László (Laci) Györfi

1Department of Computer Science and Information Theory
Budapest University of Technology and Economics
Budapest, Hungary

May 28, 2008

e-mail: gyorfi@szit.bme.hu
www.szit.bme.hu/~gyorfi
www.szit.bme.hu/~oti/portfolio
Growth rate

investment in the stock market
Growth rate

investment in the stock market
d assets
investment in the stock market
d assets
$S_n^{(j)}$ price of asset j at the end of trading period (day) n
initial price $S_0^{(j)} = 1$, $j = 1, \ldots, d$
investment in the stock market

d assets

$S_{n}^{(j)}$ price of asset j at the end of trading period (day) n

initial price $S_{0}^{(j)} = 1$, $j = 1, \ldots, d$

\[S_{n}^{(j)} = e^{nW_{n}^{(j)}} \approx e^{nW^{(j)}} \]
investment in the stock market
d assets
$S_n^{(j)}$ price of asset j at the end of trading period (day) n
initial price $S_0^{(j)} = 1$, $j = 1, \ldots, d$

$$S_n^{(j)} = e^{nW_n^{(j)}} \approx e^{nW^{(j)}}$$

average growth rate

$$W_n^{(j)} = \frac{1}{n} \ln S_n^{(j)}$$
investment in the stock market

\(d\) assets

\(S_n^{(j)}\) price of asset \(j\) at the end of trading period (day) \(n\)

initial price \(S_0^{(j)} = 1, j = 1, \ldots, d\)

\[
S_n^{(j)} = e^{nW_n^{(j)}} \approx e^{nW^{(j)}}
\]

average growth rate

\[
W_n^{(j)} = \frac{1}{n} \ln S_n^{(j)}
\]

asymptotic average growth rate

\[
W^{(j)} = \lim_{n \to \infty} \frac{1}{n} \ln S_n^{(j)}
\]
the aim is to achieve \(\max_j W^{(j)} \)
the aim is to achieve $\max_j W^{(j)}$
static portfolio selection
the aim is to achieve $\max_j W^{(j)}$
static portfolio selection
a portfolio vector $\mathbf{b} = (b^{(1)}, \ldots b^{(d)})$
$b^{(j)} \geq 0, \sum_j b^{(j)} = 1$
the aim is to achieve \(\max_j W^{(j)} \)

static portfolio selection

a portfolio vector \(\mathbf{b} = (b^{(1)}, \ldots, b^{(d)}) \)

\(b^{(j)} \geq 0, \quad \sum_j b^{(j)} = 1 \)

\(b^{(j)} \) gives the proportion of the investor’s capital invested in stock \(j \)
the aim is to achieve $\max_j W^{(j)}$

static portfolio selection

a portfolio vector $\mathbf{b} = (b^{(1)}, \ldots, b^{(d)})$

$b^{(j)} \geq 0$, $\sum_j b^{(j)} = 1$

$b^{(j)}$ gives the proportion of the investor’s capital invested in stock j

initial capital S_0
the aim is to achieve \(\max_j W^{(j)} \)

static portfolio selection

a portfolio vector \(\mathbf{b} = (b^{(1)}, \ldots b^{(d)}) \)

\(b^{(j)} \geq 0, \sum_j b^{(j)} = 1 \)

\(b^{(j)} \) gives the proportion of the investor’s capital invested in stock \(j \)

initial capital \(S_0 \)

\[
S_n = S_0 \sum_j b^{(j)} S_n^{(j)}
\]
the aim is to achieve $\max_j W^{(j)}$

static portfolio selection

a portfolio vector $\mathbf{b} = (b^{(1)}, \ldots, b^{(d)})$

$b^{(j)} \geq 0$, $\sum_j b^{(j)} = 1$

$b^{(j)}$ gives the proportion of the investor’s capital invested in stock j

initial capital S_0

$$S_n = S_0 \sum_j b^{(j)} S_n^{(j)}$$

$$S_0 \max_j b^{(j)} S_n^{(j)} \leq S_n \leq dS_0 \max_j b^{(j)} S_n^{(j)}$$
assume that $b^{(j)} > 0$

$$\frac{1}{n} \ln \left(\max_j S_0 b^{(j)} S_n^{(j)} \right) \leq \frac{1}{n} \ln S_n \leq \frac{1}{n} \ln \left(\max_j S_0 d b^{(j)} S_n^{(j)} \right)$$
assume that $b^{(j)} > 0$

\[
\frac{1}{n} \ln \left(\max_j S_0 b^{(j)} S_n^{(j)} \right) \leq \frac{1}{n} \ln S_n \leq \frac{1}{n} \ln \left(\max_j S_0 d b^{(j)} S_n^{(j)} \right)
\]

\[
\max_j \left(\frac{1}{n} \ln (S_0 b^{(j)}) + \frac{1}{n} \ln S_n^{(j)} \right) \leq \frac{1}{n} \ln S_n
\]

