_t)^\alpha G(X_0)^\beta] \leq E[F(X_t)]^\alpha E[G(X_0)]^\beta,
\]
for every \(F, G \geq 0 \), where \(\alpha = 1/p \) and \(\beta = 1/q' \). Recall that \((X_0, X_t) \) is a centered Gaussian vector with covariance
\[
\left(\begin{array}{cc} I_n & \rho I_n \\
\rho I_n & I_n \end{array} \right)
\]
where \(\rho = e^{-t} \) and and note that the hypothesis \(q \leq 1 + (p - 1)e^{2t} \) reads \(\rho^2 \leq (1 - 1/\alpha)(1 - 1/\beta) \) in terms of \(\rho, \alpha, \beta \). Therefore the hypercontractivity property of the Ornstein–Uhlenbeck semigroup can be reformulated as follows.

Theorem 2.2. Let \(\rho, \alpha, \beta \in [0, 1] \) and let \((X, Y) \) be a Gaussian vector on \(\mathbb{R}^n \) centered at \(0 \) and having covariance matrix
\[
\left(\begin{array}{cc} I_n & \rho I_n \\
\rho I_n & I_n \end{array} \right).
\]
If \(\rho^2 \leq (1 - 1/\alpha)(1 - 1/\beta) \) then for every non–negative functions \(f, g \) we have
\[
E[f(X)^\alpha g(Y)^\beta] \leq E[f(X)]^\alpha E[g(Y)]^\beta.
\]

Now let us give a direct proof of this result.

Proof. Let \((\Omega, \mathcal{F}, \mathbb{P}) \) be a probability space and let \((\mathcal{F}_t) \) be a filtration carrying an \(\mathbb{R}^{2n} \)–valued Brownian motion \((B_t, \tilde{B}_t) \) starting from \(0 \) and having covariation given by
\[
[(B_t, \tilde{B}_t)]_t = t \left(\begin{array}{cc} I_n & \rho I_n \\
\rho I_n & I_n \end{array} \right).
\]
Then \((B_1, \tilde{B}_1) = (X, Y) \) in law. Assume (without loss of generality) that \(f \) and \(g \) are bounded away from \(0 \) and \(+\infty \) and consider the martingales \((M_t)_{t \in [0, 1]} \) and \((N_t)_{t \in [0, 1]} \) given by
\[
M_t = E[f(B_1) \mid \mathcal{F}_t], \quad N_t = E[g(\tilde{B}_1) \mid \mathcal{F}_t].
\]
These are square integrable Brownian martingales, so there exist two \(\mathbb{R}^n \)–valued processes \((u_t) \) and \((v_t) \) satisfying
\[
E \left[\int_0^1 |u_s|^2 ds \right] < +\infty, \quad E \left[\int_0^1 |v_s|^2 ds \right] < +\infty \tag{2.1}
\]
and such that
\[
dM_t = \langle u_t, dB_t \rangle, \quad dN_t = \langle v_t, d\tilde{B}_t \rangle.
\]
From the covariation structure of \((B, \tilde{B}) \) we obtain the following expression for the covariation of the process \((M_t, N_t) \):
\[
d[M]_t = |u_t|^2 dt, \quad d[N]_t = |v_t|^2 dt, \quad d[M, N]_t = \rho \langle u_t, v_t \rangle dt.
\]
Then by Itô’s formula (omitting the variables \((M_t, N_t) \) in the right hand side) we have
\[
d\psi(M_t, N_t) = \partial_x \psi \langle u_t, dB_t \rangle + \partial_y \psi \langle v_t, d\tilde{B}_t \rangle
\]
\[
+ \frac{1}{2} \left(\partial_{xx}^2 \psi |u_t|^2 + \partial_{yy}^2 \psi |v_t|^2 + 2\partial_{xy}^2 \psi \rho \langle u_t, v_t \rangle \right) dt.
\]
Applying this to the function \(\psi(x, y) = x^\alpha y^\beta \) we get

\[
dM_t^\alpha N_t^\alpha = M_t^\alpha N_t^\alpha \left(\alpha \langle \tilde{u}_t, dB_t \rangle + \beta \langle \tilde{v}_t, dB_t \rangle \right) + \frac{1}{2} M_t^\alpha N_t^\alpha \left(\alpha (\alpha - 1) |\tilde{u}_t|^2 + \beta (\beta - 1) |\tilde{v}_t|^2 + 2\alpha\beta \rho \langle \tilde{u}_t, \tilde{v}_t \rangle \right) dt,
\]

where \(\tilde{u}_t = u_t / M_t \) and \(\tilde{v}_t = v_t / N_t \). Recall that the processes \((M_t)\) and \((N_t)\) are bounded away from 0 and \(+\infty\) and recall (2.1). This guarantees that the local martingale part (2.2) is a genuine martingale. Now consider the \(2 \times 2\) matrix

\[
A = \begin{pmatrix} \alpha (\alpha - 1) & \alpha \rho \\ \beta \rho & \beta (\beta - 1) \end{pmatrix}.
\]

Since \(\alpha \) and \(\beta \) belong to \([0, 1]\) the diagonal coefficients are non-positive. Moreover the hypothesis \(\rho^2 \leq (1 - 1/\alpha)(1 - 1/\beta) \) shows that its determinant is non-negative. So \(A \) is a negative matrix. This shows that the absolutely continuous part of (2.2) is non-positive. Therefore \((M_t^\alpha N_t^\beta)\) is a super-martingale, in particular

\[
E[M_t^\alpha N_1^\beta] \leq M_0^\alpha N_0^\beta,
\]

which is the result. \(\square \)

Remarks (Reversed hypercontractivity). As we have seen before, hypercontractivity and log–Sobolev are equivalent, so this provides an alternative proof of the logarithmic Sobolev inequality. The same proof shows that if \(\rho^2 \leq (1 - 1/\alpha)(1 - 1/\beta) \) and \(\alpha \) and \(\beta \) are both larger than 1 then the inequality is reversed:

\[
E[f(X)^\alpha g(Y)^\beta] \geq E[f(x)]^\alpha E[g(Y)]^\beta,
\]

for every non-negative \(f, g \). In terms of the semigroup \((P_t)\) this can be reformulated as

\[
\|P_t f\|_{p(t)} \geq \|f\|_p,
\]

for every \(f \geq 0 \), for every \(p \in [0, 1] \), where \(p(t) = 1 + (p - 1)e^{2t} \). This inequality is called reversed hypercontractivity. Beware that \(\|f\|_p = (\int_{\mathbb{R}^n} |f|^p d\gamma_1)^{1/p} \) is no longer a norm, and that as opposed to the direct one, the reversed inequality is only valid for non-negative functions \(f \).

2.2 Spectral gap and Hermite polynomials

We first focus on the one dimensional case \(n = 1 \).

Lemma 2.3 (Density). The set of polynomials \(\mathbb{R}[X] \) is dense in \(L^2(\gamma_1) \).

Proof. For any \(f \in L^2(\gamma_1) \), the Laplace transform \(T_\mu \) of the signed measure \(\mu(dx) = f(x)\gamma_1(dx) \) is finite on \(\mathbb{R} \) since for any \(\theta \in \mathbb{R} \), by Cauchy–Schwarz inequality,

\[
(T_\mu(\theta))^2 = \left(\int e^{\theta x} \mu(dx) \right)^2 \leq \int f^2 d\gamma_1 \int e^{2\theta x} \gamma_1(dx) < +\infty.
\]

In particular \(T_\mu \) is analytic on a neighborhood of the origin. As a consequence, if \(f \perp \mathbb{R}[X] \) in \(L^2(\mathbb{R}) \), then the derivatives of arbitrary order of \(T_\mu \) vanish at the origin, and therefore \(T_\mu \) is identically zero. Hence \(f = 0 \) in \(L^2(\gamma_1) \). \(\square \)
2.2. SPECTRAL GAP AND HERMITE POLYNOMIALS

Definition 2.4 (Hermite polynomials). The Hermite polynomials \((H_k)_{k \geq 0}\) are the orthogonal polynomials obtained from the canonical basis of \(\mathbb{R}[X]\) by using the Gram–Schmidt algorithm in \(L^2(\gamma_1)\). They are normalized in such a way that the coefficient of the term of highest degree in \(H_k\) is 1 for any \(k \geq 0\).

We find \(H_0(x) = 1, H_1(x) = x, H_2(x) = x^2 - 1, \ldots\) The density of \(\mathbb{R}[X]\) in \(L^2(\gamma_1)\) means that \((H_k)_{k \geq 0}\) is a complete orthogonal system in the Hilbert space \(L^2(\gamma_1)\).

Lemma 2.5 (Hermite polynomials). Hermite polynomials \((H_k)_{k \geq 0}\) satisfy...

- **Generating series:** for any \(k \geq 0\) and \(x \in \mathbb{R}\),
 \[
 H_k(x) = \frac{\partial^k}{\partial t^k} G(0, x) \quad \text{where} \quad G(s, x) = e^{sx - \frac{1}{2}s^2} = \sum_{k=0}^{\infty} \frac{s^k}{k!} H_k(x);
 \]

- **Three terms recursion formula:** for any \(k \geq 0\) and \(x \in \mathbb{R}\),
 \[
 H_{k+1}(x) = x H_k(x) - k H_{k-1}(x);
 \]

- **Recursive differential equation:** for any \(k \geq 0\) and \(x \in \mathbb{R}\),
 \[
 H_k^{(r)}(x) = k H_k(x);
 \]

- **Differential equation:** for any \(k \geq 0\) and \(x \in \mathbb{R}\),
 \[
 H_k''(x) - x H_k'(x) + k H_k(x) = 0.
 \]

Proof. Exercise! Let us prove the last statement. By definition, Hermite polynomials are orthogonal in \(L^2(\gamma_n)\), the span of \((H_k)_{k \geq 0}\) is the set of polynomials \(\mathbb{R}[X]\), we already know that this set is dense in \(L^2(\gamma_n)\), and by Plancherel’s formula,

\[
\sum_{k \geq 0} \frac{s^{2k}}{k!} \|H_k\|_2^2 = \int G(s, x)^2 \gamma_1(dx) = e^{-s^2} \int e^{2sx} \gamma_1(dx) = e^{s^2} = \sum_{k \geq 0} \frac{s^{2k}}{k!},
\]

which gives \(\|H_k\|_2^2 = k!\) by identifying the series coefficients. \(\square\)

Theorem 2.6 (Hermite polynomials and Ornstein–Uhlenbeck process). For any \(k \geq 0\) and \(t \geq 0\), the polynomial \(H_k\) is an eigenvector of the O.-U. semigroup \(P_t\) (respectively O.-U. infinitesimal generator \(L\)) associated to the eigenvalue \(e^{-kt}\) (respectively \(-k\)), in other words, for any \(f = \sum_{k \geq 0} a_k H_k \in L^2(\gamma_1)\) with \(k a_k = \langle f, H_k \rangle\) and for any \(t \geq 0\),

\[
L f = -\sum_{k \geq 1} k a_k H_k \quad \text{and} \quad P_t f = \sum_{k \geq 0} e^{-kt} a_k H_k, \quad t \geq 0.
\]

This provides a quick proof of the Poincaré inequality, namely, if \(f \in L^2(\gamma_1)\),

\[
a_0 = \int f H_0 \gamma_1 = \int f \, d\gamma_1 \quad \text{and} \quad \text{Var}_{\gamma_1}(f) = \sum_{k \geq 1} k! a_k^2 \leq \sum_{k \geq 1} k k! a_k^2 = -\int L f \, d\gamma_1,
\]

where equality is achieved if \(a_k = 0\) for \(k > 1\), in other words if \(f(x) = H_1(x) = x\). We can also deduce a quick proof of the exponential decay of the variance along the semigroup...
(which is in fact equivalent to the Poincaré inequality), namely, with the same notations, for any \(f \in L^2(\gamma_1) \), the invariance of \(\gamma_1 \) gives

\[
a_0 = \langle f, H_0 \rangle = \int f \, d\gamma_1 = \int P_t f \, d\gamma_1,
\]

and therefore, for any \(t \geq 0 \),

\[
\text{Var}_{\gamma_1}(P_t f) = \|P_t f - a_0\|^2 = \sum_{k \geq 1} a_k^2 e^{-2kt} k! \leq e^{-2t} \sum_{k \geq 1} a_k^2 k! = e^{-2t} \|f - a_0\|^2.
\]

The gap between the first eigenvalue 0 and the second eigenvalue \(-1\) of \(L \) is of length 1. This spectral gap produces the exponential convergence. More generally, the semigroup \(P_t \) of the Ornstein–Uhlenbeck process in any dimension

\[
t - \frac{1}{2} s^2 \mathbb{E}(e^{s\sqrt{1-e^{-2t}}} Z)
\]

Since the Laplace transform of \(Z \) is given by \(\mathbb{E}(e^{\theta Y}) = e^{\frac{1}{2} \theta^2} \) we get

\[
P_t(G(s, \cdot))(x) = G(se^{-t}, x).
\]

Now, using the generating series property of Hermite polynomials, we get

\[
P_t(H_k)(x) = P_t(\partial^k \partial G(0, \cdot))(x) = \partial^k P_t(G(s, \cdot))(x)_{|s=0}
\]

\[
= \partial^k G(se^{-t}, x)_{|s=0} = e^{-kt} \partial^k G(se^{-t}, x)_{|s=0} = e^{-kt} H_k(x).
\]

The same holds for the Ornstein–Uhlenbeck process in any dimension \(n \geq 1 \) with the products of Hermite polynomials. First it can be checked that the set of \(n \)-variate polynomials \(\mathbb{R}[X_1, \ldots, X_n] \) is dense in \(L^2(\gamma_n) \), and that the tensor products of Hermite polynomials \((H_{k_1, \ldots, k_n})_{k_1, \ldots, k_n \in \mathbb{N}} \) where

\[
H_{k_1, \ldots, k_n}(X_1, \ldots, X_n) = H_{k_1}(X_1) \cdots H_{k_n}(X_n)
\]

form an orthogonal family in \(L^2(\gamma_n) \). The O.–U. infinitesimal generator in \(\mathbb{R}^n \) writes

\[
L = \Delta - \langle x, \nabla \rangle = L_1 + \cdots + L_n
\]

where \(L_i = \partial^2_i - x_i \partial_i \) is the one-dimensional Ornstein–Uhlenbeck operator acting on the \(i \)-th variable, and therefore, for any \(k_1, \ldots, k_n \in \mathbb{N} \),

\[
L(H_{k_1, \ldots, k_n}) = -(k_1 + \cdots + k_n) H_{k_1, \ldots, k_n}.
\]

The spectral gap of \(L \) is equal to \(-1\) for any dimension \(n \geq 1 \), while the associated eigenspace is \(\text{span}(H_1(x_1), \ldots, H_1(x_n)) \) and is of dimension \(n \).
2.2. SPECTRAL GAP AND HERMITE POLYNOMIALS

Theorem 2.7 (Quantum harmonic oscillato). If we define \(\Theta : L^2(dx) \rightarrow L^2(\gamma_n) \) by
\[
\Theta(f) = f\varphi_n^{-1/2}
\]
where \(\varphi_n \) is the Lebesgue density of \(\gamma_n \), then \(\Theta \) is a linear isometry, the operator
\[
\tilde{L} := \Theta^{-1} \circ L \circ \Theta
\]
satisfies for any smooth enough \(f \in L^2(dx) \) the formula
\[
\tilde{L}f(x) = \varphi_n^{1/2}L(f\varphi_n^{-1/2}) = \Delta f + \left(\frac{n}{2} - \frac{|x|^2}{4} \right)f,
\]
and for any \((k_1, \ldots, k_n) \in \mathbb{N}^n\) the function
\[
\Psi_{k_1,\ldots,k_n}(x) = \Theta^{-1}(H_{k_1,\ldots,k_n})(x_1, \ldots, x_n) = e^{-\frac{1}{4}|x|^2}H_{k_1}(x_1)\cdots H_{k_n}(x_n), \quad x \in \mathbb{R}^n,
\]
is an eigenvector of \(\tilde{L} \), namely
\[
\tilde{L}\Psi_{k_1,\ldots,k_n} = -(k_1 + \cdots + k_n)\Psi_{k_1,\ldots,k_n}.
\]

The operator \(\tilde{L} \) is a Schrödinger operator: the sum of a Laplacian with a multiplicative potential. It is known as the “quantum harmonic oscillator”. In the quantum mechanics modelling, the eigenvectors of \(\tilde{L} \) are “wave functions”, and it turns out here that they are nothing else but Hermite polynomials damped by a Gaussian weight.

Proof. The fact that \(\Theta \) is an isometry follows from
\[
\int (\Theta(f))^2 \, d\gamma_n = \int f^2 \varphi_n^{-1} \varphi_n \, d\gamma_n = \int f^2 \, dx.
\]

Since \(L \) and \(\tilde{L} \) are isometric, they share the same spectrum and their eigenvectors are in bijection: the ones of \(\tilde{L} \) are the image of the ones of \(L \) by \(\Theta^{-1} \).

The explicit formula for \(\tilde{L} \) can be obtained using the “algebraic” formulas
\[
L(\beta(f)) = \beta'(f)Lf + \beta''(f)|\nabla f|^2 \quad \text{and} \quad L(fg) = fLg + gLf + 2\nabla f \cdot \nabla g.
\]
and \(\varphi_n = e^{-V} \) and \(L = \Delta - \langle \nabla V, \nabla \rangle \) with \(V(x) = (1/2)|x|^2 + (n/2)\log(2\pi) \).

Remark (Beyond the Ornstein–Uhlenbeck exactly solvable model). More generally, if one has the Markov diffusion process \(X = (X_t)_{t \geq 0} \) on \(\mathbb{R}^n \) solving the stochastic differential equation \(dX_t = \sqrt{2}dB_t - \nabla U(X_t) \, dt \) where \(B = (X_t)_{t \geq 0} \) is a standard Brownian motion, with infinitesimal generator \(L = \Delta - \nabla U \cdot \nabla \) and reversible invariant probability measure \(\mu(dx) = e^{-U(x)}dx \), and if one considers the isometry \(\Theta : L^2(dx) \rightarrow L^2(\mu) \) defined by \(\Theta(f) = e^{\frac{1}{4}V}f \) then the conjugated operator \(\tilde{L} = \Theta^{-1} \circ L \circ \Theta \) is the Schrödinger operator
\[
\tilde{L}(f)(x) = \Delta f(x) + U(x)f(x) \quad \text{where} \quad V = \frac{\Delta V}{2} - \frac{[\nabla V]^2}{4}.
\]

This formula appears in the Girsanov formula giving the density of the law of the sample paths of \(X \) with respect to the law of the driving Brownian motion \(B \), see [23, 22]. The eigenvalues and eigenvectors are known for very special exactly solvable cases only such as the Ornstein–Uhlenbeck case associated to the quadratic potential \(U(x) = \frac{1}{2}|x|^2 + \frac{n\log(2\pi)}{2} \).
For instance, for \((k_1, \ldots, k_n) = (0, 1, \ldots, n-1)\), we get the wave function

\[
\psi(x_1, \ldots, x_n) = \sqrt{\varphi_n(x)} H_0(x_1) \cdots H_{n-1}(x_n).
\]

In mathematical physics, a bosonic wave function of \(n\) particles is obtained by symmetrization over \(x_1, \ldots, x_n\). A fermionic wave function is obtained by anti-symmetrization, which implies nullity on the diagonal, for instance

\[
\psi_{\text{fermions}}(x_1, \ldots, x_n) = \sqrt{\varphi_n(x)} \sum_{\sigma \in \Sigma_n} (-1)^{\text{signature}(\sigma)} H_{\sigma(1)-1}(x_1) \cdots H_{\sigma(n)-1}(x_n)
\]

This “Slater determinant” is proportional to a Vandermonde determinant. It is remarkable to see that \((x_1, \ldots, x_n) \in \mathbb{R}^n \mapsto e^{-\frac{1}{2} |x|^2} \prod_{1 \leq i < j \leq n} (x_i - x_j)\) is an eigenvector of \(\hat{L}\). Now

\[
|\psi_{\text{fermions}}(x_1, \ldots, x_n)|^2 = (2\pi)^{-\frac{n}{2}} e^{-\frac{1}{2} (x_1^2 + \cdots + x_n^2)} \prod_{1 \leq i < j \leq n} (x_i - x_j)^2.
\]

We recognize, up to normalization, the formula of the probability density function of the famous “Gaussian Unitary Ensemble” (GUE) namely the probability density function of the eigenvalues of a Gaussian \(n \times n\) Hermitian random matrix with Lebesgue density in \(\mathbb{R}^{n+n^2-n} = \mathbb{R}^{n^2}\) proportional to \(H \mapsto \exp(-\frac{1}{2} \text{Tr}(H^2))\).

