Statistical inference in a spiked population model

Jian-feng YAO

Joint work with Weiming LI (Beijing), Damien PASSEMIER (Rennes)

Overview

1 Spiked eigenvalues: an example

 2 Inference on spikes: determination of their number q₀ Known results on spiked population Estimator of q₀ Discussions on the estimator q
₀ Application to S&P stocks data

Inference of the bulk spectrum The problem and existing methods A generalized expectation based method Asymptotic properties of the GEE estimator Application to S&P 500 stocks data

1) Spiked eigenvalues: an example

- SP 500 daily stock prices ; p = 488 stocks;
- ▶ n = 1000 daily returns $\mathbf{r}_t(i) = \log p_t(i)/p_{t-1}(i)$ from 2007-09-24 to 2011-09-12;

The sample correlation matrix

▶ Let the SCM (488× 488)

$$S_n = rac{1}{n}\sum_{t=1}^n (\mathbf{r}_t - ar{\mathbf{r}}) (\mathbf{r}_t - ar{\mathbf{r}})^T \; .$$

• We consider the sample correlation matrix \mathbf{R}_n with

$$\mathbf{R}_n(i,j) = \frac{S_n(i,j)}{[S_n(i,j)S_n(j,j)]^{1/2}}.$$

• The 10 largest and 10 smallest eigenvalues of R_n are:

237.95801	4.8568703	 0.0212137	0.0178129
17.762811	4.394394	 0.0205001	0.0173591
14.002838	3.4999069	 0.0198287	0.0164425
8.7633113	3.0880089	 0.0194216	0.0154849
5.2995321	2.7146658	 0.0190959	0.0147696

Plots of sample eigenvalues

 \implies the point: sample eigenvalues = bulk + spikes

⇒ Analysis and estimation of spikes + bulk

A generic model

Random factor model

$$\mathsf{x}_t = \sum_{k=1}^{q_0} a_k s_t(t) + arepsilon_t = \mathsf{A} s_t + arepsilon_t,$$

- $s_t = (s_t(1), \ldots, s_t(q_0)) \in \mathbb{R}^{q_0}$ are $q_0 < p$ standardised random signals/factors,
- $A = (a_1, \ldots, a_{q_0}), p \times q_0$ deterministic matrix of factor loadings
- ε_t is an independent *p*-dimensional noise sequence, with a diagonal covariance matrix: Ψ = cov(ε_t) = diag{σ₁²,...,σ_p²}.

Therefore,

$$\Sigma = {
m cov}(x_t) = AA^* + \Psi$$
 .

this model is very old; has wide range of application fields: psychology, chemometrics, signal processing, economics, etc.

2). Inference on spikes

a). Known results

Spiked population model

Population covariance matrix:

$$\Sigma = \operatorname{Cov}[\mathsf{x}_t] = \mathsf{A}\mathsf{A}^* + \sigma^2 \mathsf{I}_{\rho} ,$$

with eigenvalues

spec(
$$\Sigma$$
) = ($\sigma^2 + \alpha'_1, \ldots, \sigma^2 + \alpha'_{q_0}, \underbrace{\sigma^2, \ldots, \sigma^2}_{p-q_0}$),

where

• $\alpha'_1 \ge \alpha'_2 \ge \cdots \ge \alpha'_{q_0} > 0$ are non null eigenvalues of AA*,

or equivalently

$$\operatorname{spec}(\Sigma) = \sigma^2 \times (lpha_1, \ \ldots, \ lpha_{q_0}, \underbrace{1, \ \ldots, \ 1}_{p-q_0}) \; ,$$

with

$$\alpha_i = 1 + \alpha_i'/\sigma^2 \; .$$

Asymptotic framework and assumptions

- **1** $p, n \to +\infty$ such that $p/n \to c$;
- **2** The population covariance matrix has K spikes $\alpha_1 > \cdots > \alpha_K$ with respective multiplicity numbers n_i , i.e.

spec(
$$\Sigma$$
) = $\sigma^2(\underbrace{\alpha_1, \ldots, \alpha_1}_{n_1}, \underbrace{\alpha_2, \ldots, \alpha_2}_{n_2}, \ldots, \underbrace{\alpha_K, \cdots, \alpha_K}_{n_K}, \underbrace{1, \cdots, 1}_{p-q_0});$
[$n_1 + \cdots + n_K = q_0$];

- 3 $\alpha_K > 1 + \sqrt{c}$ (detection level).