\[
\leq \max_j \left(\frac{1}{n} \ln (S_0 d b^{(j)}) + \frac{1}{n} \ln S_n^{(j)} \right)
\]
assume that $b^{(j)} > 0$

$$\frac{1}{n} \ln \left(\max_j S_0 b^{(j)} S_n^{(j)} \right) \leq \frac{1}{n} \ln S_n \leq \frac{1}{n} \ln \left(\max_j S_0 db^{(j)} S_n^{(j)} \right)$$

$$\max_j \left(\frac{1}{n} \ln(S_0 b^{(j)}) + \frac{1}{n} \ln S_n^{(j)} \right) \leq \frac{1}{n} \ln S_n$$

$$\leq \max_j \left(\frac{1}{n} \ln(S_0 db^{(j)}) + \frac{1}{n} \ln S_n^{(j)} \right)$$

$$\lim_{n \to \infty} \frac{1}{n} \ln S_n = \lim_{n \to \infty} \max_j \frac{1}{n} \ln S_n^{(j)} = \max_j W^{(j)}$$
assume that \(b^{(j)} > 0 \)

\[
\frac{1}{n} \ln \left(\max_j S_0 b^{(j)} S_n^{(j)} \right) \leq \frac{1}{n} \ln S_n \leq \frac{1}{n} \ln \left(\max_j S_0 db^{(j)} S_n^{(j)} \right)
\]

\[
\max_j \left(\frac{1}{n} \ln(S_0 b^{(j)}) + \frac{1}{n} \ln S_n^{(j)} \right) \leq \frac{1}{n} \ln S_n \leq \max_j \left(\frac{1}{n} \ln(S_0 db^{(j)}) + \frac{1}{n} \ln S_n^{(j)} \right)
\]

\[
\lim_{n \to \infty} \frac{1}{n} \ln S_n = \lim_{n \to \infty} \max_j \frac{1}{n} \ln S_n^{(j)} = \max_j W^{(j)}
\]

we can do much better using multi-period investment
Dynamic portfolio selection: multi-period investment

relative prices

\[x_i^{(j)} = \frac{S_i^{(j)}}{S_i^{(j-1)}} \]
Dynamic portfolio selection: multi-period investment

Relative prices

\[x_i^{(j)} = \frac{S_i^{(j)}}{S_{i-1}^{(j)}} \]

\[x_i = (x_i^{(1)}, \ldots x_i^{(d)}) \] the return vector on trading period \(i \)
relative prices

\[x_i^{(j)} = \frac{S_i^{(j)}}{S_{i-1}^{(j)}} \]

\[x_i = (x_i^{(1)}, \ldots, x_i^{(d)}) \] the return vector on trading period \(i \)

multi-period investment
relative prices

\[x_i^{(j)} = \frac{S_i^{(j)}}{S_{i-1}^{(j)}} \]

\(x_i = (x_i^{(1)}, \ldots, x_i^{(d)}) \) the return vector on trading period \(i \)

multi-period investment

\(x_i^{(j)} \) is the factor by which capital invested in stock \(j \) grows during the market period \(i \)
relative prices

\[x_i^{(j)} = \frac{S_i^{(j)}}{S_{i-1}^{(j)}} \]

\(x_i = (x_i^{(1)}, \ldots x_i^{(d)}) \) the return vector on trading period \(i \)

multi-period investment

\(x_i^{(j)} \) is the factor by which capital invested in stock \(j \) grows during the market period \(i \)

Constantly Re-balanced Portfolio (CRP)
relative prices

\[x_i^{(j)} = \frac{S_i^{(j)}}{S_{i-1}^{(j)}} \]

\(x_i = (x_i^{(1)}, \ldots x_i^{(d)}) \) the return vector on trading period \(i \)
multi-period investment
\(x_i^{(j)} \) is the factor by which capital invested in stock \(j \) grows during the market period \(i \)
Constantly Re-balanced Portfolio (CRP)
a portfolio vector \(b = (b^{(1)}, \ldots b^{(d)}) \)
relative prices

\[x_i^{(j)} = \frac{S_i^{(j)}}{S_{i-1}^{(j)}} \]

\(x_i = (x_i^{(1)}, \ldots x_i^{(d)}) \) the return vector on trading period \(i \)
multi-period investment
\(x_i^{(j)} \) is the factor by which capital invested in stock \(j \) grows during the market period \(i \)

Constantly Re-balanced Portfolio (CRP)

a portfolio vector \(\mathbf{b} = (b^{(1)}, \ldots b^{(d)}) \)
\(b^{(j)} \) gives the proportion of the investor’s capital invested in stock \(j \)
relative prices

$$x_i^{(j)} = \frac{S_i^{(j)}}{S_{i-1}^{(j)}}$$

$$x_i = (x_i^{(1)}, \ldots x_i^{(d)})$$ the return vector on trading period i

multi-period investment

$x_i^{(j)}$ is the factor by which capital invested in stock j grows during the market period i