2.3 Information theory

The Boltzmann entropy was introduced in statistical physics by Ludwig Boltzmann. It was introduced latter by Claude Shannon in information theory.

Definition 2.8 (Boltzmann or Shannon entropy). Let \(\mu\) be a probability measure on \(\mathbb{R}^n\) with Lebesgue density \(f\) such that \(f \log f\) is Lebesgue integrable. The Boltzmann or Shannon entropy of \(\mu\) is defined by

\[
S(X) = - \int_{\mathbb{R}^n} f \log f \, dx.
\]

In other words \(-S(\mu)\) is the relative entropy of \(\mu\) with respect to the Lebesgue measure, but in the sequel the relative entropy functional \(H\) is used exclusively between probability measures. Still about notations, when \(X\) is a random vector on \(\mathbb{R}^n\) of law \(\mu\), we write \(S(X)\) for \(S(\mu)\). We define \(H(X \mid \gamma_n)\) similarly.

Remark (Relative entropy or free energy?). A standard object of statistical physics is a probability measure \(\mu\) on say \(\mathbb{R}^n\) with Lebesgue density of the form \(x \in \mathbb{R}^n \mapsto Z^{-1} e^{-\beta V(x)}\) where \(V(x)\) is the “energy” of the configuration \(x \in \mathbb{R}^n\), the parameter \(\beta > 0\) is an “inverse
temperature”, and Z is the normalizing constant. If ν is another probability measure with Lebesgue density h, then

$$H(\nu \mid \mu) = \int h \log h \, dx + \beta \int \nu \, dV + \log Z = \beta \int \nu \, dV - S(\nu) + \log Z,$$

in other words, up to the additive factor $\log Z$, the relative entropy $H(\nu \mid \mu)$ is an inverse temperature times a mean energy minus a Boltzmann-Shannon entropy. In thermodynamics, such a quantity is a Helmholtz “free energy”.

The Shannon entropy is translation invariant: $S(X + m) = S(X)$ for any random vector X and any $m \in \mathbb{R}$. It also has the following scaling property

$$S(\lambda X) = S(X) + n \log(|\lambda|)$$

for every $\lambda \neq 0$. More generally, for every invertible $n \times n$ matrix A we have

$$S(AX) = S(X) + \log(|\det(A)|)$$

The proof is left as an exercise.

The following theorem states that among vectors having fixed invertible covariance matrix K, the Gaussian vector maximizes the entropy.

Theorem 2.9 (Gaussian maximum entropy). If X has finite entropy and covariance matrix K and if G is a Gaussian vector with covariance K then

$$S(X) \leq \frac{1}{2} \log((2\pi)^n \det K) = S(G).$$

Moreover there is equality if and only if X is Gaussian.

Proof. Since the Shannon entropy is translation invariant one can assume that X and G have zero mean. Let f and g be their respective densities, in particular

$$g(x) = ((2\pi)^n \det K)^{-1/2} e^{-\langle x, K^{-1} x \rangle / 2}.$$

Since X and G are centered with the same covariance matrix, and since $\log g$ is a quadratic form we have $E[\log g(X)] = E[\log g(G)]$. Therefore

$$E[\log f(X)] = E[\log (f/g)(X)] + E[\log g(X)] = E[\log (f/g)(X)] + E[\log g(G)].$$

In other words $S(G) - S(X) = H(X \mid G)$. Since the relative entropy $H(X \mid G)$ is non negative and vanishes only when $X = G$ in law, this is the result. \hfill \square

Theorem 2.10 (Sub-additivity). If $X = (X_1, \ldots, X_n)$ is a random vector of \mathbb{R}^n with finite entropy then

$$S(X_1, \ldots, X_n) \leq S(X_1) + \cdots + S(X_n)$$

with equality if and only X has independent components X_1, \ldots, X_n.

Proof. Let f be the density of X, and $f_i = \int f \prod_{j \neq i} dx_j$ be the density of X_i. Let μ and ν be the probability measures with densities f and $f_1 \otimes \cdots \otimes f_n$. Then

$$S(X_1) + \cdots + S(X_n) - S(X_1, \ldots, X_n) = H(\mu \mid \nu) \geq 0.$$

Moreover equality is achieved if and only if $\mu = \nu$. \hfill \square
Here is the main result of this section

Theorem 2.11 (Shannon–Stam inequality). Let X, Y be independent random vectors on \mathbb{R}^n and let $\theta \in [0, 1]$. Then

$$S \left(\sqrt{1 - \theta} X + \sqrt{\theta} Y \right) \geq (1 - \theta) S(X) + \theta S(Y) $$

Using the scaling properties of the Shannon entropy one can sharpen the previous result as follows. Given a random vector X we let

$$N(X) = \frac{1}{2\pi} e^{\frac{1}{2} S(X)}. $$

This is called the *entropy power* of X. The normalization insures that if G is a standard Gaussian vector then $N(G) = 1$. The scaling properties of the entropy show that the entropy power is translation invariant and 2–homogeneous: $N(\lambda X + m) = \lambda^2 N(X)$.

Theorem 2.12 (Entropy power inequality). Let X, Y be independent random vectors, we have

$$N(X + Y) \geq N(X) + N(Y), $$

Proof. Let $\theta \in [0, 1]$. Using Shannon–Stam and the scaling property of the entropy we get

$$S(X + Y) = S \left(\frac{\sqrt{1 - \theta} X}{\sqrt{1 - \theta}} + \frac{\sqrt{\theta} Y}{\sqrt{\theta}} \right) \geq (1 - \theta) \left(S(X) - \frac{n}{2} \log(1 - \theta) \right) + \theta \left(S(Y) - \frac{n}{2} \log \theta \right). $$

In other words

$$N(X + Y) \geq \left(\frac{N(X)}{1 - \theta} \right)^{1 - \theta} \left(\frac{N(Y)}{\theta} \right)^{\theta}.$$

Then choose $\theta = N(Y)/(N(X) + N(Y))$. ◻️

The purpose of the rest of this section is twofold:

1. Give a proof of the Shannon–Stam inequality;
2. Draw a connection with the logarithmic Sobolev inequality.

Definition 2.13 (Fisher information). Let μ be a probability measure on \mathbb{R}^n having a smooth density f with respect to the Lebesgue measure. The *Fisher information* of μ, introduced by Ronald Fisher in mathematical statistics, is

$$J(\mu) = \int_{\mathbb{R}^n} |\nabla \log f|^2 d\mu. $$

More generally, the relative Fisher information of μ with respect to ν is

$$J(\mu | \nu) = \int_{\mathbb{R}^n} |\nabla \log(d\mu/d\nu)|^2 d\mu, $$

provided μ has a smooth density with respect to ν.

Again when X is a random vector we let $J(X)$ be the Fisher information of the law of X. The Fisher information is translation invariant and -2–homogeneous: for every random vector X and every $\lambda \neq 0$ and $m \in \mathbb{R}^n$ we have

$$J(\lambda X + m) = \lambda^{-2} J(X). $$
2.3. INFORMATION THEORY

Definition 2.14. Let X be a random vector in \mathbb{R}^n whose law has smooth density f with respect to the Lebesgue measure. The score of X is the random vector $\rho_X = \nabla \log f(X)$. In particular we have

$$\mathbb{E}[|\rho_X|^2] = J(X).$$

Note the score has the following homogeneity property: $\rho_{\lambda X} = \lambda^{-1} \rho_X$. Also, integrating by parts we get

$$\mathbb{E}[\rho_X] = \int_{\mathbb{R}^n} (\nabla \log f) f dx = \int_{\mathbb{R}^n} \nabla f dx = 0,$$

for every vector X.

Lemma 2.15. Let X and Y be independent random vector having smooth densities with respect to the Lebesgue measure. If the score of X is integrable then

$$\rho_{X+Y} = \mathbb{E}[\rho_X | X + Y].$$

Proof. Let f and g be the respective densities of X and Y and let h be a bounded and measurable function on \mathbb{R}^n. Then we write

$$\mathbb{E}[\rho_X h(X + Y)] = \int_{\mathbb{R}^{2n}} \nabla \log f(x)h(x+y)f(x)g(y) dx dy$$

$$= \int_{\mathbb{R}^n} (\nabla f) * g(z) h(z) dz$$

$$= \int_{\mathbb{R}^n} \nabla(f * g)(z)h(z) dz = \mathbb{E}[\rho_{X+Y}h(X + Y)],$$

which is the result. □

Since conditional expectation contract the L^2–norm, it follows immediately from the previous lemma that if X and Y are independent then $J(X + Y) \leq J(X)$. With a little extra work we can actually get the following

Theorem 2.16 (Blachmann–Stam inequality). Let X, Y be independent random vectors and $\theta \in [0, 1]$, then

$$J\left(\sqrt{1-\theta}X + \sqrt{\theta}Y\right) \leq (1-\theta)J(X) + \theta J(Y).$$

Proof. Set $Z = \sqrt{1-\theta}X + \sqrt{\theta}Y$. Lemma 2.15 and the homogeneity of the score give

$$\rho_Z = \mathbb{E}[(1-\theta)^{-1/2}\rho_X | Z]$$

and similarly $\rho_Z = \mathbb{E}[\theta^{-1/2}\rho_Y | Z]$. Multiplying the first equality by $1-\theta$, the second one by θ and adding them together we get

$$\rho_Z = \mathbb{E}[\sqrt{1-\theta}\rho_X + \sqrt{\theta}\rho_Y | Z].$$

Taking the norm squared and expectation (and using Jensen) we get

$$J(Z) \leq \mathbb{E}[|\sqrt{1-\theta}\rho_X + \sqrt{\theta}\rho_Y|^2].$$

Now ρ_X and ρ_Y are independent and centered, so if we expand the square, the cross term vanishes and we get the result. □
We have seen in previous sections that the derivative of the relative entropy along the Ornstein–Uhlenbeck semigroup is minus the relative Fisher information:

\[
\frac{d}{dt} H(X_t \mid \gamma_n) = - \int \frac{\nabla g_t}{g_t} \, d\gamma_n = -J(X_t \mid \gamma_n)
\]

where \(g_t\) is the density of \(X_t\) with respect to \(\gamma_n\). Here is a similar formula for the Shannon entropy along the heat semigroup.

Theorem 2.17 (de Bruijn identity). Let \(X\) be a random vector with finite entropy and \(G\) be a standard Gaussian random vector independent of \(X\). Then

\[
\frac{d}{dt} S(X + \sqrt{t}G) = \frac{1}{2} J(X + \sqrt{t}G).
\]

Proof. Let \(f_t\) be the density of \(X + \sqrt{t}Z\). It can be checked that \((f_t)_{t \geq 0}\) solves the heat equation: \(\partial_t f_t = (1/2) \Delta f_t\). Now, using an integration by parts,

\[
\frac{d}{dt} H(X + \sqrt{t}Z) = - \frac{d}{dt} \int f_t \log f_t \, dx
\]

\[
= - \int f_t \frac{1}{2} (\Delta f_t)(1 + \log f_t) \, dx
\]

\[
= \frac{1}{2} \int (\nabla f_t \cdot \nabla \log f_t) \, dx
\]

\[
= \frac{1}{2} J(X + \sqrt{t}Z).
\]

The heat semigroup \(P := (P_t)_{t \geq 0}\) satisfies \(P_t f_0 = f_0 \ast \gamma_t\) where \(\gamma_t\) is the density of \(tZ\). The Lebesgue measure \(\mu\) on \(\mathbb{R}^n\) is invariant and symmetric for \(P\) and

\[
H(X + \sqrt{t}Z) = - \int \phi(P_t(f_0)) \, d\mu.
\]

The function \(P_t(f_0) = f_0 \ast \gamma_t\) is the density of \(B^X_t\) where \((B^X_t)_{t \geq 0}\) is a standard Brownian motion started from the random initial condition \(X\) of density \(f_0\).

We are now in a position to prove the Shannon–Stam inequality. The proof combines Blachmann–Stam with the de Bruijn identity.

Proof of Shannon–Stam. Let \(X\) and \(Y\) be independent random vectors having finite entropy and let \(G, \tilde{G}\) be two independent standard Gaussian vectors, independent of \(X\) and \(Y\). Let \(X_t = \sqrt{1-t}X + \sqrt{t}\tilde{G}\). Writing

\[
S(X_t) = S \left(X + \frac{\sqrt{t}}{\sqrt{1-t}} G \right) + \frac{n}{2} \log(1-t)
\]

and using the de Bruijn identity we get

\[
\frac{d}{dt} S(X_t) = \frac{1}{2(1-t)} (J(X_t) - n).
\]

Therefore

\[
S(G) - S(X) = S(X_1) - S(X_0) = \frac{1}{2} \int_0^1 J(X_t) - n \, \frac{1}{1-t} \, dt.
\]
Of course we have a similar equality for $Y_t = \sqrt{1-t} Y + \sqrt{t} \tilde{G}$. Now we fix $\theta \in [0,1]$, we let $Z = \sqrt{1-\theta} X + \sqrt{\theta} Y$ and, more generally, $Z_t = \sqrt{1-\theta} X_t + \sqrt{\theta} Y_t$ for all $t \in [0,1]$. Since X_t and Y_t are independent the Blachmann–Stam inequality gives

$$J(Z_t) \leq (1-\theta) J(X_t) + \theta J(Y_t) \tag{2.3}$$

for all t. On the other, observe that $Z_t = \sqrt{1-t} Z + \sqrt{t} W$ where $W = \sqrt{1-\theta} G + \sqrt{\theta} \tilde{G}$ is a standard Brownian motion independent of Z. So we also have

$$S(G) - S(Z) = \frac{1}{2} \int_0^1 \frac{J(Z_t) - n}{1-t} \, dt.$$

So substracting n from (2.3) dividing by $1-t$ and integrating between 0 and 1 we get $S(Z) \geq (1-\theta) S(X) + \theta S(Y)$ which is the result.

Now we draw a connection with the log–Sobolev inequality. Let X be a random vector and let G be a standard Gaussian vector independent of X. Applying the Entropy power inequality to X and $\sqrt{t} G$ we get

$$N(X + \sqrt{t} G) \geq N(X) + N(\sqrt{t} G) = N(X) + t.$$

This shows in particular that

$$\frac{d}{dt}|_{t=0} N(X + \sqrt{t} G) \geq 1.$$

On the other hand, using the de Bruijn identity, we easily get

$$\frac{d}{dt}|_{t=0} N(X + t G) = \frac{J(X) N(X)}{n}.$$

So we have just proved that

$$J(X) N(X) \geq n.$$

Observe that the quantity $J(X) N(X)$ is scale invariant. The above inequality asserts that it is minimized by Gaussian vectors. Taking the logarithm, we can reformulate this inequality as follows:

Theorem 2.18 (Euclidean form of the logarithmic Sobolev inequality). For any probability measure μ on \mathbb{R}^n we have

$$S(\gamma_n) - S(\mu) \leq \frac{n}{2} \log \left(\frac{J(\mu)}{n} \right). \tag{2.4}$$

We close this section by showing the relationship of this with the usual log–Sobolev inequality. The latter asserts that

$$H(\mu \mid \gamma_n) \leq \frac{1}{2} J(\mu \mid \gamma_n),$$

for every probability measure μ. Let X be a random vector having law μ. An easy computation shows that

$$H(X \mid \gamma_n) = -S(X) + S(\gamma_n) + \frac{1}{2} \mathbb{E}[|X|^2] - \frac{n}{2}.$$
In the same way, letting f be the density of μ with respect to Lebesgue and g be that of γ_n we have

$$J(X \mid \gamma_n) = \mathbb{E}[|\nabla \log(f/g)(X)|^2] = \mathbb{E}[|\nabla \log f(X) + X|^2] = J(X) + 2\mathbb{E}[|\nabla \log f(X), X|] + \mathbb{E}[|X|^2].$$

Moreover, an integration by parts shows that

$$\mathbb{E}[\langle \nabla \log f(X), X \rangle] = \int_{\mathbb{R}^n} \langle \nabla f(x), x \rangle \, dx = -\int_{\mathbb{R}^n} f(x) \text{div}(x) \, dx = -n.$$

We thus obtain

$$J(X \mid \gamma_n) = J(X) + \mathbb{E}[|X|^2] - 2n.$$

Therefore, the log–Sobolev inequality can be reformulated as

$$S(\gamma_n) - S(\mu) \leq \frac{1}{2} J(\mu \mid \gamma_n) - \frac{n}{2}. \quad (2.5)$$

Using the inequality $\log x \leq x - 1$, we immediately see that this is weaker than (2.4).

Actually (2.4) can be recovered from its weaker version by a scaling argument (the should not be a surprise, given that EPI was obtained from Shannon the same way). More precisely, applying (2.5) to λX and using the scaling properties of the entropy and the Fisher information, we get

$$S(\gamma_n) - S(\mu) \leq \frac{1}{2\lambda^2} J(\mu \mid \gamma_n) - \frac{n}{2} + n \log \lambda.$$

Now optimizing on λ we obtain back (2.4).
Chapter 3

Sub-Gaussian concentration and transportation

A function $f : \mathbb{R}^n \to \mathbb{R}$ is Lipschitz when

$$\|f\|_{\text{Lip}} := \sup_{x \neq y} \frac{|f(x) - f(y)|}{|x - y|} < \infty.$$

A Lipschitz function is always continuous, and a theorem due to Hans Rademacher states that it is differentiable almost everywhere. When f is C^1 then

$$\|f\|_{\text{Lip}} = \sup_{x \in \mathbb{R}^n} |\nabla f(x)| = \||\nabla f||\infty.$$

3.1 Concentration of measure

Theorem 3.1 (Sub-Gaussian bound on Laplace transform of Lipschitz functions). For any $n \geq 1$, and any Lipschitz function $f : \mathbb{R}^n \to \mathbb{R}$, and any $\theta \in \mathbb{R}$,

$$L(\theta) := \int \exp(\theta f) d\gamma_n \leq \exp\left(\frac{\theta^2}{2} \|f\|_{\text{Lip}}^2 + \theta \int f d\gamma_n\right)$$

The right hand side does not depend on n.

Proof. First we observe that for any $\theta \in \mathbb{R}$, we have $e^{\theta f} \in L^1(\gamma_n)$ since

$$\int e^{\theta f} d\gamma_n \leq e^{\theta \|f(0)\|} \int e^{\theta \|f\|_{\text{Lip}} |x|} d\gamma_n(x) < \infty.$$

We may assume that $\theta > 0$ by replacing f with $-f$, and that f is centered for γ_n and $\|f\|_{\text{Lip}} = 1$ by translation and scaling. Furthermore we can assume that f is bounded and C^∞ by using cutoff, regularization, and Fatou’s lemma. Namely $f_{k,\varepsilon} := \max(-k, \min(f, k)) * \rho_\varepsilon \to f$ pointwise as $k \to \infty$ and $\varepsilon \to 0$, while $\|f_{k,\varepsilon}\|_{\text{Lip}} \leq \|f\|_{\text{Lip}} \leq 1$.

The idea now is as follows \footnote{The argument is attributed to Ira Herbst, was communicated to Leonard Gross and Oscar Rothaus \cite{Herbst}, and was popularized later on by Michel Ledoux \cite{Ledoux}} for any $\theta > 0$, the logarithmic Sobolev inequality for γ_n and test function $e^{\theta f}$ gives, using $|\nabla e^{\theta f}| = |\theta \nabla f| e^{\theta f}$ and $|||\nabla f|||_\infty = \|f\|_{\text{Lip}} \leq 1$, that

$$\theta L'(\theta) - L(\theta) \log L(\theta) \leq \frac{\theta^2}{2} L(\theta).$$

This can we rewritten as $K' \leq 1/2$ where $K(\theta) := (1/\theta) \log L(\theta)$. Since $L(0) = 1$ and $L'(0) = \gamma_n(f)$, and $K(0) = (\log L'(0)) = L'(0)/L(0) = \gamma_n(f)$, the result follows. \hfill \square
Corollary 3.2 (Concentration for Lipschitz functions). For any \(n \geq 1 \) and any \(f : \mathbb{R}^n \to \mathbb{R} \) Lipschitz, and any real \(r \geq 0 \),

\[
\gamma_n(f \geq \gamma_n(f) + r)) \leq \exp\left(-\frac{r^2}{2\|f\|_{\text{Lip}}^2}\right).
\]

The right hand side does not depend on \(n \). Using the result for \(f \) and \(-f\), we get also

\[
\gamma_n(|f - \gamma_n(f)| \geq r) \leq 2\exp\left(-\frac{r^2}{2\|f\|_{\text{Lip}}^2}\right).
\]

This means that under \(\gamma_n \), \(f \) is “concentrated” around its mean \(\gamma_n(f) \), hence the term. In terms of random variables, the inequality above writes, for any \(Z \sim \gamma_n \),

\[
P(|f(Z) - \mathbb{E}(f(Z))| \geq r) \leq 2\exp\left(-\frac{r^2}{2\|f\|_{\text{Lip}}^2}\right).
\]

Proof. We reduce to \(\|f\|_{\text{Lip}} = 1 \) and \(\gamma_n(f) = \int f \, d\gamma_n = 0 \) by scaling and translation. For any \(r \geq 0 \) and \(\theta > 0 \), by Markov’s inequality and Theorem 3.1,

\[
\gamma_n(f \geq r) = \gamma_n(e^{\theta f} \geq e^{\theta r}) \leq e^{-\theta r} \int e^{\theta f} \, d\gamma_n \leq e^{-\theta r + \frac{1}{2}\theta^2} \leq e^{-\frac{1}{2}r^2},
\]

where the last inequality is obtained by taking the optimal choice \(\theta = r \).

Corollary 3.3 (Quantitative bounds for empirical means). For any integer \(n \geq 1 \), if \(X_1, \ldots, X_N \) are independent and identically distributed random variables with law \(\gamma_n \), then for any Lipschitz function \(f : \mathbb{R}^n \to \mathbb{R} \), any integer \(N \geq 1 \), any real \(r \geq 0 \),

\[
P\left(\left|\frac{f(X_1) + \cdots + f(X_N)}{N} - \mathbb{E}(f(X_1))\right| \geq r\right) \leq 2\exp\left(-\frac{Nr^2}{2\|f\|_{\text{Lip}}^2}\right).
\]

The right hand side does not depend on \(n \), in other words is uniform over the dimension.

If \(f(x) = \langle x, \theta \rangle \), \(\|\theta\| = 1 \), then \(\sqrt{N} \left(\frac{f(X_1) + \cdots + f(X_N)}{N} - \mathbb{E}(f(X_1))\right) \sim \gamma_n \) and \(\|f\|_{\text{Lip}} = 1 \).

Proof. The function \(x \in (\mathbb{R}^n)^N = \mathbb{R}^{nN} \mapsto F(x) = \frac{1}{N}(f(x_1) + \cdots + f(x_N)) \) is Lipschitz with

\[
\|F\|_{\text{Lip}} \leq \frac{\|f\|_{\text{Lip}}}{N} \sup_{x \neq y} \frac{\sum_{i=1}^{n} |x_i - y_i|}{\sqrt{\sum_{i=1}^{n} |x_i - y_i|^2}} \leq \frac{\|f\|_{\text{Lip}}}{\sqrt{N}}.
\]

Moreover \(\mathbb{E}(F(X_1, \ldots, X_N)) = \mathbb{E}(f(X_1)) \) and \((X_1, \ldots, X_N) \sim \gamma_n^{\otimes N} = \gamma_{nN} \).

Remark (Logarithmic Sobolev inequalities). An examination of the proofs above reveals that the sub-Gaussian concentration inequalities are still valid when the Gaussian measure \(\gamma_n \) is replaced by any probability measure on \(\mathbb{R}^n \) which satisfies a logarithmic Sobolev inequality. An advantage of using a logarithmic Sobolev inequality to deduce concentration of measure is that it is stable by tensor products, whereas concentration is not stable by tensor products. More precisely, and seen in Section 1.6, if \(\mu \) satisfies the logarithmic Sobolev inequality on \(\mathbb{R}^n \) then for any \(n \geq 1 \) the tensor product \(\mu^{\otimes N} \) satisfies exactly the same logarithmic Sobolev inequality stated on \(\mathbb{R}^{nN} \). In other words the constant in front of the right hand side is dimension free. It turns out that it can be shown that dimension free sub-Gaussian concentration of measure for Lipschitz functions is in fact equivalent to a \(W_2 \) transportation inequality. We will study transportation inequalities later on.
Remark (Poincaré inequality and the exponential tail). It can be shown that the double sided exponential distribution on \(\mathbb{R}\) with density \(x \mapsto \frac{1}{2} \exp(-|x|)\) satisfies a Poincaré inequality. However it cannot satisfy a logarithmic Sobolev inequality due to its sub-exponential tail which is not sub-Gaussian. The Herbst method allows to show that if a probability measure satisfies to a Poincaré inequality then this implies sub-exponential concentration around the mean for Lipschitz functions.

3.2 Transportation inequalities

For any \(p \geq 1\), let \(\mathcal{P}_p(\mathbb{R}^n)\) be the set of probability measures on \(\mathbb{R}^n\) with finite moment of order \(p\) in other words the set of probability measures \(\mu\) on \(\mathbb{R}^n\) such that \(|\cdot|^p \in L^1(\mu)\). The Wasserstein–Kantorovich distance on \(\mathcal{P}_p(\mathbb{R}^n)\) is defined for any \(\mu, \nu \in \mathcal{P}_p(\mathbb{R}^n)\) by

\[
W_p(\mu, \nu) = \left(\inf_{\pi \in \Pi(\mu, \nu)} \int_{\mathbb{R}^n \times \mathbb{R}^n} |x - y|^p \, d\pi(x, y) \right)^{1/p},
\]

where \(\Pi(\mu, \mu)\) is the set of probability measures on the product space \(\mathbb{R}^n \times \mathbb{R}^n\) with marginals \(\mu\) and \(\nu\). The quantity \(W_p(\mu, \nu)\) is a “transportation cost” between \(\mu\) and \(\nu\). It can be shown that \(W_p\) is a distance on \(\mathcal{P}_p(\mathbb{R}^n)\), and that for any \((\mu_k)_{k \in \mathbb{N}}\) and \(\mu\) in \(\mathcal{P}_p(\mathbb{R}^n)\), we have \(W_p(\mu_k, \mu) \to 0\) if and only if \(\mu_k \to \mu\) with respect to continuous test functions \(f : \mathbb{R}^n \to \mathbb{R}\) such that \(x \mapsto f(x)/(1 + |x|^p)\) is bounded.

The definition of \(W_2\) above differs from the one used in Section 1.5 by a factor of 1/2. Note that by Jensen’s inequality, \(W_1 \leq \sqrt{p} W_p\).

The variational definition of \(W_p\) above involves a linear expression with respect to \(\pi\) optimized over an (infinite dimensional) convex constraint on \(\pi\). Such a structure suggests duality. The Kantorovich–Rubinstein duality states that for any \(p \geq 1\) and \(\mu, \nu \in \mathcal{P}_p(\mathbb{R}^n)\),

\[
W_p(\mu, \nu)^p = \sup \left(\int f \, d\mu - \int g \, d\nu \right).
\]

where the supremum is taken over the set of bounded Lipschitz functions \(f, g : \mathbb{R}^n \to \mathbb{R}\) such that \(f(x) - g(y) \leq |x - y|^p/p\) for any \(x, y \in \mathbb{R}^n\). In other words,

\[
W_p(\mu, \nu)^p = \sup \left(\int Q(f) \, d\mu - \int f \, d\nu \right)
\]

where the supremum is taken over the set of bounded Lipschitz functions \(f : \mathbb{R}^n \to \mathbb{R}\), and where \(Q(f)\) is the “infimum convolution” of \(f\) with \(\frac{1}{p} |\cdot|^p\) defined by

\[
Q(f)(x) := \inf_{y \in \mathbb{R}^n} \left(f(y) + \frac{|x - y|^p}{p} \right), \quad x \in \mathbb{R}^n.
\]

In the case \(p = 1\), we have the simplified expression

\[
W_1(\mu, \nu) = \sup \left(\int f \, d\mu - \int f \, d\nu \right)
\]

where the supremum is taken over the set of Lipschitz \(f : \mathbb{R}^n \to \mathbb{R}\) with \(\|f\|_{\text{Lip}} \leq 1\).

For any fixed \(p \geq 1\), we say that a probability measure \(\mu \in \mathcal{P}_p(\mathbb{R}^n)\) satisfies a \(W_p\) transportation inequality with constant \(c > 0\) when for any \(\nu \in \mathcal{P}_p(\mathbb{R}^n)\),

\[
W_p(\mu, \nu) \leq \sqrt{2c \mathcal{H}(\nu | \mu)}.
\]
The most used cases are $p = 1$ and $p = 2$.

This reminds the Pinsker–Csiszár–Kullback inequality which states that

\[
\|\mu - \nu\|_{\text{TV}} \leq \sqrt{\frac{\text{H}(\nu | \mu)}{2}}
\]

where $\|\mu - \nu\|_{\text{TV}} = \sup_A |\mu(A) - \nu(A)|$, which follows from the inequality $(u - 1)^2 \leq (2u + 4)(u \log(u) - u + 1)$, $u \geq 0$. The total variation distance is in a sense a W_0 distance.

Katalin Marton has shown that the W_1 transportation inequality implies a sub-Gaussian concentration of measure for Lipschitz functions. The argument relies on the coupling expression of W_1. More precisely, let $A, B \subset \mathbb{R}^n$ be a couple of Borel subsets of \mathbb{R}^n such that $\mu(A) > 0$ and $\mu(B) > 0$, and let $\mu_A = \mu(\cdot | A) = \mu(\cdot \cap A)/\mu(A)$ and $\mu_B = \mu_B(\cdot | B) = \mu(\cdot \cap B)/\mu(B)$ be the conditional distributions. The triangle inequality for W_1 gives

\[
W_1(\mu_A, \mu_B) \leq W_1(\mu_A, \mu) + W_1(\mu_B, \mu).
\]

Now the W_1 transportation inequality $W_1(\mu, \nu) \leq \sqrt{2c\text{H}(\nu | \mu)}$ valid for any probability measure ν gives, using the notation $f_A = 1_A/\mu(A)$ and $f_B = 1_B/\mu(B)$,

\[
W_1(\mu_A, \mu_B) \leq \sqrt{2c\text{Ent}_\mu(f_A)} + \sqrt{2c\text{Ent}_\mu(f_B)} = \sqrt{-2c\log \mu(A)} + \sqrt{-2c\log \mu(B)}.
\]

On the other hand, let us take now $B = (A_r)^c = \{x \in \mathbb{R}^n : \text{dist}(x, A) \geq r\}$ for some $r \geq 0$. For such a couple A and B, the distance between the supports of the measures μ_A and μ_B is larger than or equal to r. Therefore, by the coupling variational formula for W_1,

\[
W_1(\mu_A, \mu_B) \geq r,
\]

and thus if $r \geq r_* := \sqrt{-2c\log \mu(A)}$ then we get

\[
\mu((A_r)^c) = \mu(B) \leq \exp\left(-\frac{(r - r_*)^2}{2c}\right).
\]

If $f : \mathbb{R}^n \to \mathbb{R}$ is Lipschitz, then by the triangle inequality, for any $r > 0$,

\[
\{f \leq \mu(f)\}_r \subset \{f < \mu(f) + r\|f\|_{\text{Lip}}\}.
\]

Taking $A = \{f \leq \mu(f)\}$ we obtain, for $r \geq r_*$, the sub-Gaussian bound

\[
\mu(f - \mu(f) > r\|f\|_{\text{Lip}}) \leq \exp\left(-\frac{(r - r_*)^2}{2c}\right).
\]

The following theorem is due to Sergey Bobkov and Friedrich Götze. It states that the W_1 transportation inequality is the dual reformulation of the sub-Gaussian concentration for Lipschitz functions. The proof relies on the Kantorovich–Rubinstein dual or variational representation of W_1 as well as on a dual or variational representation of the entropy.

Theorem 3.4 (Transportation inequality W_1). For any $\mu \in \mathcal{P}_1(\mathbb{R}^n)$ and any constant $c > 0$, the following statements are equivalent:

1. Sub-Gaussian upper bound on Laplace transform of Lipschitz functions: for any Lipschitz function $f : \mathbb{R}^n \to \mathbb{R}$ and any $\theta \in \mathbb{R}$,

\[
L(\theta) := \int \exp(\theta f) \, d\mu \leq \exp\left(\frac{c}{2} \theta^2 \|f\|_{\text{Lip}}^2 + \theta \int f \, d\mu\right);
\]
3.2. TRANSPORTATION INEQUALITIES

2. Transportation inequality W_1 for μ: for any $\nu \in \mathcal{P}_1(\mathbb{R}^n)$,

$$W_1(\nu, \mu) \leq \sqrt{2cH(\nu \mid \mu)}.$$

In particular, this holds true when $\mu = \gamma_n$ with $c = 1$, for any $n \geq 1$.

Proof. We will use the following variational formula for the entropy, valid for any measurable $h : \mathbb{R}^n \to \mathbb{R}$ with $h \geq 0$, achieved for $g = \log(h/\mu(h))$ where $\mu(h) = \int h \, d\mu$:

$$\text{Ent}_\mu(h) = \sup \left\{ \int hg \, d\mu : \int e^g \, d\mu \leq 1 \right\}.$$

Note that in 1. we can reduce to $\theta > 0$ by replacing f by $-f$ and also to $\mu(f) = 0$ and $\|f\|_{\text{Lip}} = 1$ by translation and scaling. Now 1. for any $f : \mathbb{R}^n \to \mathbb{R}$ with $\|f\|_{\text{Lip}} = 1$ rewrites

$$\int e^g \, d\mu \leq 1$$

with $g = \theta f - (c/2)\theta^2$, and the the variational formula for the entropy yields

$$\int \left(\theta f - \frac{c}{2} \theta^2 \right) h \, d\mu \leq \text{Ent}_\mu(h).$$

Conversely, if this inequality holds then we can check that we recover 1. by taking $h = e^{\theta f - (c/2)\theta^2}$ since 1. follows from

$$\left(\int e^{\theta f - (c/2)\theta^2} \, d\mu \right) \log \int e^{\theta f - (c/2)\theta^2} \, d\mu \leq 0.$$

Now, by homogeneity, we can assume that h is a probability density function with respect to μ, and since f has zero mean for μ, we reformulate as

$$\int (fh - f) \, d\mu \leq \frac{c}{2} \theta + \frac{1}{\theta} \int h \log h \, d\mu.$$

Next, by taking the infimum over $\theta > 0$ we get

$$\int (fh - f) \, d\mu \leq \sqrt{c} \int h \log h \, d\mu.$$

Denoting $\nu \ll \mu$ the probability measure such that $d\nu/d\mu = h$ and taking the supremum over f gives, thanks to the Kantorovich–Rubinstein dual formulation,

$$W_1(\mu, \nu) \leq \sqrt{cH(\nu \mid \mu)},$$

which is 2. It remains to note that the argument can be reversed.

Remark (Variational formula for the entropy). The variational formula for the entropy comes from the fact that as a convex functional $f \geq 0 \mapsto \text{Ent}_\mu(f)$, it can be represented as the envelope of its affine tangents, namely

$$\text{Ent}_\mu(f) = \sup_{g \geq 0} \left\{ \int \left(\log(g) - \log \left(\int g \, d\mu \right) \right) (f - g) \, d\mu + \text{Ent}_\mu(g) \right\} = \sup_{g \geq 0} \left\{ \int \left(\log(g) - \log \left(\int g \, d\mu \right) \right) f \, d\mu \right\}$$.
\[\sup_{\log g} \{ \int f \log(g) \, d\mu \} \]

\[= \sup_{\log g} \{ \int f g \, d\mu \}. \]

The entropy is the Legendre transform (convex dual) of the log-Laplace transform

\[\sup_{\log g} \{ \mathbb{E}_\mu(fg) - \operatorname{Ent}_\mu(g) \} = \log \mathbb{E}_\mu(e^f). \]

The following theorem, due to Sergey Bobkov and Friedrich Götze, provides the dual reformulation of the the \(W_2 \) transportation inequality, via infimum convolution.

Theorem 3.5 (Transportation inequality \(W_2 \)). For any \(\mu \in \mathcal{P}_2(\mathbb{R}^n) \) and any constant \(c > 0 \), the following statements are equivalent:

1. Transportation inequality \(W_2 \) for \(\mu \): for any \(\nu \in \mathcal{P}_2(\mathbb{R}^n) \),

\[W_2(\mu, \nu) \leq \sqrt{\mathcal{H}(\nu \| \mu)}; \]

2. For any bounded and Lipschitz \(f : \mathbb{R}^n \to \mathbb{R} \),

\[\int \exp(Q_c(f)) \, d\mu \leq \exp \int f \, d\mu \]

where \(Q_c(f)(x) := \inf_{y \in \mathbb{R}^n} (f(y) + \frac{|x-y|^2}{2c}) = c^{-1}Q_1(cf) \).

Note that \(W_2(\nu \| \mu) \leq \sqrt{2}W_1(\nu \| \mu) \) and therefore the \(W_2 \) transportation inequality implies the \(W_1 \) transportation inequality.