Constantly Re-balanced Portfolio (CRP)

a portfolio vector $\mathbf{b} = (b^{(1)}, \ldots b^{(d)})$

$b^{(j)}$ gives the proportion of the investor’s capital invested in stock j

\mathbf{b} is the portfolio vector for each trading day
for the first trading period S_0 denotes the initial capital

$$S_1 = S_0 \sum_{j=1}^{d} b^{(j)} x_1^{(j)} = S_0 \langle b, x_1 \rangle$$
for the first trading period S_0 denotes the initial capital

$$S_1 = S_0 \sum_{j=1}^{d} b^{(j)} x^{(j)}_1 = S_0 \langle \mathbf{b}, \mathbf{x}_1 \rangle$$

for the second trading period, S_1 new initial capital

$$S_2 = S_1 \cdot \langle \mathbf{b}, \mathbf{x}_2 \rangle = S_0 \cdot \langle \mathbf{b}, \mathbf{x}_1 \rangle \cdot \langle \mathbf{b}, \mathbf{x}_2 \rangle.$$
for the first trading period S_0 denotes the initial capital

$$S_1 = S_0 \sum_{j=1}^{d} b^{(j)} x^{(j)}_1 = S_0 \langle \mathbf{b} , \mathbf{x}_1 \rangle$$

for the second trading period, S_1 new initial capital

$$S_2 = S_1 \cdot \langle \mathbf{b} , \mathbf{x}_2 \rangle = S_0 \cdot \langle \mathbf{b} , \mathbf{x}_1 \rangle \cdot \langle \mathbf{b} , \mathbf{x}_2 \rangle .$$

for the nth trading period:

$$S_n = S_{n-1} \langle \mathbf{b} , \mathbf{x}_n \rangle = S_0 \prod_{i=1}^{n} \langle \mathbf{b} , \mathbf{x}_i \rangle = S_0 e^{n W_n(b)}$$

with the average growth rate

$$W_n(b) = \frac{1}{n} \sum_{i=1}^{n} \ln \langle \mathbf{b} , \mathbf{x}_i \rangle .$$
Special market process: \(X_1, X_2, \ldots \) is independent and identically distributed (i.i.d.)
Special market process: X_1, X_2, \ldots is independent and identically distributed (i.i.d.)

log-optimum portfolio b^*
Special market process: \(X_1, X_2, \ldots \) is independent and identically distributed (i.i.d.)

log-optimum portfolio \(b^*\)

\[
E\{\ln \langle b^* , X_1 \rangle \} = \max_b E\{\ln \langle b , X_1 \rangle \}
\]
Special market process: \(X_1, X_2, \ldots \) is independent and identically distributed (i.i.d.)

log-optimum portfolio \(b^* \)

\[
\mathbb{E}\{\ln \langle b^*, X_1 \rangle\} = \max_b \mathbb{E}\{\ln \langle b, X_1 \rangle\}
\]

Best Constantly Re-balanced Portfolio (BCRP)
If $S_n^* = S_n(b^*)$ denotes the capital after trading period n achieved by a log-optimum portfolio strategy b^*,
If $S^*_n = S_n(b^*)$ denotes the capital after trading period n achieved by a log-optimum portfolio strategy b^*, then for any portfolio strategy b with capital $S_n = S_n(b)$ and for any i.i.d. process $\{X_n\}_{-\infty}^{\infty}$,
If $S^*_n = S_n(b^*)$ denotes the capital after trading period n achieved by a log-optimum portfolio strategy b^*, then for any portfolio strategy b with capital $S_n = S_n(b)$ and for any i.i.d. process $\{X_n\}_{-\infty}^{\infty}$,

$$\lim_{n \to \infty} \frac{1}{n} \ln S_n \leq \lim_{n \to \infty} \frac{1}{n} \ln S^*_n \quad \text{almost surely}$$

$$W^* = \mathbb{E}\{\ln \langle b^*, X_1 \rangle\}$$

is the maximal growth rate of any portfolio.
If \(S^*_n = S_n(b^*) \) denotes the capital after trading period \(n \) achieved by a log-optimum portfolio strategy \(b^* \), then for any portfolio strategy \(b \) with capital \(S_n = S_n(b) \) and for any i.i.d. process \(\{X_n\}_{-\infty}^{\infty} \),

\[
\lim_{n \to \infty} \frac{1}{n} \ln S_n \leq \lim_{n \to \infty} \frac{1}{n} \ln S^*_n \quad \text{almost surely}
\]

and

\[
\lim_{n \to \infty} \frac{1}{n} \ln S^*_n = W^* \quad \text{almost surely},
\]

where

\[
W^* = \mathbb{E}\{\ln \langle b^*, X_1 \rangle\}
\]

is the maximal growth rate of any portfolio.
Proof

\[
\frac{1}{n} \ln S_n = \frac{1}{n} \sum_{i=1}^{n} \ln \langle b, X_i \rangle
\]
\[
\frac{1}{n} \ln S_n = \frac{1}{n} \sum_{i=1}^{n} \ln \langle b, X_i \rangle \\
= \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}\{\ln \langle b, X_i \rangle\} \\
+ \frac{1}{n} \sum_{i=1}^{n} (\ln \langle b, X_i \rangle - \mathbb{E}\{\ln \langle b, X_i \rangle\})
\]
Proof

\[
\frac{1}{n} \ln S_n = \frac{1}{n} \sum_{i=1}^{n} \ln \langle b, X_i \rangle \\
= \frac{1}{n} \sum_{i=1}^{n} E\{\ln \langle b, X_i \rangle\} \\
+ \frac{1}{n} \sum_{i=1}^{n} (\ln \langle b, X_i \rangle - E\{\ln \langle b, X_i \rangle\})
\]

and

\[
\frac{1}{n} \ln S_n^* = \frac{1}{n} \sum_{i=1}^{n} E\{\ln \langle b^*, X_i \rangle\} \\
= \frac{1}{n} \sum_{i=1}^{n} (\ln \langle b^*, X_i \rangle - E\{\ln \langle b^*, X_i \rangle\})
\]
gambling, horse racing, information theory

Kelly (1956)
Latané (1959)
Breiman (1961)
Finkelstein and Whitley (1981)
Barron and Cover (1988)
gambling, horse racing, information theory

Kelly (1956)
Latané (1959)
Breiman (1961)
Finkelstein and Whitley (1981)
Barron and Cover (1988)

Example 1: 1 stock + cash

\[d = 2, \quad \mathbf{X} = (X^{(1)}, X^{(2)}) \]

Stock:

\[X^{(1)} = \begin{cases}
2 & \text{with probability } 1/2, \\
1/2 & \text{with probability } 1/2.
\end{cases} \]
Example 1: 1 stock + cash

\[d = 2, \quad \mathbf{X} = (X^{(1)}, X^{(2)}) \]

Stock:

\[X^{(1)} = \begin{cases}
 2 & \text{with probability } 1/2, \\
 1/2 & \text{with probability } 1/2.
\end{cases} \]

\[\mathbb{E}\{X^{(1)}\} = 1/2 \cdot (2 + 1/2) = 5/4 > 1 \]
Example 1: 1 stock + cash

\(d = 2, \quad \mathbf{X} = (X^{(1)}, X^{(2)}) \)

Stock:

\(X^{(1)} = \begin{cases}
2 & \text{with probability } 1/2, \\
1/2 & \text{with probability } 1/2.
\end{cases} \)

\[\mathbb{E}\{X^{(1)}\} = 1/2 \cdot (2 + 1/2) = 5/4 > 1 \]

\[\mathbb{E}\{S_{n}^{(1)}\} = \mathbb{E}\left\{ \prod_{i=1}^{n} X_{i}^{(1)} \right\} = (5/4)^{n} \]
Example 1: 1 stock + cash

\[d = 2, \quad X = (X^{(1)}, X^{(2)}) \]

Stock:

\[X^{(1)} = \begin{cases} 2 & \text{with probability } 1/2, \\ 1/2 & \text{with probability } 1/2. \end{cases} \]

\[\mathbb{E}\{X^{(1)}\} = 1/2 \cdot (2 + 1/2) = 5/4 > 1 \]

\[\mathbb{E}\{S_n^{(1)}\} = \mathbb{E}\left\{ \prod_{i=1}^{n} X_i^{(1)} \right\} = (5/4)^n \]

What about \(S_n^{(1)} \) or \(W^{(1)} \)?
Example 1: 1 stock + cash

\[d = 2, \quad \mathbf{X} = (X^{(1)}, X^{(2)}) \]

Stock:

\[X^{(1)} = \begin{cases}
2 & \text{with probability } 1/2, \\
1/2 & \text{with probability } 1/2.
\end{cases} \]

\[\mathbb{E}\{X^{(1)}\} = 1/2 \cdot (2 + 1/2) = 5/4 > 1 \]

\[\mathbb{E}\{S_n^{(1)}\} = \mathbb{E} \left\{ \prod_{i=1}^{n} X_i^{(1)} \right\} = (5/4)^n \]

What about \(S_n^{(1)} \) or \(W^{(1)} \)?

\[W^{(1)} = \lim_{n \to \infty} \frac{1}{n} \ln S_n^{(1)} = \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} \ln X_i^{(1)} = \mathbb{E}\{\ln X^{(1)}\} \]

\[= 1/2 \ln 2 + 1/2 \ln(1/2) = 0 \]

zero growth rate
Cash:

\[X^{(2)} = 1 \]

zero growth rate
Cash:

\[X^{(2)} = 1 \]

zero growth rate portfolio

\[\mathbf{b} = (b, 1 - b) \]
Cash:

\[X^{(2)} = 1 \]

zero growth rate
portfolio

\[
\mathbf{b} = (b, 1 - b)
\]

\[
\mathbb{E}\{\ln \langle \mathbf{b}, \mathbf{X} \rangle\} = \frac{1}{2} (\ln(2b + (1 - b)) + \ln(b/2 + (1 - b))
\]