Note that the infimum convolution inequality 2. implies sub-Gaussian concentration for Lipschitz functions, namely that for any lipschitz function \(f : \mathbb{R}^n \to \mathbb{R} \), and any \(\theta \in \mathbb{R} \),

\[\int \exp(\theta f) \, d\mu \leq \exp \left(\frac{c}{2} \theta^2 \| f \|_{Lip}^2 + \int f \, d\mu \right). \]

Indeed, after assuming without loss of generality as usual that \(\mu(f) = 0 \) and that \(f \) is bounded, this follows from 2. together with the fact that for any \(x \in \mathbb{R}^n \),

\[Q_c(f)(x) \geq f(x) + \inf_{y \in \mathbb{R}^n} \left(-\| f \|_{Lip} |x-y| + \frac{|x-y|^2}{2c} \right) \geq f(x) - \frac{1}{2c} \| f \|_{Lip}^2. \]

Proof. Let us prove that 2.\(\Rightarrow \)1. For any bounded and Lipschitz \(g \), 2. for \(f = g/c \) gives

\[\int \exp \left(\frac{1}{c} \left(Q_1(g) - \int g \, d\mu \right) \right) \, d\mu \leq 1. \]

Now, for any probability measure \(\nu \) with density \(f = d\nu/d\mu \) with respect to \(\mu \), the variational formula for the entropy \(\operatorname{Ent}_\mu(f) = \sup \{ \mu(fh) : \mu(e^h) \leq 1 \} \) gives, for the special choice \(h = \frac{1}{c} (Q_1(g) - \int g \, d\mu) \),

\[\int \frac{1}{c} \left(Q_1(g) - \int g \, d\mu \right) f \, d\mu = \int hf \, d\mu \leq \operatorname{Ent}_\mu(f). \]

Taking the supremum over \(g \) gives 1. by the Kantorovich–Rubinstein duality.
Let us show that $1. \Rightarrow 2$. For any probability density function f with respect to μ, we have, denoting ν the probability measure such that $d\nu = f d\mu$,

$$W_2(\mu, \nu)^2 \leq c \text{Ent}_\mu(f).$$

Using the Kantorovich–Rubinstein duality, for any bounded Lipschitz $g : \mathbb{R}^n \rightarrow \mathbb{R}$,

$$\int \left(Q_1(g) - \int g \, d\mu \right) f \, d\mu = \int Q_1(g) f \, d\mu - \int g \, d\mu \leq c \int f \log f \, d\mu.$$

Since g and $Q_1(g)$ are bounded, one can take

$$f \propto \exp \left(\frac{1}{c} \left(Q_1(g) - \int g \, d\mu \right) \right)$$

and get

$$\log \int \exp \left(\frac{1}{c} Q_1(g) - \exp \left(\frac{1}{c} \int g \, d\mu \right) \right) \leq 0,$$

which can be rewritten as $2.$ using $c^{-1} Q_1(g) = Q_c(c^{-1} g)$. \hfill \qed

Theorem 3.6 (W$_2$ inequality for Gauss measures). For any $n \geq 1$ and $\nu \in \mathcal{P}_2(\mathbb{R}^n)$,

$$W_2(\nu, \gamma_n) \leq \sqrt{H(\nu | \gamma_n)}.$$

The first proof, due to Michel Talagrand, is by induction on n. We give here a proof due to Sergey Bobkov, Ivan Gentil, and Michel Ledoux, which is based on the logarithmic Sobolev inequality and a Hamilton-Jacobi equation for infimum convolutions.

Proof. Set $\mu = \gamma_n$ and $c = 1$. Thanks to the characterization of the W$_2$ transportation inequality (Theorem 3.5), it is enough to show that for any bounded Lipschitz $f : \mathbb{R}^n \rightarrow \mathbb{R},$

$$\int \exp(Q_c(f)) \, d\mu \leq \exp \int f \, d\mu.$$

Now the idea is to try to exploit the logarithmic Sobolev inequality for μ in order to obtain a differential inequality for the Laplace transform of $Q_c(f)$, just like in the Herbst argument that we have already used to get from the logarithmic Sobolev inequality a sub-Gaussian upper bound for Laplace transforms of Lipschitz functions. This requires to control the gradient of $Q_c(f)$. It turns out that we can benefit from the following fact: if $f : \mathbb{R}^n \rightarrow \mathbb{R}$ is bounded and Lipschitz and if $\theta \in [0, 1]$ then the “infimum-convolution”

$$u(t, x) = Q_t(f)(x) = \inf_{y \in \mathbb{R}^n} \left(f(y) + \frac{|x - y|^2}{2t} \right), \quad t > 0, \ x \in \mathbb{R}^n$$

is a “Hopf-Lax” solution of the Hamilton-Jacobi equation2

$$\begin{cases}
\partial_t u + \frac{1}{2} |\nabla_x u|^2 = 0 & \text{on } (0, \infty) \times \mathbb{R}^n, \\
u(0, \cdot) = f.
\end{cases}$$

It follows that $g(x, \theta) := Q_c(\theta f)(x) = \theta Q_c \circ f(x)$ satisfies to

$$\theta \partial_\theta g = g - c \frac{1}{2} |\nabla_x g|^2.$$

2See for instance Section 3.3 in the book “Partial Differential Equations” by Lawrence C. Evans.
Using this formula, we get from the logarithmic Sobolev inequality for μ
\[\text{Ent}_{\mu}(h^2) \leq 2c \int |\nabla h|^2 \, d\mu \]
with $h = \exp(\frac{1}{2}g)$ that
\[\theta L'(\theta) \leq L(\theta) \log L(\theta) \quad \text{where} \quad L(\theta) := \int e^\theta \, d\mu, \]
in other words $K' \leq 0$ on $(0,1]$ where $K(\theta) := (1/\theta) \log L(\theta)$ for any $\theta \in [0,1]$. Now K is continuous on $[0,1]$ and thus $K(1) \leq K(0)$. Moreover, the identities $L(0) = 1$ and $K(0) = (\log L)'(0) = L'(0)/L(0) = \int f \, d\mu$, which gives
\[\int \exp(Q_c(f)) \, d\mu = L(1) = \exp(K(1)) \leq \exp(K(0)) = \exp \int f \, d\mu. \]

\[\square \]

The proof above is not Gaussian. It shows that if a probability measure μ on \mathbb{R}^n satisfies a logarithmic Sobolev inequality then it satisfies also a W_2 transportation inequality.

It was proved few years ago by Nathael Gozlan probabilistically and then by Michel Ledoux analytically that the W_2 transportation inequality is actually equivalent to a dimension free sub-Gaussian concentration inequality for Lipschitz functions.

\[\int e^{Q_c(f)} \, d\mu \leq \int e^{f} \, d\mu \quad \leftrightarrow \quad W_2(\nu, \mu) \leq \sqrt{cH(\nu \mid \mu)} \]
\[\downarrow \quad \downarrow \]
\[\int e^{Q_c(f)} \, d\mu \leq e^{\frac{c}{2}\|f\|_{L^p}^2 + \int f \, d\mu} \quad \leftrightarrow \quad W_1(\nu, \mu) \leq \sqrt{2cH(\nu \mid \mu)} \]
\[\uparrow \quad \uparrow \]
\[\text{Ent}_{\mu}(f) \leq \frac{c}{2} \int \frac{|\nabla f|^2}{f} \, d\mu \]
Chapter 4

Isoperimetric inequalities

The classical isoperimetric inequality for the Lebesgue measure on \mathbb{R}^n states that among the Borel sets of given volume, the boundary measure is minimal for balls. Similarly, the classical isoperimetric inequality for the uniform distribution on the sphere states that among the Borel sets on the sphere of given area, the boundary measure is minimal for sphere caps. This section is devoted to the isoperimetry for the Gaussian measure γ_n, which can be seen as a consequence of the isoperimetric inequality on the sphere thanks to the Poincaré observation.

For a Borel measure μ on \mathbb{R}^n, the boundary measure of a Borel set $A \subset \mathbb{R}^n$ is

$$\mu^+(A) = \liminf_{r \to 0} \frac{\mu(A_r) - \mu(A)}{r}$$

where $A_r := \{x \in \mathbb{R} : \text{dist}(x, A) < r\}$ is the r-neighborhood of $A \subset \mathbb{R}^n$.

The probability density function and the cumulative distribution function of the standard Gauss measure γ_1 on \mathbb{R} are given, for any $x \in \mathbb{R}$, by

$$\varphi(x) = \left(2\pi\right)^{-\frac{1}{2}} e^{-\frac{1}{2}x^2} \quad \text{and} \quad \Phi(x) = \int_{-\infty}^{x} \varphi(t) \, dt.$$

Lemma 4.1 (Halfspaces). If $H = (-\infty, a]$, $a \in \mathbb{R}$, then

$$\gamma_1(H) = \Phi(a) \quad \text{and} \quad \gamma_1^+(H) = \varphi(a).$$

More generally, for any $n \geq 1$, $u \in \mathbb{R}^n$ with $|u| = 1$, and $a \in \mathbb{R}$, the affine halfspace $H := \{x \in \mathbb{R}^n : \langle u, x \rangle \leq a\}$ satisfies

$$\gamma_n(H) = \Phi(a) \quad \text{and} \quad \gamma_n^+(H) = \varphi(a).$$

In particular, for any $p \in (0, 1)$, an affine halfspace H of measure $\gamma_n(H) = p$ has boundary measure $\gamma_n^+(H) = \varphi \circ \Phi^{-1}(p) =: I(p)$.

Proof. The rotational invariance of γ_n reduces the problem to $n = 1$, and in this case $\gamma_1(H) = \Phi(a)$ while the fact that $\varphi = \Phi'$ gives

$$\gamma_1(H_r) - \gamma_1(H) = \Phi(a + r) - \Phi(a) = r\varphi(a) + o(r)$$

which provides $\gamma_1^+(H) = \varphi(a)$. \qed

Let us define $I : [0, 1] \to [0, \infty)$ by $I(0) = I(1) = 0$ and for any $p \in (0, 1)$,

$$I(p) := (\varphi \circ \Phi^{-1})(p).$$
CHAPTER 4. ISOPERIMETRIC INEQUALITIES

Theorem 4.2 (Gaussian isoperimetry). For any \(p \in [0, 1] \), among all Borel subsets \(A \subset \mathbb{R}^n \) such that \(\gamma_n(A) = p \), the boundary measure \(\gamma_n^+(A) \) is minimal for halfspaces, in other words, for any \(p \in [0, 1] \),

\[
\inf_{A \subset \mathbb{R}^n, \gamma_n(A) = p} \gamma_n^+(A) = I(p),
\]

in other words for any Borel set \(A \subset \mathbb{R}^n \),

\[
I(\gamma_n(A)) \leq \gamma_n^+(A); \quad (4.1)
\]

In other words, for any Borel subset \(A \subset \mathbb{R}^n \) and any halfspace \(H \), we have

\[
\gamma_n(H) = \gamma_n(A) \Rightarrow \gamma_n^+(A) \geq \gamma_n^+(H).
\]

It possible to deduce (4.1) from the isoperimetric inequality for the uniform distribution on spheres by letting the dimension and radius tend to infinity, as explained by Michel Ledoux in [20]. Antoine Ehrhart gave in [14] another direct proof of (4.1) which relies on symmetrization. Christer Borell gave an alternative proof in [8].

Theorem 4.3 (Gaussian isoperimetry – Integrated version). For any Borel set \(A \subset \mathbb{R}^n \) and for any \(r > 0 \),

\[
\gamma_n(A_r) \geq \Phi(\Phi^{-1}(\gamma_n(A)) + r). \quad (4.2)
\]

It is possible to deduce (4.1) from (4.2) immediately since

\[
\gamma_n^+(A) = \lim_{r \to 0} \inf \frac{\gamma_n(A_r) - \gamma_n(A)}{r} \geq \Phi'(\Phi^{-1}(\gamma_n(A))) = I(\gamma_n(A)).
\]

Conversely, to deduce (4.2) from (4.1), we may assume first by approximation that \(A \) is a finite union of open balls. The family of finite unions of open balls is closed under the \(r \)-neighborhood operation, and therefore the \(\lim \inf \) in the definition of \(\gamma_n^+ \) is a true limit. In this case \(\gamma_n^+(A) \) is the the integral of the density of \(\gamma_n \) along the boundary \(\partial A \) which is a union of spheres. Now

\[
a(r) := \Phi^{-1}(\gamma_n(A_r)) = \int_0^r a'(t) \, dt,
\]

and \(a'(t) = \gamma_n^+(A)/(\varphi \circ \Phi^{-1})(A_t) \geq 1 \) by (4.1), thus \(a(r) \geq r \), hence (4.2). If \(\gamma_n(A) = p \geq 1/2 \) and \(a = \Phi^{-1}(p) \) then (4.2) gives, for any \(r > 0 \),

\[
\gamma_n(A_r) \geq \Phi(a + r) \geq 1 - e^{-\frac{1}{2}r^2},
\]

and this bound is remarkably dimension free!

Lemma 4.4 (Isoperimetric function). The function \(I : [0, 1] \to [0, \infty) \) defined by \(I(0) = I(1) = 0 \) and \(I = \varphi \circ \Phi^{-1} \) on \((0, 1) \) is concave, and symmetric with respect to \(1/2 \) where it achieves its maximum \(I(1/2) = (2\pi)^{-1/2} \). Moreover it satisfies to the differential equation

\[
II'' = -1 \quad \text{on} \quad (0, 1).
\]

Furthermore

\[
I(p) \sim p \sqrt{-2 \log p} \quad \text{and} \quad \lim_{p \to 0} I'(p) = +\infty.
\]
Proof. On $(0, 1)$, using $\Phi' = \varphi$ we get $(\Phi^{-1})' = 1/(\varphi \circ \Phi^{-1}) = 1/I$ and

$$I' = \frac{\varphi' \circ \Phi^{-1}}{I} \quad \text{and} \quad I'' = \frac{\varphi'' \circ \Phi^{-1}}{I^2} - \frac{(\varphi' \circ \Phi^{-1})^2}{I^3} = \frac{(\varphi'' - \varphi^2/\varphi \circ \Phi^{-1})}{I^2}.$$

Now $\varphi' = -x\varphi$ and $\varphi'' = -\varphi + x^2\varphi$, which gives $\varphi'' - \varphi^2/\varphi = -\varphi$. This gives $II'' = -1$, which shows in particular that I is concave. Finally, since φ is even, it follows that $\Phi - \Phi(0) = \Phi - 1/2$ is odd, and therefore I is symmetric with respect to $1/2$. Since I is concave, its maximum is $I(1/2) = \Phi(0) = (2\pi)^{-1/2}$. It remains to note that $\varphi'(x) = -x\varphi(x)$ gives

$$\lim_{p \to 0} I'(p) = \lim_{p \to 0} -\Phi^{-1}(p) = +\infty,$$

while $\Phi(x) \sim -\frac{\pi(x)}{x}$ gives $\Phi^{-1}(p) \sim -\sqrt{-2\log(p)}$ and then

$$I(p) \sim p\sqrt{-2\log(p)}.$$

\[\square \]

Theorem 4.5 (Gaussian isoperimetry – First Bobkov inequality). For every smooth function $f : \mathbb{R}^n \to [0, 1]$,

$$I \left(\int_{\mathbb{R}^n} f \, d\gamma_n \right) - \int_{\mathbb{R}^n} I(f) \, d\gamma_n \leq \int_{\mathbb{R}^n} |\nabla f| \, d\gamma_n; \quad (4.3)$$

The inequality (4.3) was invented and proved by Sergey Bobkov in [6]. It is the first known functional form of the Gaussian isoperimetric inequality. It is possible to deduce (4.1) from (4.3) by approximating indicators with smooth functions, see [19] [7], and conversely, one can deduce (4.3) from (4.1), see for instance [7]. We refer to [9] for a discussion on isoperimetric inequalities.

Direct proof of (4.3) using semigroup interpolation. We follow the proof given by Dominique Bakry and Michel Ledoux in [2]. Let $(P_t)_{t \geq 0}$ be the Ornstein–Uhlenbeck semigroup. Let $\varepsilon \in (0, 1)$ and $f : \mathbb{R}^n \to [\varepsilon, 1 - \varepsilon]$ be smooth. For any $0 < s < t$, we have, using the formula

$$L(\beta(h)) = \beta'(h)Lh + \beta''(h)|\nabla h|^2,$$

and denoting $g := P_{t-s}f$,

$$\partial_s P_s(I(g)) = P_s(L(I(g))) - P_s(I'(g)Lg) = P_s(I''(g)).$$

With this formula, and $II'' = -1$, and the Cauchy–Schwarz inequality, we get

$$[I(P_t f)]^2 - [P_t(I(f))]^2 = \int_0^t \partial_s [P_s(I(P_t-f))]^2 \, ds = \int_0^t \partial_s [P_s(I(P_{t-s} f))]^2 \, ds = \int_0^t \partial_s [P_s(L(I(P_{t-s} f))) - P_s(I'(P_{t-s} f)Lg) = P_s(I''(P_{t-s} f)) \, ds \geq 2 \int_0^t [P_s(|\nabla P_{t-s} f|)]^2 \, ds.$$
Using now the sub-commutation $|\nabla P_s h| \leq e^{-s}P_s(|\nabla h|)$ with $h = P_{t-s}f$, we get

$$[I(P_t f)]^2 - [I(P_t(I(f)))]^2 \geq 2 \int_0^t e^{2s}|\nabla P_s(P_{t-s}f)|^2 ds \geq (e^{2t} - 1)|\nabla P_t f|^2,$$

and therefore, using the fact that $-I'' = 1/I \geq 0$ (recall that I is concave!)

$$\sup_{\mathbb{R}^d}(-I''(P_t f)|\nabla P_t f|) = \sup_{\mathbb{R}^d} \frac{|\nabla P_t f|}{I(P_t f)} \leq \frac{1}{1 - e^{-2t}}.$$

Now, using the sub-commutation and this inequality at time $t - s$, we get

$$I(P_t f) - P_t(I(f)) = -\int_0^t \partial_s P_s(I(P_{t-s}f))ds$$

$$= -\int_0^t P_s(I''(P_{t-s}f)|\nabla P_{t-s}f|^2)ds$$

$$\leq -\int_0^t P_s(I''(P_{t-s}f)|\nabla P_{t-s}f|e^{-(t-s)}P_{t-s}|\nabla f|)ds$$

$$\leq \int_0^t \frac{e^{-(t-s)}}{\sqrt{e^{2(t-s)} - 1}} P_s(P_{t-s}|\nabla f|)ds$$

$$= \left(\int_1^t (e^{-s}\sqrt{e^{2s} - 1})ds\right) P_t(|\nabla f|)$$

$$= \sqrt{1 - e^{-2t}} P_t(|\nabla f|).$$

Now $P_t(\cdot)(x) = N(xe^{-t}, 1 - e^{-2t}) \to \gamma_n$ as $t \to \infty$, for any $x \in \mathbb{R}^n$.

Theorem 4.6 (Gaussian isoperimetry – Second Bobkov inequality). For every smooth function $f : \mathbb{R}^n \to [0, 1]$,

$$I \left(\int_{\mathbb{R}^n} f \, d\gamma_n \right) \leq \int_{\mathbb{R}^n} \sqrt{I^2(f) + |\nabla f|^2} \, d\gamma_n. \quad (4.4)$$

As for (4.3), it is possible to deduce (4.1) from (4.4) by approximating indicators with smooth functions, see [19, 7], and conversely, one can deduce (4.4) from (4.1), see for instance [7].

It is immediate to deduce (4.3) from (4.4) using $\sqrt{a^2 + b^2} \leq |a| + |b|$. The advantage of (4.4) over (4.3) is that (4.4) can be tensorized. The inequality (4.4) was invented and proved by Sergey Bobkov [7]. In the sequel, we give three proofs of this inequality.

It is important to understand that the logarithmic Sobolev inequality for γ_n with its optimal constant can be deduced from (4.4), namely by taking $f = \varepsilon g^2$ with $\int_{\mathbb{R}^n} g^2 \, d\gamma_n = 1$ in (4.4) and using $I(p) \sim_p \rightarrow p \sqrt{p \log p}$, which gives

$$\int_{\mathbb{R}^n} g^2 \log(g^2) \, d\gamma_n \leq 2 \int_{\mathbb{R}^n} |\nabla g|^2 \, d\gamma_n.$$

This argument, due to William Beckner, mirrors the linearization argument $g = 1 + \varepsilon f$ that allows to get the Poincaré inequality from the logarithmic Sobolev inequality. It is also important to mention that it possible to recover directly the sub-Gaussian concentration of measure for Lipschitz functions under γ_n from the sets formulation of the Gaussian isoperimetry (4.1), see [2, 4].
Direct proof of \([4,4]\) using semigroup interpolation. We give a proof due to Dominique Bakry and Michel Ledoux (see [2] or the simpler [20]). Let \((P_t)_{t \geq 0}\) be the Ornstein–Uhlenbeck semigroup, and \(L\) be its infinitesimal generator. Let \(\varepsilon \in (0, 1)\) and \(f : \mathbb{R}^n \to [\varepsilon, 1 - \varepsilon]\) be smooth. Fix \(t \geq 0\), and set, for any \(t \geq 0\),

\[
\alpha(t) := \int \sqrt{T^2(P_t f) + |\nabla P_t f|^2} \, d\gamma_n.
\]

It suffices to show that \(\alpha(\infty) \leq \alpha(t)\), via \(\alpha' \leq 0\). Now, setting \(f_t := P_t f\),

\[
\alpha'(s) = \int \frac{(II')(f_t)Lf_t + \langle \nabla f_t, \nabla Lf_t \rangle}{\sqrt{T^2(f_t) + c|\nabla f_t|^2}} \, d\gamma_n = (\ast) + (\ast\ast).
\]

Let us remove \(L\) in \((\ast)\) and \((\ast\ast)\) by using an integration by parts. Namely, for \((\ast)\), by integration by parts, using \(L(t) = -1\) and setting \(K(f_t) := T^2(f_t) + |\nabla f_t|^2\),

\[
(\ast) := \int \frac{(II')(f_t)Lf_t}{\sqrt{K(f_t)}} \, d\gamma_n = - \int \frac{\langle \nabla f_t, \nabla (II')(f_t) \rangle}{\sqrt{K(f_t)}} \, d\gamma_n = - \int \frac{(I'' - 1)(f_t)|\nabla f_t|^2}{\sqrt{K(f_t)}} \, d\gamma_n + \int \frac{(II')^2(f_t)|\nabla f_t|^2 + (II')(f_t)|\nabla f_t|^2}{(K(f_t))^{3/2}} \, d\gamma_n.
\]

On the other hand, for \((\ast\ast)\), using \(\langle \nabla f_t, \nabla Lf_t \rangle = \langle \nabla f_t, L\nabla f_t \rangle - |\nabla f_t|^2\), we get

\[
(\ast\ast) := \int \frac{\langle \nabla f_t, \nabla Lf_t \rangle}{\sqrt{K(f_t)}} \, d\gamma_n = \int \frac{\langle \nabla f_t, L\nabla f_t \rangle}{\sqrt{K(f_t)}} \, d\gamma_n - \int \frac{|\nabla f_t|^2}{\sqrt{K(f_t)}} \, d\gamma_n,
\]

and the term with \(L\) can be rewritten, using an integration by part, as

\[
\int \frac{\langle \nabla f_t, L\nabla f_t \rangle}{\sqrt{K(f_t)}} \, d\gamma_n = - \int \frac{||\nabla^2 f_t||^2_2}{\sqrt{K(f_t)}} \, d\gamma_n + \int \frac{(II')(f_t)|\nabla f_t|^2 + (II')(f_t)|\nabla^2 f_t|}{(K(f_t))^{3/2}} \, d\gamma_n
\]

where \(||\nabla^2 f_t||^2_2 := \sum_{j,k=1}^n (\partial^2_{jk} f_t) = \text{Trace}(\nabla^2 f_t)\) is the square of the Hilbert-Schmidt or trace or Frobenius norm of the Hessian matrix \(\nabla^2 f_t\) of \(f_t\).

Gathering all the terms gives, after some algebra,

\[
\alpha'(t) = \int \frac{R(f_t)}{K^{3/2}(f_t)} \, d\gamma_n
\]

where, omitting \(f_t\) in the formula,

\[
R = -I''|\nabla|^4 + 2II'\langle \nabla, \nabla^2 \nabla \rangle - I^2||\nabla^2||^2_2 - ||\nabla^2||^2_2||\nabla||^2 + \langle \nabla, (\nabla^2)^2 \nabla \rangle
\]

\[
= -\text{Trace}((II'\nabla\nabla^\top - I\nabla^2)(II'\nabla\nabla^\top - I\nabla^2)) + Q
\]

where

\[
Q := \langle \nabla, (\nabla^2)^2 \nabla \rangle - ||\nabla^2||^2_2||\nabla||^2 \leq 0.
\]

\(\Box\)
Chapter 4. Isoperimetric Inequalities

Direct proof of [4.4] using stochastic calculus. We give the proof due to Franck Barthe and Bernard Maurey [3] inspired by a bit more abstract work of Mireille Capitaine, Elton Hsu, and Michel Ledoux [11]. By regularization, one can reduce to the case where \(f \) is smooth. Let \((B_t)_{t \geq 0} \) be a standard Brownian motion of \(\mathbb{R}^n \) and let \((\mathcal{F}_t)_{t \geq 0} \) be its natural filtration. For any \(t \geq 0 \), set

\[
M_t := \mathbb{E}(f(B_t) \mid \mathcal{F}_t) = M_0 + \int_0^t m_s \, dB_s,
\]

\[
N_t := \mathbb{E}((\nabla f)(B_t) \mid \mathcal{F}_t) = N_0 + \int_0^t n_s \, dB_s,
\]

\[
A_t := t \land 1 = A_0 + \int_0^t a_s \, ds,
\]

(these processes are constant for \(t \geq 1 \)). It suffices to show that the process

\[
\left(\sqrt{I^2(M_t) + A_t |N_t|^2} \right)_{t \geq 0}
\]

is a submartingale, since in that case

\[
I(\mathbb{E}(f(B_1))) = \sqrt{I^2(\mathbb{E}(f(B_1)))} = \mathbb{E}F(0)
\]

\[
\leq \mathbb{E}F(1) = \mathbb{E}\sqrt{I^2(f(B_1)) + |\nabla f(B_1)|^2}.
\]

Let us assume for notational simplicity that \(n = 1 \). Let \(J : \mathbb{R} \to \mathbb{R} \) be a continuous \(C^2 \) function, constant outside \([0, 1]\), and such that \(J(x) = I(x) \) when \(x \in [\varepsilon, 1 - \varepsilon] \). Let \(F(x, y, t) = \sqrt{J^2(x) + ty^2} \). Now

\[
\frac{\partial}{\partial x} F = \frac{2J(x)j'(x) + ty^2}{2F} \quad \text{and} \quad \frac{\partial}{\partial y} F = \frac{J^2(x) + 2ty}{2F}
\]

and thus

\[
\frac{\partial^2}{\partial x^2} F = \frac{tJ^2(x)y^2 + J^3(x)j''(x) + t|y|^2J(x)j''(x)}{F^3},
\]

\[
\frac{\partial^2}{\partial x \partial y} F = -\frac{tyJ(x)j'(x)}{F^3},
\]

\[
\frac{\partial^2}{\partial y^2} F = \frac{tJ^2(x)}{F^3},
\]

\[
\frac{\partial}{\partial t} F = \frac{y^2}{2F}.
\]

Now, Itô’s formula gives, with \(X_t := (M_t, N_t, A_t) \),

\[
Y_t := F(X_t) = F(X_0) + \int_0^t (\partial_x F(X) \, dM + \partial_y F(X) \, dN) + \int_0^t \Delta(s) \, ds
\]

with

\[
\Delta(s) := \partial_t F(X_s) a_s + \frac{1}{2} \left(\partial^2_{x,x} F(X_s)m_s^2 + 2\partial^2_{x,y} F(X_s)m_sn_s + \partial^2_{y,y} F(X_s)n_s^2 \right).
\]

The stochastic integral above has a bounded integrand, and is then a martingale. For the last integral above, we note that \((J(M_t))_{t \geq 0} \) and \((I(M_t))_{t \geq 0} \) coincide, which allows to use the relation \(I'' = -1 \), and this gives, omitting the variables,

\[
2F^3 \Delta = F^2 N^2 a + (I^2 AN^2 - I^2 - AN^2)m^2 + 2(I I' AN)mn + I^2 An^2.
\]
Let us admit that $N^2 a \geq m^2$. This gives $F^2 N^2 a \geq (I^2 + AN^2)m^2$, and then
\[2F^3 \Delta \geq A(I^2 N^2 m^2 - 2 I' Nmn + In^2) = A(I' Nm - In)^2 \geq 0, \]
and therefore $(X_t)_{t \geq 0}$ is a submartingale.

It remains to show that $N^2 a \geq m^2$. We have actually $a = 1$, and
\[M_t = E(f(B_1 - B_t + B_t) \mid \mathcal{F}_t) = \alpha(t, B_t) \quad \text{and} \quad N_t = \partial_x \alpha(t, B_t) \]
where $\alpha(t, x) := E(f(B_1 - B_t + x))$. But $(M_t)_{t \geq 0}$ is a martingale, and thus
\[dM_t = \partial_x \alpha(t, M_t) dB_t = N_t dB_t \]
by Itô's formula, which gives $m_s = N_s$, hence $m^2 = N^2$. \hfill \square

4.1 Proof of the second Bobkov inequality

Inspired by the work [24] of Michel Talagrand, Sergey Bobkov gave in [7] a proof of the isoperimetric inequality (4.4), by using a tensorization of an inequality on the two-points space and the Central Limit Theorem. The starting point is the following inequality on the two-points space: for any $g : \{0, 1\} \to [0, 1],$
\[I(\mathbb{E}_\mu(g)) \leq \mathbb{E}_\mu(\sqrt{I^2(g) + (Dg)^2}) \]
where $(Dg)^2 = (g(1) - g(0))^2$. In other words, with $a := g(0)$ and $b := g(1),$
\[I \left(\frac{a + b}{2} \right) \leq \frac{1}{2} \sqrt{I^2(a) + \left(\frac{b - a}{2} \right)^2} + \frac{1}{2} \sqrt{I^2(b) + \left(\frac{b - a}{2} \right)^2}. \]

FIXME:
Chapter 5

Bakry-Émery criterion

5.1 Gamma calculus

Let \((X_t)\) be a Markov process, we let \(M\) be the state space, \((P_t)\) be the semigroup and \(L\) be the generator. Given a function \(f\) and \(t > 0\) we consider

\[
\beta(s) = P_s((P_{t-s}f)^2), \quad s \in [0, t].
\]

By Jensen’s inequality \(\beta\) is increasing. Observe that

\[
\beta(t) - \beta(0) = P_t(f^2) - (P_t f)^2
\]

evaluated at \(x \in M\) is the variance of \(f\) with respect to \(\delta_x P_t\). Let us differentiate \(\beta\). Setting \(g = P_{t-s}f\) we have

\[
\beta'(s) = \partial_s P_s(g^2) + P_s(2(\partial_s g)g)
= P_s(L(g^2) - 2gLg)
= 2P_s(\Gamma(g))
\]

where

\[
\Gamma(g) = \frac{1}{2} (L(g^2) - 2gLg).
\]

The operator \(\Gamma\) is called carré du champ. More generally we introduce the bilinear form

\[
\Gamma(f, g) = \frac{1}{2} (Lf g - f(Lg) - (Lf)g).
\]

Observe that

\[
\Gamma(f, f) = \Gamma(f) \geq 0.
\]

Indeed since \(\beta\) is increasing \(\beta'(0) = 2\Gamma(P_t f) \geq 0\). Letting \(t \to 0\) yields the positivity of \(\Gamma\). Let us differentiate \(\beta\) once more. Recall that \(g = P_{t-s}f\), since \(\Gamma\) is a bilinear form we have

\[
\partial_t \Gamma(g) = 2\Gamma(\partial_s g, g) = -2\Gamma(Lg, g).
\]

We thus obtain

\[
\beta''(s) = 2P_s(L\Gamma(g) - 2\Gamma(g)).
\]

It is thus tempting to introduce the iterated version of the carré du champ

\[
\Gamma_2(f) = \frac{1}{2} (L\Gamma(f) - 2\Gamma(Lf, f)).
\]
With this formalism we thus have $\beta''(s) = 4P_s(\Gamma_2(P_{t-s}f))$. For instance, if $X_t = \sqrt{2}B_t$, where (B_t) is a standard Brownian motion then $Lf = \Delta f$, from which we easily get $\Gamma(f) = |\nabla f|^2$ and

$$\Gamma_2(f) = \frac{1}{2} \Delta |\nabla f|^2 - \langle \nabla f, \nabla \Delta f \rangle = \sum_{ij} (\partial_{ij}f)^2.$$

Notice in particular that $\Gamma_2(f) \geq 0$. This already shows that $\beta'' \geq 0$ in that case. So β' is non decreasing, in particular $\beta'(0) \leq \beta'(t)$ In other words

$$|\nabla P_t f|^2 \leq P_t(|\nabla f|^2). \quad (5.1)$$

Similarly, if (X_t) is the Ornstein–Uhlenbeck semigroup then $Lf = \Delta f - \langle x, \nabla f \rangle$, $\Gamma(f) = |\nabla f|^2$ and

$$\Gamma_2(f) = \frac{1}{2} L|\nabla f|^2 - \langle \nabla f, \nabla Lf \rangle = \sum_{ij} (\partial_{ij}f)^2 + |\nabla f|^2.$$

Notice that in that case we get $\Gamma_2(f) \geq \Gamma(f)$. This implies that $\beta''(s) \geq 2\beta'(s)$. This differential inequality is easily integrated (Gronwall’s lemma) and we get in particular $\beta'(t) \geq e^{2t}\beta'(0)$. In other words

$$|\nabla P_t f|^2 \leq e^{-2t} P_t(|\nabla f|^2).$$

Of course we have seen before that this commutation property was an easy consequence of the Mehler formula. Similarly [5.1] is easily derived from the explicit expression of the heat semigroup. The point of the Γ calculus, is that it allows to derive such commutation properties for semigroups which do not have an explicit expression.

Definition 5.1. We say that the Markov process (X_t) satisfies the curvature dimension condition $CD(\rho, n)$ if for any function f we have

$$\Gamma_2(f) \geq \rho \Gamma(f) + \frac{1}{n} (Lf)^2.$$

This is called curvature dimension dimension because...FIXME

Remark. We have stated the curvature dimension condition in full generality but actually in this notes we shall only address the condition $CD(\rho, \infty)$, for which the inequality reads $\Gamma_2(f) \geq \rho \Gamma(f)$.

Proposition 5.2 (weak commutation). Let $\rho \in \mathbb{R}$, the following are equivalent:

1. The semi group (P_t) satisfies $CD(\rho, \infty)$;

2. For every function f and every t we have $\Gamma(P_t f) \leq e^{-\rho t} P_t \Gamma(f)$.

Proof. As we have seen above, letting $\alpha(s) = P_s(\Gamma(P_{t-s}f))$ we have $\alpha'(s) = 2P_s(\Gamma_2(P_{t-s}f))$. So under $CD(\rho, \infty)$ we get $\alpha'(s) \geq 2\rho \alpha(s)$. Then by Gronwall lemma we get $\alpha(t) e^{-2\rho t} \geq \alpha(0)$, which is the second inequality. Conversely, if the second assertion holds for all t then $\alpha(s) \geq e^{2\rho s} \alpha(0)$ for every $s \in [0, t]$. Doing a Taylor expansion of both expressions at $s = 0$ we obtain $\alpha'(0) \geq 2\rho \alpha(0)$, hence $\Gamma_2(P_t f) \geq \rho \Gamma(P_t f)$. Then letting $t \to 0$ we get $CD(\rho, \infty)$. \qed
5.2 The Poincaré inequality

In this section, we assume that there is a stationary distribution \(\mu \) and that it is ergodic, in the sense that

\[P_t f \to \int_M f \, d\mu, \]

for every \(f \). The Dirichlet form is the quadratic form given by

\[\mathcal{E}(f, g) = \int_M \Gamma(f, g) \, d\mu, \]

for all \(f, g \). Again when \(f = g \) we write \(\mathcal{E}(f) = \mathcal{E}(f_f) \). Notice that by stationarity we have

\[\int_M L(f^2) \, d\mu = 0 \]

and thus

\[\mathcal{E}(f) = \int_M \Gamma(f) \, d\mu = -\int_M f(Lf) \, d\mu. \]

We say that \(\mu \) satisfies the Poincaré inequality with constant \(C \) if for every function \(f \)

\[\text{Var}_\mu(f) \leq C \mathcal{E}(f). \]

Theorem 5.3. If \(CD(\rho, \infty) \) holds for some positive \(\rho \) then \(\mu \) satisfies the Poincaré inequality with constant \(1/\rho \).

Proof. Recall that letting \(\beta(s) = P_s((P_{t-s} f)^2) \) we have \(\beta'(s) = 2P_s(\Gamma P_{t-s} f) \). Using the weak commutation we get

\[\beta'(s) \leq e^{-2\rho(t-s)} P_t(\Gamma f). \]

for every \(s \in [0, t] \). Therefore

\[P_t(f^2) - (P_t f)^2 = \beta(t) - \beta(0) \leq \frac{1 - e^{-2\rho t}}{2\rho} P_t \Gamma(f). \]

Letting \(t \) tend to \(+\infty\) and using the ergodicity we get the result. \(\square \)

The Poincaré inequality is equivalent to an exponential decay of the variance.

Proposition 5.4. The following are equivalent

1. \(\mu \) satisfies the Poincaré inequality with constant \(C \);

2. For any function \(f \), we have \(\text{Var}_\mu(P_t f) \leq e^{-2t/C} \text{Var}_\mu(f) \).

Proof. Observe that

\[\frac{d}{dt} \text{Var}(P_t f) = \frac{d}{dt} \int_M (P_t f)^2 \, d\mu = -2 \mathcal{E}(P_t f). \]

So the direct implication follows from Gronwall and the reverse implication is obtained by differentiating at \(t = 0 \). \(\square \)

We close this section by showing that if \(\mu \) is reversible, the Poincaré inequality is equivalent to an integrated version of the \(CD(\rho, \infty) \) condition.

Proposition 5.5. Let \(\rho > 0 \) and consider the following assertions:

1. For any \(f \) we have \(\int_M \Gamma_2(f) \, d\mu \geq \rho \int_M \Gamma(f) \, d\mu \);
2. \(\mu \) satisfies Poincaré with constant \(1/\rho \).

We always have \(1 \Rightarrow 2 \), and if \(\mu \) is reversible the converse is also true.

Proof. We have seen that \(\frac{d}{dt} \text{Var}(P_tf) = -2\mathcal{E}(P_tf) \). By stationarity we have

\[
\int_M \Gamma_2(g) \, d\mu = - \int_M \Gamma(g, Lg) \, d\mu
\]

for all \(g \). Therefore

\[
\frac{d}{dt} \mathcal{E}(P_tf) = 2 \int_M \Gamma(P_tf, LP_tf) \, d\mu = -2 \int_M \Gamma_2(P_tf) \, d\mu.
\]

So under the first condition we get

\[
\frac{d}{dt} \mathcal{E}(P_tf) \leq -2\rho \mathcal{E}(P_tf).
\]

Hence by Gronwall

\[
\mathcal{E}(P_tf) \leq e^{-2\rho t} \mathcal{E}(f).
\]

we obtain Poincaré with constant \(1/\rho \). For the converse inequality, assume (without loss of generality) that \(f \) has mean 0. Then using Cauchy–Schwarz and Poincaré we get

\[
\int_M \Gamma(f) \, d\mu = - \int_M f(Lf) \, d\mu \leq \left(\int_M f^2 \, d\mu \right)^{1/2} \left(\int_M (Lf)^2 \, d\mu \right)^{1/2}
\]

\[
\leq \left(\frac{1}{\rho} \int_M \Gamma(f) \, d\mu \right)^{1/2} \left(\int_M (Lf)^2 \, d\mu \right)^{1/2}.
\]

Therefore

\[
\int_M (Lf)^2 \, d\mu \geq \rho \int_M \Gamma(f) \, d\mu.
\]

Now reversibility implies that

\[
\int_M (Lf)g \, d\mu = \int_M f(Lg) \, d\mu = \mathcal{E}(f, g),
\]

for any \(f, g \). In particular

\[
\int_M (Lf)^2 \, d\mu = \mathcal{E}(f, Lf) = \int_M \Gamma_2(f) \, d\mu,
\]

hence the result. \(\Box \)

5.3 The Langevin semigroup

Let \(V: \mathbb{R}^n \rightarrow \mathbb{R} \) be a smooth function and consider the stochastic differential equation

\[
dX_t = \sqrt{2} dB_t - \nabla V(X_t) \, dt.
\]

We assume that it has a unique strong solution, and that this solution does not explode in finite time. This is will be the case under mild assumptions on \(V \) but we do not want
5.3. THE LANGEVIN SEMIGROUP

to spell these out for now. The solution \((X_t)\) is a Markov process and we let \((P_t)\) be the associated semigroup. For \(f \in C_b^2(\mathbb{R}^n)\) we see using Itô’s formula that

\[
f(X_t) - \int_0^t (\Delta f(X_s) - \langle \nabla V(X_s), \nabla f(X_s) \rangle) \, ds
\]

is a martingale. As a result the operator \(L\) given by

\[
Lf = \Delta f - \langle \nabla V, \nabla f \rangle
\]

is the generator of \((P_t)\). Let \(\mu\) be the measure given by

\[
\mu(dx) = e^{-V(x)} dx,
\]

we claim that \(\mu\) is reversible for the process. Indeed, if \(f\) and \(g\) are \(C^2\) smooth and sufficiently decreasing at \(+\infty\) then integrating by parts we get

\[
\int_{\mathbb{R}^n} (\Delta f) g \, d\mu = - \int_{\mathbb{R}^n} \langle \nabla f, \nabla (ge^{-V}) \rangle \, dx
\]

\[
= - \int_{\mathbb{R}^n} \langle \nabla f, \nabla g \rangle \, d\mu + \int_{\mathbb{R}^n} \langle \nabla f, \nabla V \rangle g \, d\mu.
\]

Therefore

\[
\int_{\mathbb{R}^n} (Lf) g \, d\mu = - \int_{\mathbb{R}^n} \langle \nabla f, \nabla g \rangle \, d\mu = \int_{\mathbb{R}^n} f(Lg) \, d\mu,
\]

which proves the claim.