\[
= \frac{1}{2} \ln[(1 + b)(1 - b/2)]
\]
Cash:

\[X^{(2)} = 1 \]

zero growth rate portfolio

\[b = (b, 1 - b) \]

\[
\mathbb{E}\{\ln \langle b, X \rangle\} = \frac{1}{2} \left(\ln(2b + (1 - b)) + \ln\left(\frac{b}{2} + (1 - b)\right) \right) = \frac{1}{2} \ln[(1 + b)(1 - b/2)]
\]

log-optimal portfolio

\[b^* = (1/2, 1/2) \]
Cash:

\[X^{(2)} = 1 \]

zero growth rate portfolio

\[b = (b, 1 - b) \]

\[
\mathbb{E}\{\ln \langle b, X \rangle\} = \frac{1}{2} \ln(2b + (1 - b)) + \ln(b/2 + (1 - b)) \\
= \frac{1}{2} \ln[(1 + b)(1 - b/2)]
\]

log-optimal portfolio

\[b^* = (1/2, 1/2) \]

asymptotic average growth rate

\[
\mathbb{E}\{\ln \langle b^*, X \rangle\} = \frac{1}{2} \ln(9/8) = 0.059 = W^*
\]

positive growth rate
Example 2: 2 stocks + cash

\[d = 3, \quad \mathbf{X} = (X^{(1)}, X^{(2)}, X^{(3)}) \]
Example 2: 2 stocks + cash

\[d = 3, \quad \mathbf{X} = (X^{(1)}, X^{(2)}, X^{(3)}) \]

Stocks:

\[X^{(1)} = \begin{cases}
2 & \text{with probability } 1/2, \\
1/2 & \text{with probability } 1/2.
\end{cases} \]
Example 2: 2 stocks + cash

\[d = 3, \quad \mathbf{X} = (X^{(1)}, X^{(2)}, X^{(3)}) \]

Stocks:

\[X^{(1)} = \begin{cases}
2 & \text{with probability } 1/2, \\
1/2 & \text{with probability } 1/2.
\end{cases} \]

\[X^{(2)} = \begin{cases}
2 & \text{with probability } 1/2, \\
1/2 & \text{with probability } 1/2.
\end{cases} \]
Example 2: 2 stocks + cash

\[d = 3, \quad \mathbf{X} = (X^{(1)}, X^{(2)}, X^{(3)}) \]

Stocks:

\[X^{(1)} = \begin{cases}
2 & \text{with probability } 1/2, \\
1/2 & \text{with probability } 1/2.
\end{cases} \]

\[X^{(2)} = \begin{cases}
2 & \text{with probability } 1/2, \\
1/2 & \text{with probability } 1/2.
\end{cases} \]

Cash:

\[X^{(3)} = 1 \]
Example 2: 2 stocks + cash

\[d = 3, \quad X = (X^{(1)}, X^{(2)}, X^{(3)}) \]

Stocks:

\[X^{(1)} = \begin{cases}
2 & \text{with probability } 1/2, \\
1/2 & \text{with probability } 1/2.
\end{cases} \]

\[X^{(2)} = \begin{cases}
2 & \text{with probability } 1/2, \\
1/2 & \text{with probability } 1/2.
\end{cases} \]

Cash:

\[X^{(3)} = 1 \]

log-optimal portfolio

\[b^* = (0.46, 0.46, 0.08) \]
Example 2: 2 stocks + cash

\[d = 3, \quad \mathbf{X} = (X^{(1)}, X^{(2)}, X^{(3)}) \]

Stocks:

\[X^{(1)} = \begin{cases} 2 & \text{with probability } 1/2, \\ 1/2 & \text{with probability } 1/2. \end{cases} \]

\[X^{(2)} = \begin{cases} 2 & \text{with probability } 1/2, \\ 1/2 & \text{with probability } 1/2. \end{cases} \]

Cash:

\[X^{(3)} = 1 \]

log-optimal portfolio

\[\mathbf{b}^* = (0.46, 0.46, 0.08) \]

asymptotic average growth rate

\[\mathbb{E}\{\ln \langle \mathbf{b}^*, \mathbf{X} \rangle\} = 0.112 = W^* \]
Example 3: 3 stocks + cash

\[d = 4, \quad \mathbf{X} = (X^{(1)}, X^{(2)}, X^{(3)}, X^{(4)}) \]
Example 3: 3 stocks + cash

\[d = 4, \quad X = (X^{(1)}, X^{(2)}, X^{(3)}, X^{(4)}) \]

log-optimal portfolio

\[b^* = (1/3, 1/3, 1/3, 0) \]
Example 3: 3 stocks + cash

d = 4, \quad \mathbf{X} = (X^{(1)}, X^{(2)}, X^{(3)}, X^{(4)})

log-optimal portfolio

\quad \mathbf{b}^* = (1/3, 1/3, 1/3, 0)

the cash has zero weight
Example 3: 3 stocks + cash

\[d = 4, \quad \mathbf{X} = (X^{(1)}, X^{(2)}, X^{(3)}, X^{(4)}) \]

log-optimal portfolio

\[\mathbf{b}^* = (1/3, 1/3, 1/3, 0) \]

the cash has zero weight

asymptotic average growth rate

\[\mathbb{E}\{\ln \langle \mathbf{b}^*, \mathbf{X} \rangle \} = 0.152 = W^* \]
Example 4: many stocks