If \(e^{-V}\) is integrable on \(\mathbb{R}^n\) we normalize \(\mu\) to be a probability measure, and it can be shown that the semigroup \((P_t)\) is ergodic:

\[
P_t f \to \int_{\mathbb{R}^n} f \, d\mu
\]

for all \(f\). When the potential \(V = |x|^2/2\), the semigroup \((P_t)\) is just the Ornstein–Uhlenbeck semigroup and the measure \(\mu\) is the Gaussian measure. The Langevin semigroup thus generalizes this construction. The main difficulty of this generalization is that the semigroup \((P_t)\) does not have an explicit expression anymore. However, we shall see that under suitable hypothesis on \(V\), many of the properties that we have established for the Ornstein–Uhlenbeck semigroup remain valid in this context.

Clearly the first order term in \(L\) has no effect on the carré du champ, so we still have

\[
\Gamma(f, g) = \langle \nabla f, \nabla g \rangle.
\]

Let us compute \(\Gamma_2\):

\[
\Gamma_2(f) = \text{FIXME} = \|\nabla^2 f\|_{HS}^2 + \nabla^2 V(\nabla f, \nabla f),
\]

where

\[
\|\nabla^2 f\|_{HS}^2 = \sum_{ij} (\partial_{ij} f)^2
\]

is the Hilbert–Schmidt norm squared of the Hessian of \(f\).

Lemma 5.6. Let \(\rho \in \mathbb{R}\), the Langevin semigroup satisfies \(\text{CD}(\rho, \infty)\) if and only if the potential \(V\) satisfies

\[
\nabla^2 V \geq \rho I_n
\]

pointwise.
Proof. If $\nabla^2 V \geq \rho I_n$ we immediately get $\Gamma_2(f) \geq \rho |\nabla f|^2 = \rho \Gamma(f)$. Conversely, applying $\text{CD}(\rho, \infty)$ to a linear function $f(x) = \langle u, x \rangle$, the Hessian term vanishes and we get $\nabla^2 V(u, u) \geq \rho |u|^2$, which is the result.

Using the main result of the previous section we get the following:

Corollary 5.7. Let $\rho > 0$ and let μ be a probability measure with density e^{-V} and assume that $\nabla^2 V \geq \rho I_n$ pointwise. Then μ satisfies the following Poincaré inequality

$$\text{Var}_\mu(f) \leq \frac{1}{\rho} \int_{\mathbb{R}^n} |\nabla f|^2 \, d\mu.$$

5.4 Diffusions

We return to case of a general Markov process (X_t). We have seen how the Γ calculus allows to derive Poincaré. Now we want to do the same thing for log–Sobolev. Given a positive function f we let

$$\beta(s) = P_s(\phi(P_{t-s}f)),$$

where $\phi = x \log x$. Note that

$$\beta(t) - \beta(0) = P_t(\phi(f)) - \phi(P_t f)$$

evaluated at x is the entropy of f with respect to the measure $\delta_x P_t$. Setting $g = P_{t-s}f$ we easily get

$$\beta'(s) = P_s \left(L(\phi(g)) - \phi'(g)Lg \right).$$

If (X_t) is a Langevin semigroup, as in the previous section, we have

$$L\phi(g) = \Delta(\phi(g)) - \langle \nabla V, \nabla \phi(g) \rangle = \text{FIX ME} = \phi'(g)Lg + \phi''(g)|\nabla g|^2.$$

Bearing this example in mind, we say that the Markov (X_t) is a diffusion if the generator L satisfies

$$L(\phi(f)) = \phi'(f)Lf + \phi''(f)\Gamma(f),$$

for every f on M and every smooth $\phi : \mathbb{R} \to \mathbb{R}$. Typically, a diffusion is the solution of a stochastic differential equation driven by the Brownian motion. On the other hand, a typical example of a Markov that is not a diffusion is a process taking values on a discrete space, like the random walk on a graph.

For a diffusion we thus have

$$\beta'(s) = P_s(\phi''(g)\Gamma(g)),$$

which is equal to $\Gamma(g)/g$ when $\phi = x \log x$. The next step is to assume $\text{CD}(\rho, \infty)$ and to use the commutation property

$$\Gamma(g) = \Gamma(P_{t-s}f) \leq e^{-2\rho(t-s)} \Gamma(P_{t-s}f).$$

It turns out that for log-Sobolev, a stronger commutation is needed.

Proposition 5.8 (strong commutation). If (X_t) is a diffusion satisfying $\text{CD}(\rho, \infty)$ then we have

$$\sqrt{\Gamma P_t} \leq e^{-\rho t} P_t \left(\sqrt{\Gamma f} \right)$$

for every f and t.
5.5. THE LOG–SOBOLEV INEQUALITY FOR A DIFFUSION

Remark. This is called strong commutation because it implies the weak one immediately by Cauchy–Schwarz. However, at least for diffusions, both commutations are equivalent, since they are both equivalent to $CD(\rho, \infty)$.

Proof of Proposition 5.8. Fix $t > 0$ and let
\[\alpha(s) = P_s \left(\sqrt{\Gamma(P_{t-s}f)} \right). \]
If we can prove that $\alpha'(s) \geq \rho \alpha(s)$ for all s then we get $\alpha(t)e^{-\rho t} \geq \alpha(0)$ by Gronwall, which is the desired inequality. Setting $g = P_{t-s}f$ and using the diffusion property we easily get
\[\alpha'(s) = P_s \left(\Gamma(g)^{-1/2} \Gamma_2(g) - \frac{1}{4} g^{-3/2} IG g \right) \]
Therefore
\[\alpha'(s) - \rho \alpha(s) = P_s \left(\Gamma(g)^{-1/2} \left(\Gamma_2(g) - \rho \Gamma(g) - \frac{\Gamma(\Gamma(g))}{4 \Gamma(g)} \right) \right) \]
So it is enough to prove that $\Gamma_2(g) \geq \rho \Gamma(g) + \Gamma(\Gamma(g))/4 \Gamma(g)$ for all g. This is the purpose of the next lemma.

Lemma 5.9. For a diffusion satisfying $CD(\rho, \infty)$ we have
\[\Gamma_2(f) \geq \rho \Gamma(f) + \frac{\Gamma(\Gamma(f))}{4 \Gamma(f)}, \]
for all f.

Proof. Let us give the proof for a Langevin diffusion first. As we have seen in the previous section, if a Langevin diffusion satisfies $CD(\rho, \infty)$ then the potential V satisfies $\nabla^2 V \geq \rho I_n$. So we have
\[\Gamma_2(f) = \nabla^2 V(\nabla f, \nabla f) + \|\nabla^2 f\|_{HS}^2 \geq \rho |\nabla f|^2 + \|\nabla^2 f\|_{HS}^2. \]
Recall that $\Gamma(f) = |\nabla f|^2$ and observe that
\[\Gamma(\Gamma(f)) = |\nabla |\nabla f|^2|^2 = 4 |\nabla^2 f(\nabla f)|^2 \leq 4 \|\nabla^2 f\|_{op}^2 |\nabla f|^2 \leq 4 \|\nabla^2 f\|_{HS}^2 |\nabla f|^2. \]
Hence the result in this case. For a general diffusion, we have to proceed as follows... FIXME Change of variable for Γ_2, see Lemma 1.3 in Ledoux “The geometry of Markov diffusion generators”.

5.5 The log–Sobolev inequality for a diffusion

Let (X_t) be a diffusion, we assume that there is a stationary distribution μ which is ergodic. Let f be a positive function and let
\[\beta(s) = P_s(\Gamma(P_{t-s}f) \log(P_{t-s}g)), \]
We have seen that
\[\beta'(s) = P_s(\Gamma(P_{t-s}f)/P_{t-s}f). \]
Assuming $CD(\rho, \infty)$, using strong commutation, and applying Jensen’s inequality to the function $(u, v) \mapsto v^2/u$ we get
\[
\frac{\Gamma(P_{t-s}f)}{P_{t-s}f} \leq e^{-2\rho(t-s)} \frac{P_{t-s}(\sqrt{f})^2}{P_{t-s}f} \leq e^{-2\rho(t-s)} P_{t-s} \left(\frac{\Gamma(f)}{f} \right).
\]
Therefore
\[
\beta'(s) \leq e^{-2\rho(t-s)} P_t \left(\frac{\Gamma(f)}{f} \right).
\]
Integrating this between 0 and t we get
\[
P_t(f \log f) - P_tf \log(P_tf) \leq \frac{1}{2\rho} \int_M \frac{\Gamma(f)}{f} d\mu.
\]

If $\rho > 0$, letting t tend to $+\infty$ and using ergodicity, we obtain the following:

Theorem 5.10. If a diffusion satisfies $CD(\rho, \infty)$ for some positive ρ and has an ergodic stationary measure μ. Then μ satisfies the following logarithmic Sobolev inequality: For any positive f
\[
\text{Ent}_{\mu}(f) \leq \frac{1}{2\rho} \int_M \frac{\Gamma(f)}{f} d\mu.
\]

Remark. By the diffusion property $\Gamma(f) = 4f\Gamma(\sqrt{f}) = f\Gamma(f, \log f)$. So the right-hand side in the log–Sobolev inequality can be rewritten
\[
\int_M \frac{\Gamma(f)}{f} d\mu = E(f, \log f) = 4E(\sqrt{f}).
\]

Corollary 5.11. Let μ be a probability measure on \mathbb{R}^n of the form $d\mu = e^{-V} dx$. If the potential V satisfies $\nabla^2 V \geq \rho I_n$ for some positive ρ then μ satisfies the following log–Sobolev inequality: For any positive f we have
\[
\text{Ent}_{\mu}(f) \leq \frac{1}{2\rho} \int_{\mathbb{R}^n} \frac{|\nabla f|^2}{f} d\mu.
\]

The logarithmic Sobolev inequality is equivalent to an exponential decay of entropy.

Theorem 5.12. Let (X_t) be a diffusion admitting a stationary distribution μ. The following are equivalent:

1. μ satisfies log–Sobolev with constant C: For every positive f, we have
\[
\text{Ent}_{\mu}(f) \leq C E(f, \log f).
\]

2. For every positive f and every time t we have
\[
\text{Ent}_{\mu}(P_tf) \leq e^{-t/C} \text{Ent}_{\mu}(f).
\]

Proof. We have
\[
\frac{d}{dt} \text{Ent}_{\mu}(P_tf) = \int_M (LP_tf)(\log(P_tf) + 1) d\mu = \int_M (LP_tf) \log(P_tf) d\mu.
\]
We claim that
\[
\int_M (Lg) \log g d\mu = -E(g, \log g),
\]
5.5. THE LOG–SOBOLEV INEQUALITY FOR A DIFFUSION

for all \(g \). Indeed, by stationarity

\[
-\mathcal{E}(g, \log g) = \frac{1}{2} \int_M (Lg) \log g \, d\mu + \frac{1}{2} \int_M g(L \log g) \, d\mu.
\]

Now by the diffusion property \(L \log g = g^{-1} Lg - g^{-2} \Gamma(g) \). Therefore, and using stationarity again,

\[
\int_M g(L \log g) \, d\mu = -\int_M \frac{\Gamma(g)}{g} \, d\mu = -\mathcal{E}(g, \log g),
\]

hence the claim. As a result we get

\[
\frac{d}{dt} \text{Ent}_\mu(P_t f) = -\mathcal{E}(P_t f, \log P_t f).
\]

The equivalence is then clear: use Gronwall for one direction and differentiate at \(t = 0 \) for the other.

As we have seen in the case of the Ornstein–Uhlenbeck semigroup the log-Sobolev inequality is related to hypercontractivity.

Theorem 5.13. For a diffusion admitting a stationary distribution \(\mu \), the following are equivalent:

1. \(\mu \) satisfies the logarithmic Sobolev inequality with constant \(C \);

2. For every \(p > 1 \), for every \(f \in L^p(\mu) \) and every \(t > 0 \) we have

\[
\|P_t f\|_{L^p(\mu)} \leq \|f\|_{L^p(\mu)},
\]

where \(p(t) = 1 + p(e^{t/C} - 1) \).

Proof. Let \(f > 0 \), let \(p > 1 \) and let \(p_t = 1 + p(e^{t/C} - 1) \). A careful computation shows that

\[
\frac{d}{dt} \|P_t f\|_{p(t)} = \left((\int_M f^p \, d\mu)^{1/p-1} \left(\frac{p'}{p^2} \text{Ent}_\mu(f^p) + \int_M (Lf)^{p-1} \, d\mu\right)\right),
\]

where \(f = P_t f \) and \(p = p(t) \) in the right-hand side. Set \(g = f^{p/2} \). By the diffusion property

\[
Lf = L(g^{2/p}) = \frac{2}{p} g^{2/p-1} Lg + \frac{2}{p} \left(\frac{2}{p} - 1\right) g^{2/p-2} \Gamma(g).
\]

Thus

\[
\int_M (Lf)^{p-1} \, d\mu = \frac{2}{p} \int_M g(Lg) \, d\mu + \frac{2}{p} \left(\frac{2}{p} - 1\right) \int_M \Gamma(g) \, d\mu
= -\frac{4(p-1)}{p^2} \mathcal{E}(g).
\]

So \(\frac{d}{dt} \|P_t f\|_{p(t)} \) has the same sign as

\[
p'(t) \text{Ent}_\mu(g^2) - 4(p-1) \mathcal{E}(g)
\]

where \(g = (P_t f)^{p/2} \). The equivalence is then straightforward. \(\square \)
Example (Gaussian Unitary Ensemble). Let H be a random $N \times N$ Hermitian matrix with density proportional to $e^{-N \text{Tr}(H^2)}$. It can be shown, by a change of variable, that the vector of eigenvalues (x_1, \ldots, x_N) has density in \mathbb{R}^N proportional to

$$e^{-N \sum_{k=1}^{N} x_k^2} \prod_{i<j} (x_i - x_j)^2.$$

If we order the eigenvalues in such a way that say $x_1 \leq \cdots \leq x_N$ then this law μ has density $e^{-H(x_1, \ldots, x_N)}$ and $H(x_1, \ldots, x_N) = N \sum_{k=1}^{N} x_k^2 + \sum_{i<j} -\log(x_j - x_i)$.

We have then $\nabla^2 H \geq N$ and therefore, by the Bakry-Émery theory, the probability measure μ satisfies a Poincaré inequality in \mathbb{R}^N with constant $1/N$ and a logarithmic Sobolev inequality with constant $2/N$. This fact is used in [15] for proving local universality. Note that in the Poincaré inequality with constant $1/N$, equality is achieved with $f(x_1, \ldots, x_N) = x_1 + \cdots + x_N$, showing that the constant $1/N$ is optimal.

Example (Ginibre Ensemble). Let M be a random $N \times N$ matrix with density proportional to $e^{-N \text{Tr}(MM^*)}$ (same as GUE but without Hermitianity). It can be shown, by a change of variable, that the vector of eigenvalues (x_1, \ldots, x_N) has density in \mathbb{C}^N proportional to

$$e^{-N \sum_{k=1}^{N} |x_k|^2} \prod_{i<j} |x_i - x_j|^2.$$

In contrast with the GUE, this probability measure is not log-concave, regardless of the way we number the eigenvalues. Nevertheless, it can be shown that μ satisfies a Poincaré inequality, but the dependency over N of the constant is not perfectly known.
Chapter 6

Brenier and Caffarelli theorems

In this section we give an alternate proof of the results of the previous section based on optimal transport techniques. Let $T : \mathbb{R}^n \rightarrow \mathbb{R}^n$ and μ be a probability measure on \mathbb{R}^n. The pushforward of μ by T is the measure ν given by

$$\nu(A) = \mu(T^{-1}(A)),$$

for every Borel subset A of \mathbb{R}^n. In other words ν is the law of $T(X)$ where X is a random vector having law μ. We thus have

$$\int_{\mathbb{R}^n} h \, d\nu = \int_{\mathbb{R}^n} h \circ T \, d\mu$$

for every test function h.

6.1 Brenier theorem

Theorem 6.1 (Brenier). Let μ, ν be two probability measures on \mathbb{R}^n. If μ is absolutely continuous with respect to the Lebesgue measure then there exists a convex function ϕ whose gradient pushes forward μ to ν.

Remarks. By Rademacher’s theorem a convex function is differentiable almost everywhere in its domain. So if μ is absolutely continuous and if the support of μ is contained in the domain of ϕ then $\nabla \phi$ makes sense almost everywhere for μ. One can also show that the Brenier map $\nabla \phi$ is essentially unique. If ψ is another convex function whose gradient pushes μ to ν then $\nabla \phi = \nabla \psi$ almost everywhere.

In dimension 1, Brenier’s theorem is easy to prove. Let $F(x) = \mu((\neg \infty, x])$ be the distribution function of μ and let G be that of μ. The function $F^{-1} \circ G$ is non-decreasing.

Let us discuss the regularity of the Brenier map $\nabla \phi$. Clearly $\nabla \phi$ need not be continuous. For instance if μ is uniform on $[0, 1]$ and ν is uniform on $[0, 1/2] \cup [3/2, 2]$ then the Brenier map must be the identity on $[0, 1/2]$ and identity plus 1 on $[1/2, 1]$. It turns out that the correct hypothesis for the regularity of the Brenier map is convexity of the support of the target measure. We state below a theorem that follows from the work of Caffarelli.

Theorem 6.2. Assume that μ and ν are absolutely continuous, that their respective supports K and L are convex, and that their respective densities f, g are bounded away from 0 and $+\infty$ on K and L respectively. Then the Brenier map $\nabla \phi$ is an homeomorphism between the interior of K and that of L. Moreover if f and g are continuous then $\nabla \phi$ is a C^1–diffeomorphism.
Remark. Note that the inverse of $\nabla \phi$ is the Brenier map between ν and μ. Indeed we have $(\nabla \phi)^{-1} = \nabla \phi^*$ where

$$\phi^*(y) = \sup_x \{ \langle x, y \rangle - \phi(x) \}$$

is the Legendre transform of ϕ. So $(\nabla \phi)^{-1}$ is also the gradient of a convex function.