\(d \) is large
Example 4: many stocks

d is large
log-optimal portfolio

\[b^* = \left(\frac{1}{d}, \ldots, \frac{1}{d} \right) \]
Example 4: many stocks

d is large
log-optimal portfolio

\[b^* = (1/d, \ldots, 1/d) \]

asymptotic average growth rate

\[E\{\ln \langle b^*, X \rangle \} = 0.223 = W^* \]
Example 5: horse racing

\(d\) horses in a race
Example 5: horse racing

d horses in a race
horse j wins with probability p_j
Example 5: horse racing

\(d\) horses in a race

horse \(j\) wins with probability \(p_j\)

payoff \(o_j\): investing 1$ on horse \(j\) results in \(o_j\) if it wins, otherwise 0$
Example 5: horse racing

\(d\) horses in a race

horse \(j\) wins with probability \(p_j\)

payoff \(o_j\): investing 1$ on horse \(j\) results in \(o_j\) if it wins, otherwise 0$

\[X = (0, \ldots, 0, o_j, 0, \ldots, 0) \]

if horse \(j\) wins
Example 5: horse racing

d horses in a race
horse j wins with probability p_j
payoff o_j: investing 1$ on horse j results in o_j if it wins, otherwise 0$

\[X = (0, \ldots, 0, o_j, 0, \ldots, 0) \]
if horse j wins
repeated races

\[E\{\ln \langle b, X \rangle \} = \sum_{j=1}^{d} p_j \ln (b^{(j)} o_j) = \sum_{j=1}^{d} p_j \ln b^{(j)} + \sum_{j=1}^{d} p_j \ln o_j \]
Example 5: horse racing

d horses in a race
horse j wins with probability p_j
payoff o_j: investing 1$ on horse j results in o_j if it wins, otherwise 0$

\begin{align*}
X &= (0, \ldots, 0, o_j, 0, \ldots, 0) \\
\text{if horse } j \text{ wins} \\
\text{repeated races}
\end{align*}

\begin{align*}
\mathbb{E}\{\ln \langle b, X \rangle \} &= \sum_{j=1}^{d} p_j \ln (b(j) o_j) \\
&= \sum_{j=1}^{d} p_j \ln b(j) + \sum_{j=1}^{d} p_j \ln o_j
\end{align*}

therefore

\[\arg \max_b \mathbb{E}\{\ln \langle b, X \rangle \} = \arg \max_b \sum_{j=1}^{d} p_j \ln b(j) \]
arg max \(b \) \(\sum_{j=1}^{d} p_j \ln b^{(j)} \)
arg max \(b \sum_{j=1}^{d} p_j \ln b(j) \)

Kullback-Leibler divergence:

\[
KL(p, b) = \sum_{j=1}^{d} p_j \ln \frac{p_j}{b(j)}
\]
\[\arg \max_b \sum_{j=1}^d p_j \ln b^{(j)} \]

Kullback-Leibler divergence:

\[KL(p, b) = \sum_{j=1}^d p_j \ln \frac{p_j}{b^{(j)}} \]

basic property:

\[KL(p, b) \geq 0 \]
\[
\arg \max_b \sum_{j=1}^{d} p_j \ln b^{(j)}
\]

Kullback-Leibler divergence:

\[
KL(p, b) = \sum_{j=1}^{d} p_j \ln \frac{p_j}{b^{(j)}}
\]

basic property:

\[
KL(p, b) \geq 0
\]

Proof:

\[
KL(p, b) = - \sum_{j=1}^{d} p_j \ln \frac{b^{(j)}}{p_j}
\]
arg max \(\sum_{j=1}^{d} p_j \ln b^{(j)} \)

Kullback-Leibler divergence:

\[
KL(p, b) = \sum_{j=1}^{d} p_j \ln \frac{p_j}{b^{(j)}}
\]

basic property:

\[
KL(p, b) \geq 0
\]

Proof:

\[
KL(p, b) = - \sum_{j=1}^{d} p_j \ln \frac{b^{(j)}}{p_j} \geq - \sum_{j=1}^{d} p_j \left(\frac{b^{(j)}}{p_j} - 1 \right)
\]

\[
= - \sum_{j=1}^{d} b^{(j)} + \sum_{j=1}^{d} p_j = 0
\]
\arg \max_b \sum_{j=1}^d p_j \ln b^{(j)} = p

usual choice of payoffs: \(o_j = \frac{1}{p_j} \)

any gambling strategy has negative growth rate
\[
\arg\max_b \sum_{j=1}^{d} p_j \ln b^{(j)} = p
\]

independent of the payoffs

\[
W^* = \sum_{j=1}^{d} p_j \ln(p_j o_j)
\]
\[
\arg \max_b \sum_{j=1}^{d} p_j \ln b^{(j)} = \mathbf{p}
\]

independent of the payoffs

\[
W^* = \sum_{j=1}^{d} p_j \ln(p_j o_j)
\]

usual choice of payoffs:

\[
o_j = \frac{1}{p_j}
\]
\[
\arg \max_b \sum_{j=1}^{d} p_j \ln b^{(j)} = \mathbf{p}
\]

independent of the payoffs

\[
W^* = \sum_{j=1}^{d} p_j \ln(p_j o_j)
\]

usual choice of payoffs:

\[
o_j = \frac{1}{p_j}
\]

\[
W^* = 0
\]

any gambling strategy has negative growth rate
The image contains a graph representing the performance of a portfolio selection strategy labeled "coke" over time. The graph plots the logarithmic returns (ln) against the number of days. The x-axis represents the days ranging from 0 to 12,000, while the y-axis shows the logarithmic returns ranging from -0.006 to 0.008. The graph shows a trend where the logarithmic returns stabilize over time, indicating a potential stationary or predictable pattern in the portfolio's performance.
ibm

Days

0 2000 4000 6000 8000 10000 12000

0 0.006 0.008

-0.004 -0.006
Mean = 1,0004707
Std. Dev. = 0,01611594
N = 11,177
Györfi

Machine learning and portfolio selections. I.
Consequences

Corollary: with large probability

\[S_n(b) \text{ is not close to } \mathbb{E}\{S_n(b)\} \]
Corollary: with large probability

\[S_n(b) \text{ is not close to } \mathbb{E}\{S_n(b)\} \]

Proof:

\[
\left\{ -\delta < \frac{1}{n} \ln S_n(b) - \mathbb{E}\{\ln \langle b, X_1 \rangle\} < \delta \right\}
\]
Consequences

Corollary: with large probability

\[S_n(b) \text{ is not close to } E\{S_n(b)\} \]

Proof:

\[\left\{ -\delta < \frac{1}{n} \ln S_n(b) - E\{\ln \langle b, X_1 \rangle\} < \delta \right\} \]

\[\left\{ -\delta + E\{\ln \langle b, X_1 \rangle\} < \frac{1}{n} \ln S_n(b) < \delta + E\{\ln \langle b, X_1 \rangle\} \right\} \]
Corollary: with large probability

\[S_n(b) \text{ is not close to } E\{S_n(b)\} \]

Proof:

\[
\left\{-\delta < \frac{1}{n} \ln S_n(b) - E\{\ln \langle b, X_1 \rangle\} < \delta \right\}
\]

\[
\left\{-\delta + E\{\ln \langle b, X_1 \rangle\} < \frac{1}{n} \ln S_n(b) < \delta + E\{\ln \langle b, X_1 \rangle\} \right\}
\]

\[
\left\{e^{n(-\delta+E\{\ln \langle b, X_1 \rangle\})} < S_n(b) < e^{n(\delta+E\{\ln \langle b, X_1 \rangle\})} \right\}
\]
$S_n(b)$ is close to $e^{nE\{\ln\langle b, X_1 \rangle\}}$
\(S_n(b) \) is close to \(e^{n\mathbb{E}\{\ln \langle b, X_1 \rangle\}} \)

\[
\mathbb{E}\{S_n(b)\} = \mathbb{E}\left\{ \prod_{i=1}^{n} \langle b, X_i \rangle \right\} = \prod_{i=1}^{n} \langle b, \mathbb{E}\{X_i\} \rangle = e^{n\ln \langle b, \mathbb{E}\{X_1\} \rangle}
\]
$S_n(b)$ is close to $e^{nE\{\ln \langle b, X_1 \rangle \}}$

$$E\{S_n(b)\} = E\{\prod_{i=1}^{n} \langle b, X_i \rangle \} = \prod_{i=1}^{n} \langle b, E\{X_i\} \rangle = e^{n\ln \langle b, E\{X_1\} \rangle}$$

by Jensen inequality

$$\ln \langle b, E\{X_1\} \rangle > E\{\ln \langle b, X_1 \rangle \}$$
$$S_n(b)$$ is close to $$e^{nE\{\ln\langle b, X_1 \rangle\}}$$

$$E\{S_n(b)\} = E\{\prod_{i=1}^{n} \langle b, X_i \rangle\} = \prod_{i=1}^{n} \langle b, E\{X_i\}\rangle = e^{n \ln \langle b, E\{X_1\}\rangle}$$

by Jensen inequality

$$\ln \langle b, E\{X_1\}\rangle > E\{\ln \langle b, X_1 \rangle\}$$

therefore

$$S_n(b)$$ is much less than $$E\{S_n(b)\}$$
Naive approach

$$\text{arg max}_b E\{ S_n(b) \}$$
Naive approach

$$\arg \max_b \mathbb{E}\{S_n(b)\}$$

because of

$$\mathbb{E}\{S_n(b)\} = \langle b, \mathbb{E}\{X_1\} \rangle^n$$
Naive approach

\[
\arg \max_b \mathbb{E}\{S_n(b)\}
\]