6.2 Caffarelli contraction theorem

When $\nabla \phi$ is a C^1–diffeomorphism we can apply the change of variable formula. For every test function h

$$\int_L h(y)g(y)\,dy = \int_K h(\nabla \phi(x)) \, g(\nabla \phi(x)) \, \det(\nabla^2 \phi(x)) \, dx.$$

On the other hand, by definition of the Brenier map

$$\int_L h(y)g(y)\,dy = \int_{\mathbb{R}^n} h\,d\nu = \int_{\mathbb{R}^n} h \circ \nabla \phi \, d\mu = \int_K h(\nabla \phi(x)) \, f(x) \, dx.$$

Since this is valid for every test function h we obtain the following equality

$$g(\nabla \phi(x)) \, \det(\nabla^2 \phi(x)) = f(x), \quad (6.1)$$

for every x in the interior of K. This is called Monge–Ampère equation. Here is the main result of this section.

Theorem 6.3 (Caffarelli’s contraction theorem). Let $\alpha, \beta > 0$, let μ, ν be two probability measures on \mathbb{R}^n of the form

$$d\mu = e^{-V} \, dx, \quad d\nu = e^{-W} \, dx,$$

and assume that the potentials V and W are smooth and satisfy

$$\nabla^2 V \leq \alpha I_n, \quad \nabla^2 W \geq \beta I_n,$$

pointwise on \mathbb{R}^n. Then the Brenier map $\nabla \phi$ between μ and ν is Lipschitz with constant $\sqrt{\alpha/\beta}$.

Proof. We will only give a formal proof of the result. Observe first that the Lipschitz constant of $\nabla \phi$ is the supremum of the operator norm of $\nabla^2 \phi$. So it is enough to prove $\|\nabla^2 \phi(x)\|_{\text{op}} \leq \sqrt{\alpha/\beta}$ for every x. Besides since ϕ is convex $\nabla^2 \phi$ is a positive matrix so this amounts to proving that $\langle \nabla^2 \phi(x)u, u \rangle \leq 1$ for every unit vector u and every $x \in \mathbb{R}^n$.

Now we fix a direction u and we assume that the map

$$\ell: x \mapsto \langle \nabla^2 \phi(x)u, u \rangle$$

attains its maximum at some point $x_0 \in \mathbb{R}^n$. Taking the logarithm of the Monge–Ampère equation (6.1) we obtain in this case

$$\log \det \left(\nabla^2 \phi(x) \right) = -V(x) + W(\nabla \phi(x)).$$

Now we want to differentiate this equation twice in the direction u. To differentiate the left hand side, observe that if A is an invertible matrix

$$\log \det(A + H) = \log \det(A) + \text{tr}(A^{-1}H) + o(H);$$

$$(A + H)^{-1} = A^{-1} - A^{-1}HA^{-1} + o(H).$$
We obtain (omitting variables)
\[
- \text{tr} \left((\nabla^2 \phi)^{-1} (\partial_u \nabla^2 \phi) (\nabla^2 \phi)^{-1} (\partial_u \nabla^2 \phi) \right) + \text{tr} \left((\nabla^2 \phi)^{-1} \partial_{uu} \nabla^2 \phi \right) \\
= -\partial_{uu} V + \sum_i \partial_i W \partial_{iuu} \phi + \sum_{ij} \partial_{ij} W \partial_{iu} \phi \partial_{ju} \phi.
\] (6.2)

We shall use this equation at \(x_0 \). We claim that
\[
\text{tr} \left((\nabla^2 \phi)^{-1} (\partial_u \nabla^2 \phi) (\nabla^2 \phi)^{-1} (\partial_u \nabla^2 \phi) \right) \geq 0.
\]
Indeed, the matrix \(\nabla^2 \phi \) is positive so its inverse is also positive and since \(\partial_u \nabla^2 \phi \) is symmetric, we obtain
\[
(\partial_u \nabla^2 \phi) (\nabla^2 \phi)^{-1} (\partial_u \nabla^2 \phi) \geq 0.
\]
Since the product of two positive matrices has positive trace we get the claim. Since function \(\ell \) attains its maximum at \(x_0 \) we have \(\nabla^2 \ell(x_0) \leq 0 \). Therefore
\[
\text{tr} \left((\nabla^2 \phi)^{-1} \partial_{uu} \nabla^2 \phi \right) = \text{tr} \left((\nabla^2 \phi)^{-1} \nabla^2 \ell \right) \leq 0.
\]
In the same way
\[
\sum_i \partial_i W \partial_{iuu} \phi = \langle \nabla W, \nabla \ell \rangle = 0.
\]
So at point \(x_0 \), equality (6.2) gives
\[
\sum_{ij} \partial_{ij} W \partial_{iu} \phi \partial_{ju} \phi \leq \partial_{uu} V.
\]
Now the hypothesis made on \(V \) and \(W \) give \(\partial_{uu} V \leq \alpha \) and
\[
\sum_{ij} \partial_{ij} W \partial_{iu} \phi \partial_{ju} \phi \geq \beta \sum_i (\partial_{iu} \phi)^2 = \beta |\nabla^2 \phi(u)|^2.
\]
Since \(u \) has norm 1, we get
\[
\ell(x_0) = \langle \nabla^2 \phi(x_0) u, u \rangle \leq |\nabla^2 \phi(x_0)(u)| \leq \frac{\alpha}{\sqrt{\beta}}.
\]
Therefore \(\ell(x) \leq \sqrt{\alpha/\beta} \) for every \(x \) which is the desired inequality. \(\square \)

Now we give an example of an application of the previous result. Let \(\gamma_n \) be the standard Gaussian measure and let \(\mu \) be a probability measure satisfying \(d\mu = e^{-V} dx \) with \(\nabla^2 V \geq \rho I_n \) for some positive \(\rho \). According to Caffarelli’s contraction theorem the Brenier map between \(\gamma_n \) and \(\mu \) is Lipschitz with constant \(\sqrt{\rho} \). Let us derive the Poincaré inequality for \(\mu \). Let \(\nabla \phi \) be the Brenier map from \(\gamma_n \) to \(\mu \). Since \(\nabla \phi \) pushes forward \(\gamma_n \) to \(\mu \)
\[
\int_{\mathbb{R}^n} f \, d\mu = \int_{\mathbb{R}^n} f \circ \nabla \phi \, d\gamma_n
\]
for every test function \(f \). The same holds for \(f^2 \) and we get
\[
\text{Var}_\mu(f) = \text{Var}_{\gamma_n}(f \circ \nabla \phi).
\]
Applying Poincaré inequality for the Gaussian measure we get
\[
\text{Var}_{\gamma_n}(f \circ \nabla \phi) \leq \int_{\mathbb{R}^n} |\nabla(f \circ \nabla \phi)|^2 \, d\gamma_n.
\]
Now since $\nabla \phi$ is Lipschitz with constant $\sqrt{1/\rho}$

$$|\nabla (f \circ \nabla \phi)|^2 = |\nabla^2 \phi (\nabla f \circ \nabla \phi)|^2 \leq \|\nabla^2 \phi\|_{C^1} |\nabla f \circ \nabla \phi|^2 \leq \frac{1}{\rho} |\nabla f \circ \nabla \phi|^2.$$

Therefore

$$\int_{\mathbb{R}^n} |\nabla (f \circ \nabla \phi)|^2 d\gamma_n \leq \frac{1}{\rho} \int_{\mathbb{R}^n} |\nabla f \circ \nabla \phi|^2 d\gamma_n = \frac{1}{\rho} \int_{\mathbb{R}^n} |\nabla f|^2 d\mu.$$

So μ satisfies Poincaré with constant $1/\rho$. A very similar argument shows that μ satisfies log-Sobolev with constant $1/(2\rho)$.

To sum up, we have seen in this section that a measure having a uniformly convex potential is a Lipschitz image of the Gaussian measure. Since the pushforward by a Lipschitz map preserves log-Sobolev and Poincaré this shows that such a measure satisfies log-Sobolev and Poincaré.
Chapter 7

Discrete space

7.1 Bernoulli distributions

For any \(p \in (0, 1) \), we consider the Bernoulli probability measure

\[
\text{Ber}(p) := p\delta_1 + q\delta_0
\]
on the two-points space \(\{0, 1\} \), with \(q := 1 - p \). For any \(f : \{0, 1\} \to \mathbb{R} \) we define

\[
(Df)(x) = f(x + 1) - f(x)
\]
where \(1 + 1 = 0 \) on \(\{0, 1\} = \mathbb{Z}/2\mathbb{Z} \), and thus \((Df)(1) = -(Df)(0) = f(1) - f(0) \). In this way \(D \) is a forward difference operator on the discrete circle \(\mathbb{Z}/2\mathbb{Z} = \{0, 1\} \).

Theorem 7.1 (Poincaré equality for Bernoulli laws). For any \(f : \{0, 1\} \to \mathbb{R} \),

\[
\text{Var}_{\text{Ber}(p)}(f) = pq\mathbb{E}_{\text{Ber}(p)}((Df)^2)
\]

(7.1)

Proof. For every \(f : \{0, 1\} \to \mathbb{R} \), the function \((Df)^2 : \{0, 1\} \to \mathbb{R} \) is constant and equal to \((f(1) - f(0))^2 \). The result follows since \(\text{Var}_{\text{Ber}(p)}f = pq(f(1) - f(0))^2 \). \(\square \)

Theorem 7.2 (Logarithmic Sobolev inequality for Bernoulli laws). For any \(f : \{0, 1\} \to \mathbb{R} \),

\[
\text{Ent}_{\text{Ber}(p)}(f^2) \leq c_p pq\mathbb{E}_{\text{Ber}(p)}((Df)^2)
\]

(7.2)

where

\[
c_p := \begin{cases}
\frac{\log(q) - \log(p)}{q - p} & \text{if } p \neq 1/2, \\
2 & \text{if } p = 1/2.
\end{cases}
\]

Moreover, equality is achieved when \(pf(1) = qf(0) \).

Proof. By scaling we can assume that \(f(0) = 1 \). Set \((f(0)^2, f(1)^2) = (1, u^2)\). If \(p = q = 1/2 \), the desired result is nothing else but the following valid bound

\[
\frac{u^2}{2} \log(u^2) - (1 + u^2) \log \frac{1 + u^2}{2} \leq (u - 1)^2, \quad u \geq 0.
\]
This is actually equivalent to what we did slightly differently for the CLT proof of the logarithmic Sobolev inequality for the Gauss distribution.

Suppose now that \(p \neq q \). By symmetry we can assume that say \(p < q \). Moreover, since \(|D[f]| \leq |Df| \), we can further assume that \(f \geq 0 \). Now set

\[
\psi(u) := \text{Ent}_{\text{Ber}(p)}(f^2) = pu^2 \log(u^2) - (q + pu^2) \log(q + pu^2), \quad u \geq 0.
\]

Our objective is to compute \(c := \sup_{u \geq 0} (u-1)^{-2} \psi(u) \). The critical values of \(u \) are solutions of \((u-1)\psi'(u) = 2\psi(u)\), and \(q/p \) is a critical value. Now elementary computations reveal that \(\psi(1) = \psi'(1) = 0 \), that \(\psi \) is convex, and that \(\psi'' \) achieves its maximum when \(u = q/p \).

An elementary study shows that \(c \) is finite, and is achieved for a unique value of \(u \) which belongs to \((0,1) \cup (1,\infty)\), which is thus necessarily the critical value \(q/p \), which gives \(c = (q/p - 1)^{-2} \psi(q/p) \).

The bound \(|D[f]| \leq |Df| \) allows to reduce the logarithmic Sobolev inequality to the case where \(f \) is non-negative, in other words that for all \(f : \{0,1\} \to [0,\infty) \),

\[
\text{Ent}_{\text{Ber}(p)}(f) \leq \frac{\log(q) - \log(p)}{q-p} pq\text{Ent}_{\text{Ber}(p)}((D\sqrt{f})^2).
\]

This is an \(L^1 \) version of the logarithmic Sobolev inequality. The following theorem provides many other \(L^1 \) inequalities, which are not equivalent due to the lack of chain rule \(\nabla \alpha(f) = \alpha'(f) \nabla f \) for the discrete gradient \(D \). Namely, what is lacking here is the following, valid for any smooth \(f : \mathbb{R}^n \to \mathbb{R} \):

\[
4(\nabla \sqrt{f})^2 = \frac{|
abla f|^2}{f} = \langle \nabla f, \log(f) \rangle. \tag{7.3}
\]

For any \(u,v \in \mathbb{R} \) with \(u \geq 0 \) and \(u + v \geq 0 \), define \(\phi(u) := u \log(u) \) and

\[
A(u,v) := \phi(u + v) - \phi(u) - \phi'(u)v, \\
B(u,v) := (\phi'(u + v) - \phi'(u))v, \\
C(u,v) := \phi''(u)v^2.
\]

Then it turns out that \(A, B, C \) are non-negative and convex, and

\[
A(u,v) = (u + v)(\log(u + v) - \log(u)) - v, \\
B(u,v) = (\log(u + v) - \log(u))v, \\
C(u,v) = \frac{v^2}{u}.
\]

Moreover for any \(u \in [0,\infty) \) and \(v \in \mathbb{R} \) with \(u + v \in [0,\infty) \),

\[
A(u,v) \leq B(u,v) \quad \text{and} \quad A(u,v) \leq C(u,v). \tag{7.4}
\]

Note that \(B(u,v) \leq C(u,v) \) if \(v \geq 0 \). Furthermore for any function \(f > 0 \),

\[
A(f, Df) = (f + Df)D \log(f) - Df, \\
B(f, Df) = DfD \log(f), \tag{7.5}
\]

\[
C(f, Df) = \frac{(Df)^2}{f}.
\]

The following theorem states that these three expressions can serve as a right hand side of an entropic inequality called “modified logarithmic Sobolev inequalities”.
Theorem 7.3 (Modified logarithmic Sobolev inequalities for Bernoulli laws). Let A, B, C be as in (7.4). Then for any $f : \{0, 1\} \rightarrow (0, \infty)$,
\[
\Ent_{\Ber(p)}(f) \leq pq\Ent_{\Ber(p)}(A(f, Df)),
\]
and in particular
\[
\Ent_{\Ber(p)}(f) \leq pq\Ent_{\Ber(p)}(B(f, Df)),
\]
and
\[
\Ent_{\Ber(p)}(f) \leq pq\Ent_{\Ber(p)}(C(f, Df)).
\]

Proof. First by using the comparisons (7.4) and the formulas (7.5), we deduce immediately (7.7) and (7.8) from (7.6). Next, to prove (7.6), fix f and define
\[
U : [0, 1] \rightarrow \mathbb{R} \quad \text{by} \quad U(p) := \Ent_{\Ber(p)}f - pq\Ent_{\Ber(p)}(A(f, Df))
\]
Set $(a, b) := (f(0), f(1))$. We have
\[
U(p) = q\phi(a) + p\phi(b) - \phi(qa + pb) - pq(qA(f, Df)(0) + pA(f, Df)(1))
\]
where $\phi(x) := x \log(x)$. We use an argument due to Sergey Bobkov, see [20]. It suffices to show that $U \leq 0$ on $[0, 1]$. To kill the polynomial terms (with respect to p) in $U(p)$, let us compute the fourth derivative of U with respect to p, namely
\[
U''''(p) = -(b - a)^4 \phi''''(qa + pb).
\]
Since ϕ'' is convex, we have $U'''' \leq 0$ on $(0, 1)$ and thus U'' is concave. Consequently, there exists $0 \leq p_0 \leq p_1 \leq 1$ such that $U'' \leq 0$ on $[0, p_0] \cup [p_1, 1]$ and $U'' \geq 0$ on $[p_0, p_1]$. Hence, U is concave on $[0, p_0]$. But $U(0) = 0$ and $U'(0) \leq 0$, et thus $U \leq 0$ on $[0, p_0]$ by concavity. It follows that $U(p_0) \leq 0$. By symmetry $U \leq 0$ on $[p_1, 1]$ and $U(p_1) \leq 0$. Now since U is convex on $[p_0, p_1]$ and negative at the boundaries, it is also negative on $[p_0, p_1]$. It follows that $U \leq 0$ on $[0, 1]$, and (7.6) is proved. Actually the proof works also for (7.7) and (7.8). \hfill \Box

7.2 Poisson distributions

For any real parameter $\lambda \geq 0$, the Poisson probability measure of parameter λ is
\[
\Poi(\lambda) := e^{-\lambda} \sum_{n=0}^{\infty} \frac{\lambda^n}{n!} \delta_n.
\]
Let D be the finite difference operator defined for any $f : \mathbb{N} \rightarrow \mathbb{R}$ by
\[
(Df)(n) := f(n+1) - f(n), \quad n \in \mathbb{N}.
\]

Theorem 7.4 (Poincaré inequality for Poisson laws). For any $f : \mathbb{N} \rightarrow \mathbb{R}$,
\[
\Var_{\Poi(\lambda)}(f) \leq \lambda \E_{\Poi(\lambda)}((Df)^2). \tag{7.9}
\]
Equality is achieved when f is affine and the constant λ is thus optimal.
Proof. We may assume that \(f \) is bounded by using a cutoff. Fix a bounded \(f : \mathbb{N} \to \mathbb{R} \). Define \(s_n : \{0,1\}^n \to \mathbb{N} \) by \(s_n(x) := x_1 + \cdots + x_n, x \in \{0,1\}^n \). Set \(F_n := f \circ s_n : \{0,1\}^n \to \mathbb{R} \). Using the Poincaré equality (7.1) and the tensorization inequality (1.10) for the product \(\{0,1\}^n, \text{Ber}(p)^{\otimes n} \), we get
\[
\text{Var}_{\text{Ber}(p)^{\otimes n}}(F) \leq p(1-p)\mathbb{E}_{\text{Ber}(p)^{\otimes n}}\left(\sum_{i=1}^{n} (D_i F)^2 \right)
\]
where \(D_i \) is the binary operator \(D \) acting on the \(i \)-th coordinate. Now \(s_n(x) \) and \(n - s_n(x) \) count the number of 1’s and 0’s in \(x \in \{0,1\}^n \), and it follows then that
\[
\sum_{i=1}^{n} (D_i F_n)^2(x) = (n - s_n(x))(Df)^2(s_n(x)) + s_n(x)(D^* f)^2(s_n(x)), \quad x \in \{0,1\}^n,
\]
where \(D^* \) is the backward difference operator defined by
\[
(D^* f)(s) := f(s - 1) - f(s), \quad s \in \mathbb{N} \setminus \{0\}.
\]
Now the law of \(s_n \) under \(\text{Ber}(p)^{\otimes n} \) is the binomial law
\[
\text{Bin}(n,p) = \sum_{k=0}^{n} \binom{n}{k} p^k q^{n-k} \delta_k.
\]
Therefore, setting \(G(s) := -s(Df)^2(s) + s(D^* f)^2(s) \), we get, with \(S_n \sim \text{Bin}(n,p) \),
\[
\text{Var}(F(S_n)) \leq np(1-p)\mathbb{E}((Df)^2(S_n)) + p(1-p)\mathbb{E}(G(S_n)).
\]
Set \(p = p_n \) such that \(\lim_{n \to \infty} np_n = \lambda \), for example take \(p_n = \lambda/n \). Then \(np_n(1-p_n) \to \lambda \), \(p_n(1-p_n) \to 0 \), and the law of small numbers states that
\[
\lim_{n \to \infty} \text{Bin}(n,p_n) = \text{Poi}(\lambda)
\]
at least in the sense of weak convergence with respect to Lipschitz test functions \(\mathbb{N} \to \mathbb{R} \).
Now \(G \) is Lipschitz since \(f \) is bounded and we get, with \(S_\infty \sim \text{Poi}(\lambda) \),
\[
\text{Var}(f(S_\infty)) \leq \lambda \mathbb{E}((Df)^2(S_\infty)).
\]

\[\square\]

Let us say that the tail of a probability measure \(\mu \) on \(\mathbb{N} \) is sub-exponential (respectively sub-Gaussian) when for \(X \sim \mu \), some constants \(c, C > 0 \), and any \(r \geq 0 \), we have \(\mathbb{P}(X \geq r) \leq Ce^{-cr} \) (respectively \(\mathbb{P}(X \geq r) \leq Ce^{-cr^2} \)). It turns out that the tail of a Poisson law is sub-exponential but is not sub-Gaussian.

Lemma 7.5 (Poisson tail). For any \(\lambda > 0 \), there exists explicit affine functions \(\ell_{\pm} : \mathbb{N} \to \mathbb{R} \) such that if \(X \sim \text{Poi}(\lambda) \) then for any \(r \in \mathbb{N} \),
\[
e^{-r \ell_{\pm}(r)} \leq \mathbb{P}(X \geq r) \leq e^{-r \ell_{\pm}(r)}.
\]

Proof. If \(X \sim \text{Poi}(\lambda) \) with \(\lambda > 0 \), then for any \(r \in \mathbb{N} \),
\[
\mathbb{P}(X \geq r) = e^{-\lambda} \sum_{k=r}^{\infty} \frac{\lambda^k}{k!} \leq e^{-\lambda} \sum_{k=r}^{\infty} \frac{\lambda^k}{(k-r)!} = \frac{\lambda^r}{r!},
\]
and it remains to use the Stirling bound $\sqrt{2\pi r^{r+\frac{1}{2}}}e^{-r} \leq r! \leq er^{r+\frac{1}{2}}e^{-r}$.

Note that the Poisson tail can be remarkably expressed with the incomplete Gamma function, namely, integration by parts gives, for any integer $r \geq 1$,

$$P(X \geq r) = \frac{1}{(r-1)!} \int_0^\lambda t^{r-1}e^{-t} \, dt,$$

which allows an asymptotic expansion as $r \to \infty$ via the Laplace method.

The Poisson tail is incompatible with a logarithmic Sobolev inequality.

Theorem 7.6 (Lack of logarithmic Sobolev inequality for Poisson laws). For any $\lambda > 0$, the Poisson law $\text{Poi}(\lambda)$ does not satisfy to a logarithmic Sobolev inequality: there is not any constant $c > 0$ such that for any bounded $f : \mathbb{N} \to \mathbb{R}$,

$$\text{Ent}_{\text{Poi}(\lambda)}(f^2) \leq c \mathbb{E}_{\text{Poi}(\lambda)}((Df)^2).$$

Proof. We proceed by contradiction. Suppose that the logarithmic Sobolev inequality holds for some $c > 0$. Then, for any $r \in \mathbb{N}$, this inequality used with the indicator $f = 1_{A_r}$ of the infinite set $A_r := \{r + 1, \ldots\} = \mathbb{N} \cap (r, \infty)$ yields

$$-P(X > r) \log P(X > r) \leq cP(X = r),$$

an inequality which contradicts the finiteness of c when $r \to \infty$.

Alternatively, we can use the Herbst argument in order to deduce from the logarithmic Sobolev inequality that the tail is sub-Gaussian. The lack of chain rule for the discrete gradient D can be circumvented as in the proof of Theorem 7.8. In contrast, the Poincaré inequality (7.9) implies via the Herbst argument a sub-exponential tail, which is fairly compatible with the Poisson law.

Theorem 7.7 (Modified logarithmic Sobolev inequalities for Poisson laws). Let A, B, C be as in (7.5). For any $f : \mathbb{N} \to (0, \infty)$,

$$\text{Ent}_{\text{Poi}(\lambda)}(f^2) \leq \lambda \mathbb{E}_{\text{Poi}(\lambda)}(A(f, Df)), \quad (7.10)$$

and in particular

$$\text{Ent}_{\text{Poi}(\lambda)}(f^2) \leq \lambda \mathbb{E}_{\text{Poi}(\lambda)}(B(f, Df)), \quad (7.11)$$

and

$$\text{Ent}_{\text{Poi}(\lambda)}(f^2) \leq \lambda \mathbb{E}_{\text{Poi}(\lambda)}(C(f, Df)). \quad (7.12)$$

Equality is achieved in (7.11) and in (7.12) when $f(n) = e^{-\alpha n}$, $n \in \mathbb{N}$, in the limit as $\alpha \to 0$. The constant λ is thus optimal, in other words minimal.

The ratio between the optimal constants in (7.10) or (7.12) and in (7.9) is 1 and not 2. This fact is related to the absence of the chain rule on \mathbb{N}.

Proof. It suffices to proceed as in the proof of the Poincaré inequality (7.9).}

Remark (From Poisson to Gauss laws). By using the stability by convolution of Poisson laws and the central limit theorem for i.i.d. Poisson random variables, it is possible to deduce the optimal Poincaré inequality for the Gauss law on \mathbb{R} from the Poincaré inequality (7.9) for Poisson laws. The same method allows to deduce the optimal logarithmic Sobolev inequality for the Gauss measure, in its L^1 form, from the modified logarithmic Sobolev inequality (7.10) for Poisson laws. However, the same method used with the modified logarithmic Sobolev inequality (7.11) or (7.12) leads to a logarithmic Sobolev inequality for the Gauss law on \mathbb{R} with a constant equal to twice the optimal one. This is due to the fact that the comparisons (7.4) are not optimal, by a factor of 2, when $v \to 0$.

7.2.1 Poisson process and A modified inequality

Let us show that we can prove the modified entropic inequality (7.10) using semigroup interpolation. Let $X = (X_t)_{t \geq 0}$ be a simple Poisson process with intensity $\lambda > 0$. It is of course a Lévy process on \mathbb{R}, but prefer to see it here as a continuous time Markov chain on \mathbb{N}. Let $P = (P_t)_{t \geq 0}$ be its Markov semigroup. Here X and P play for the Poisson law the role played for the Gauss law by Brownian motion and the heat semigroup. For any $t \geq 0$ and $x \in \mathbb{N}$ we have

$$\operatorname{Law}(X_t \mid X_0 = x) = \delta_x * \text{Poi}(\lambda t) = e^{-\lambda t} \sum_{n=0}^{\infty} \frac{(\lambda t)^n}{n!} \delta_{x+n}$$

and $P_t(f)(x) = \mathbb{E}(f(X_t) \mid X_0 = x) = \mathbb{E}(f(x + X_t))$ with $X_t \sim \text{Poi}(\lambda t)$. The infinitesimal generator of P is given, for $f : \mathbb{N} \to \mathbb{R}$ and $x \in \mathbb{N}$, by

$$(Lf)(x) = \partial_{t=0} P_t(f)(x) = \lambda((f(x + 1) - f(x)) = \lambda(Df)(x).$$

We have $LP_t = P_t L$. It can be check that we have the commutation formulas

$$DL = LD \quad \text{and} \quad DP_t(f) = P_t(Df).$$

Now for any bounded $f : \mathbb{N} \to (0, \infty)$ we have, with $\phi(u) := u \log(u)$,

$$\operatorname{Ent}_{\text{Poi}(\lambda)}(f) = P_t(\phi(f)) - \phi(P_t(f)) = \int_0^t \partial_s(P_s(\phi(P_{t-s}f)))ds.$$

Setting $g := P_{t-s}f$ we get, using the function A as in (7.5),

$$\partial_s(P_s(\phi(P_{t-s}f))) = P_s(L\phi(g)) - \phi'(g)P_s(Lg) = \lambda P_s(A(g, Dg)).$$

Hence the semigroup interpolation leads to the A function, and not to B or C. Using the commutation $Dg = P_{t-s}(Df)$, the Jensen inequality for the convex function A and the probability measure $P_{t-s}(\cdot)$, and the semigroup property,

$$P_t(A(g, Dg)) = P_t(A(P_{t-s}f, P_{t-s}(Df))) \leq P_t(P_{t-s}(A(f, Df))) = P_t(A(f, Df)).$$

This gives finally the A-based modified logarithmic Sobolev inequality

$$\operatorname{Ent}_{\text{Poi}(\lambda)}(f) \leq \lambda t \operatorname{Ent}_{\text{Poi}(\lambda)}(A(f, Df)).$$

The lack of chain rule in discrete space produces a lack of diffusion property, which is circumvented here by using convexity and the Jensen inequality.

This A-based modified logarithmic Sobolev inequality can be generalized far beyond \mathbb{N} to general Poisson point processes by using suitable tools and concepts from stochastic calculus. These ideas are explored by Luming Wu in [25].

7.2.2 $M/M/\infty$ queue and B modified inequality

Let us show that we can prove the modified entropic inequality (7.11) using semigroup interpolation. Let $X = (X_t)_{t \geq 0}$ be the $M/M/\infty$ queuing process with intensities $\lambda > 0$ and $\mu > 0$. It is a continuous time Markov chain on \mathbb{N}. Let $P = (P_t)_{t \geq 0}$ be its Markov semigroup. Set $\rho := \lambda / \mu$. Here X and P play for the Poisson law $\pi_{\rho} := \text{Poi}(\rho)$ the role played for the Gauss law by the Ornstein–Uhlenbeck process and its semigroup. For any
7.2. POISSON DISTRIBUTIONS

$t \geq 0$ and $x \in \mathbb{N}$ we have the following discrete and Poisson-Binomial analogue of the Mehler formula

$$\text{Law}(X_t \mid X_0 = x) = \text{Bin}(x, e^{-\mu t}) \ast \text{Poi}(\rho(1 - e^{-\mu t})).$$

In particular this shows that the Poisson law π_ρ is stationary in the sense that $\text{Law}(X_t \mid X_0 = x) \rightarrow \pi_\rho$ weakly, as $t \rightarrow \infty$, for any $x \in \mathbb{N}$, and also invariant in the sense that if $X_0 \sim \text{Poi}(\rho)$ then $X_t \sim \text{Poi}(\rho)$ for any $t \geq 0$. The invariance can be written as $\mathbb{E}_{\pi_\rho}(P_t f) = \mathbb{E}_{\pi_\rho}(f)$ for any bounded $f : \mathbb{N} \rightarrow \mathbb{R}$ and any $t \geq 0$.

The infinitesimal generator of P is given, for $f : \mathbb{N} \rightarrow \mathbb{R}$ and $x \in \mathbb{N}$, by

$$(L f)(x) = \partial_{t=0} P_t f(x)$$

$$= \lambda((f(x + 1) - f(x)) + x\mu(f(x - 1) - f(x))$$

$$= \lambda(Df)(x) + x\mu(D^*f)(x).$$

It is a continuous time birth and death process, with birth rate λ and death rate $x\mu$. We have $P_t L = LP_t$. It can be checked that we have the commutations

$$DL = LD - \mu D \quad \text{and} \quad DP_t(f) = e^{-\mu t} P_t(Df).$$

It can be checked that π_ρ is reversible. This means that if $X_0 \sim \pi_\rho$ then the random couples (X_0, X_t) and (X_t, X_0) have the same law for any $t \geq 0$. This gives a “Poisson” integration by parts formula: for any bounded $f, g : \mathbb{N} \rightarrow \mathbb{R}$,

$$\mathbb{E}_{\pi_\rho}(f L g) = \mathbb{E}_{\pi_\rho}(g L f) = -\lambda \mathbb{E}_{\pi_\rho}((Df)(Dg)).$$

Following [13], for any $t \geq 0$ and bounded $f : \mathbb{N} \rightarrow (0, \infty)$, denoting $h := P_t f$ and $\phi(u) := u \log(u)$, we get, by using invariance and integration by parts,

$$-\frac{d}{dt}\text{Ent}_{\pi_\rho}(P_t f) = \mathbb{E}_{\pi_\rho}(\phi'(h)Lh) = \lambda \mathbb{E}_{\pi_\rho}(D(\phi'(h))Dh) = \lambda \mathbb{E}_{\pi_\rho}(B(h, Dh)).$$

Hence the exponential decay of the entropy along the time leads to the B function, and not to A or C. Now the commutation gives $Dh = e^{-\mu t} P_t(Df)$ and thus, by using the Jensen inequality for the convex function B and $B(u, cv) = cB(u, v)$,

$$B(h, Dh) = B(P_t f, e^{-\mu t} P_t Df) \leq e^{-\mu t} P_t(B(f, Df)).$$

Therefore, using the invariance of π_ρ,

$$\mathbb{E}_{\pi_\rho}(B(h, Dh)) \leq e^{-\mu t} \mathbb{E}_{\pi_\rho}(P_t(B(f, Df))) = e^{-\mu t} \mathbb{E}_{\pi_\rho}(B(f, Df)).$$

Since $\lim_{t \rightarrow \infty} \text{Ent}_{\pi_\rho}(P_t f) = 0$, we get finally (7.11) by integrating over t, namely

$$\text{Ent}_{\pi_\rho}(P_t f) = -\int_0^\infty \frac{d}{dt}\text{Ent}_{\pi_\rho}(P_t f) dt$$

$$\leq \lambda \left(\int_0^\infty e^{-\mu t} dt\right) \mathbb{E}_{\pi_\rho}(B(f, Df))$$

$$= \rho \mathbb{E}_{\pi_\rho}(B(f, Df)).$$

The sole inequality comes from the Jensen inequality for B and P_t.

Remark (More general Markov chains). Following [12], let $(X_t)_{t\geq 0}$ be a continuous time Markov chain with at most countable state space E, irreducible, positive recurrent, and aperiodic, with unique invariant probability measure π, and with infinitesimal generator $L : E \times E \to \mathbb{R}$. We have, for every $x, y \in E$,

$$L(x, y) = \partial_t = 0 \mathbb{P}(X_t = y \mid X_0 = x).$$

We see L as matrix with non-negative off-diagonal elements and zero-sum rows: $L(x, y) \geq 0$ and $L(x, x) = -\sum_{y \neq x} L(x, y)$ for every $x, y \in E$. The invariance reads $0 = \sum_{y \in E} \pi(x) L(x, y)$ for every $y \in E$. The operator L acts on functions as $(L f)(x) = \sum_{y \in E} L(x, y) f(y)$ for every $x \in E$. We have $\pi(x) > 0$ for every $x \in E$, and for any probability measure μ on E, denoting $f(x) := \mu(x)/\pi(x)$,

$$H(\mu \mid \pi) = \text{Ent}_x(f) = \sum_{x \in E} \phi\left(\frac{h(x)}{\pi(x)}\right) \pi(x).$$

We can see $x \mapsto \mu(x)$ as a density with respect to the counting measure on E. For any $t \geq 0$, if $\mu_t := \mathbb{P}(X_t = x)$ then $g_t(x) := \mu_t(x)/\pi(x)$ and $\partial_t g_t = L^* g_t$ where L^* is the adjoint of L in $\ell^2(\pi)$ given by $L^* f(x, y) = L(y, x) \pi(y)/\pi(x)$. Now

$$\partial_t H(\mu_t \mid \pi) = \sum_{x \in E} [\phi'(g_t) L^* g_t](x) \pi(x).$$

The right hand side is up to a sign a discrete Fisher information. Moreover

$$\partial^2_t H(\mu_t \mid \pi) = \sum_{x \in E} \left[g_t LL \log(g_t) + \left(\frac{L^* g_t}{g_t}\right)^2 \right](x) \pi(x).$$

The right hand side can be nicely rewritten when π is reversible, and constitutes a discrete analogue of a Γ_2 formula for diffusions. The lack of chain rule in discrete spaces explains the presence of two distinct terms in the right hand side.

7.2.3 Concentration and C modified inequality

Let us show that the modified entropic inequality (7.12) implies a “sub-Poissonian tailed” concentration of measure for discrete Lipschitz functions.

Theorem 7.8 (Sub-Poissonian concentration of measure). Let μ be a probability measure on \mathbb{N} such that for some $c > 0$ and for any $f : \mathbb{N} \to (0, \infty)$,

$$\text{Ent}_\mu(f) \leq c \mathbb{E}_\mu\left(\frac{(D f)^2}{f}\right)$$

where $(D f)(x) = f(x + 1) - f(x)$ for any $x \in \mathbb{N}$. Then for any $F : \mathbb{N} \to [0, \infty)$ such that $\sup_{x \in \mathbb{N}} |(DF)(x)| \leq 1$, we have $\mathbb{E}_\mu(F) < \infty$ and for any $r \geq 0$,

$$\mu(F \geq \mathbb{E}_\mu(F) + r) \leq \exp\left(\frac{-r}{8} \log\left(1 + \frac{r}{c}\right)\right).$$

In particular $\mathbb{E}_\mu(e^{\alpha |F| \max(0, \log |F|)}) < \infty$ for a small enough $\alpha > 0$.

Let us compare with the Chernoff bound in the case of a Poisson probability measure $\mu = \text{Poi}(\lambda)$ when $F(x) = x$ for any $x \in \mathbb{N}$. In this case $\mathbb{E}_\mu(F) = c = \lambda$. For any $r > 0$, with $X \sim \text{Poi}(\lambda)$, by using the Markov inequality,

$$\mu(F \geq \mathbb{E}_\mu(F) + r) = \mathbb{P}(X \geq \lambda + r)$$
\[\lambda \geq 0 \mapsto H(\lambda) := \mathbb{E}_\mu(e^{\lambda F}). \]

The assumed modified logarithmic Sobolev inequality for \(\mu \) gives, for \(f = e^{\lambda F} \),
\[
\text{Ent}_\mu(e^{\lambda F}) \leq c\mathbb{E}_\mu\left(\frac{(D(e^{\lambda F}))^2}{e^{\lambda F}}\right).
\]

Now we have the following ersatz of chain rule, for any \(g : \mathbb{N} \to \mathbb{R} \),
\[
|D(e^g)| \leq |Dg|e^{g}e^g,
\]
since by the intermediate value theorem, for any \(x \in \mathbb{N} \),
\[
|D(e^g)(x)| = |e^{g(x+1)} - e^{g(x)}| = |Dg(x)|e^\tau
\]
for some \(\tau \in (g(x) \wedge g(x+1), g(x) \lor g(x+1)) \), and \(\tau \leq g(x) + |(Dg)(x)| \). Thus,
\[
\text{Ent}_\mu(e^{\lambda F}) \leq c\lambda^2 e^{2\lambda} \mathbb{E}_\mu(e^{\lambda F}) = c\lambda^2 e^{2\lambda} H(\lambda).
\]

Now if we define \(K(\lambda) := \frac{1}{\lambda} \log H(\lambda) \) then
\[
\text{Ent}_\mu(e^{\lambda F}) = \lambda H'(\lambda) - H(\lambda) \log H(\lambda) = \lambda^2 H(\lambda)K'(\lambda).
\]

Thus \(K'(\lambda) \leq ce^{2\lambda} \). But \(H(0) = 1 \) and \(K(0) = H'(1) = \mathbb{E}_\mu(F) \) (exists!), hence
\[
K(\lambda) \leq K(0) + c\frac{e^{2\lambda} - 1}{2}, \quad \text{and} \quad H(\lambda) \leq e^{\lambda \mathbb{E}_\mu(F) + \frac{c\lambda}{2}(e^{2\lambda} - 1)}.
\]

It follows, thanks to the Markov inequality, that for any \(r \geq 0 \) and \(\lambda \geq 0 \),
\[
\mu(F \geq \mathbb{E}_\mu(F) + r) \leq e^{-\lambda r - \lambda \mathbb{E}(F)} H(\lambda) \leq e^{-\lambda r + \frac{c\lambda}{2}(e^{2\lambda} - 1)}.
\]

When \(r \leq 2c \) (the constants are not sharp!), taking \(\lambda = \frac{r}{2c} \leq \frac{1}{2} \) gives
\[
e^{-\lambda r + \frac{c\lambda}{2}(e^{2\lambda} - 1)} \leq e^{-\lambda r + 2c\lambda^2} = e^{-\frac{c^2}{2}}.
\]

When \(r \geq 2c \), taking \(\lambda = \frac{1}{2} \log\left(\frac{r}{c}\right) \) gives
\[
e^{-\lambda r + \frac{c\lambda}{2}e^{2\lambda} - 1} \leq e^{-\frac{c^2}{2}} \log\left(\frac{r}{c}\right).
\]

\[\square \]

7.3 Geometric distributions

Fixme:

7.4 Distributions on finite sets and Markov chains

Fixme:
Bibliography