because of

\[
\mathbb{E}\{S_n(b)\} = \langle b, \mathbb{E}\{X_1\} \rangle^n
\]

\[
\arg \max_b \mathbb{E}\{S_n(b)\} = \arg \max_b \langle b, \mathbb{E}\{X_1\} \rangle
\]
Naive approach

$$\arg \max_b \mathbb{E}\{S_n(b)\}$$

because of

$$\mathbb{E}\{S_n(b)\} = \langle b, \mathbb{E}\{X_1\} \rangle^n$$

$$\arg \max_b \mathbb{E}\{S_n(b)\} = \arg \max_b \langle b, \mathbb{E}\{X_1\} \rangle$$

$$\arg \max_b \langle b, \mathbb{E}\{X_1\} \rangle$$ is a portfolio vector having 1 at the position, where $$\mathbb{E}\{X_1\}$$ has the largest component.
Naive approach

\[
\arg \max_b \mathbf{E}\{S_n(b)\}
\]

because of

\[
\mathbf{E}\{S_n(b)\} = \langle b, \mathbf{E}\{X_1\} \rangle^n
\]

\[
\arg \max_b \mathbf{E}\{S_n(b)\} = \arg \max_b \langle b, \mathbf{E}\{X_1\} \rangle
\]

arg max _b \langle b, \mathbf{E}\{X_1\} \rangle is a portfolio vector having 1 at the position,
where \(\mathbf{E}\{X_1\}\) has the largest component
it is a dangerous portfolio
Naive approach

\[
\arg \max_b \mathbb{E}\{S_n(b)\}
\]

because of

\[
\mathbb{E}\{S_n(b)\} = \langle b, \mathbb{E}\{X_1\} \rangle^n
\]

\[
\arg \max_b \mathbb{E}\{S_n(b)\} = \arg \max_b \langle b, \mathbb{E}\{X_1\} \rangle
\]

\[
\arg \max_b \langle b, \mathbb{E}\{X_1\} \rangle
\]

is a portfolio vector having 1 at the position, where \(\mathbb{E}\{X_1\} \) has the largest component. It is a dangerous portfolio.

Markowitz:

\[
\arg \max_{b: \text{Var}(\langle b, X_1 \rangle) \leq \lambda} \langle b, \mathbb{E}\{X_1\} \rangle
\]
log-optimal:

$$\arg \max_b E\{\ln \langle b, X_1 \rangle\}$$
log-optimal:

$$\arg \max_b E \{ \ln \left< b, X_1 \right> \}$$

Taylor expansion: $\ln z \approx h(z) = z - 1 - \frac{1}{2}(z - 1)^2$
Semi-log-optimal portfolio

log-optimal:

$$\arg \max_b \mathbf{E}\{ \ln \langle b, X_1 \rangle \}$$

Taylor expansion: $\ln z \approx h(z) = z - 1 - \frac{1}{2}(z - 1)^2$

semi-log-optimal:

$$\arg \max_b \mathbf{E}\{ h(\langle b, X_1 \rangle) \}$$

Connection to the Markowitz theory.

http://www.szit.bme.hu/~oti/portfolio/articles/marko.pdf
Semi-log-optimal portfolio

log-optimal:

\[\arg \max_b \mathbb{E}\{ \ln \langle b, X_1 \rangle \} \]

Taylor expansion: \[\ln z \approx h(z) = z - 1 - \frac{1}{2}(z - 1)^2 \]

semi-log-optimal:

\[\arg \max_b \mathbb{E}\{ h(\langle b, X_1 \rangle) \} = \arg \max_b \{ \langle b, m \rangle - \langle b, Cb \rangle \} \]
log-optimal:

$$\arg \max_b \mathbb{E}\{\ln \langle b, X_1 \rangle\}$$

Taylor expansion: $$\ln z \approx h(z) = z - 1 - \frac{1}{2}(z - 1)^2$$

semi-log-optimal:

$$\arg \max_b \mathbb{E}\{h(\langle b, X_1 \rangle)\} = \arg \max_b \{\langle b, m \rangle - \langle b, Cb \rangle\}$$

Connection to the Markowitz theory.
Semi-log-optimal portfolio

log-optimal:

$$\arg \max_b E\{\ln \langle b, X_1 \rangle \}$$

Taylor expansion: $\ln z \approx h(z) = z - 1 - \frac{1}{2}(z - 1)^2$

semi-log-optimal:

$$\arg \max_b E\{h(\langle b, X_1 \rangle)\} = \arg \max_b \{\langle b, m \rangle - \langle b, Cb \rangle\}$$

Connection to the Markowitz theory.
http://www.szit.bme.hu/~oti/portfolio/articles/marko.pdf