Convergence of spike eigenvalues

Consider the sample covariance matrix $S_n = \frac{1}{n} \sum_{i=1}^n x_i x_i^*$, with sample eigenvalues: $\lambda_{n,1} \ge \lambda_{n,2} \ge \cdots \ge \lambda_{n,p}$.

Proposition (Baik and Silverstein - 2006)

Let $s_i = n_1 + \cdots + n_i$ for $1 \le i \le K$. Then

• For each $k \in \{1, \ldots, K\}$ and $s_{k-1} < j \le s_k$ almost surely,

$$\lambda_{n,j} \longrightarrow \psi(\alpha_k) = \alpha_k + \frac{c\alpha_k}{\alpha_k - 1};$$

For all $1 \le i \le L$ with a prefixed range L almost surely,

$$\lambda_{n,q_0+i} \rightarrow b = (1+\sqrt{c})^2.$$

Note. This result has been extended for more general spikes by Bai & Y., Benaych-Georges & Nadakuditi.

b) Estimator of q_0 (number of spikes)

• Based on these results, we observe that when all the spikes are simple, i.e. $n_j \equiv 1$, the spacings

$$\delta_{n,j} = \lambda_{n,j} - \lambda_{n,j+1}
ightarrow \left\{egin{array}{cc} r > 0 & orall j \leq q_0 \ 0 & orall j > q_0 \end{array}
ight.$$

• it is possible to detect q_0 form index-number j where $\delta_{n,j}$ becomes small (case of simple spikes). Our estimator is define by

$$\hat{q}_n = \min\{j \in \{1, \dots, s\} : \delta_{n,j+1} < d_n\},$$
 (1)

where $(d_n)_n$ is a sequence to be defined and $s > q_0$ is a fixed number.

Consistency of \hat{q}_n : case of simple spikes

Assume

All spikes are different (simple spike case);

```
• \sigma^2 = 1 (if not, take \delta_{n,j}/\sigma^2);
```

and

6 Entries have sub-Gaussian tails: for some positive D, D' we have for all $t \ge D'$,

 $\mathbb{P}(|\mathsf{x}_{\mathsf{ij}}| \geq t^{D}) \leq e^{-t}.$

Theorem [Passemier & Y. 2011]

Under Assumptions (1)-(5) and in the simple spikes case, if $d_n \to 0$ such that $n^{2/3}d_n \to +\infty$ then

 $\mathbb{P}(\hat{q}_n=q_0)
ightarrow 1$.

Proof (idea)

$$egin{array}{rcl} \mathbb{P}(\hat{q}_n=q_0)&=&1-\mathbb{P}\left(igcup_{1\leq j\leq q_0}\{\delta_{n,j}< d_n\}\cup\{\delta_{n,q_0+1}\geq d_n\}
ight)\ &\geq&1-\sum_{i=1}^{q_0}\mathbb{P}(\delta_{n,j}< d_n)-\mathbb{P}(\delta_{n,q_0+1}\geq d_n). \end{array}$$

The terms in the sum converge to zero as $d_n \to 0$ and $\delta_{n,j} \to r > 0$. For the last term

$$\begin{aligned} 1 - (*) &= & \mathbb{P}(n^{2/3}(\lambda_{n,q_0+1} - \lambda_{n,q_0+2}) \leq n^{2/3}d_n) \\ &\geq & \mathbb{P}\left(\left\{|\mathsf{Y}_{n,1}| \leq n^{2/3}\frac{d_n}{2\beta}\right\} \cap \left\{|\mathsf{Y}_{n,2}| \leq n^{2/3}\frac{d_n}{2\beta}\right\}\right) \end{aligned}$$

where Y is a tight sequence by the next proposition, and $n^{2/3}d_n/2\beta \to +\infty$, so $1-(*) \to 1$.

Proof (an additional important ingredient)

An (partial) extension of Tracy-Widom law in presence of spikes:

Theorem (Benaych-Georges, Guionnet, Maida - 2010)

Under the above assumptions, for all $1 \le i \le L$ with a prefixed range L

$$\mathsf{Y}_{n,i}=rac{n^{rac{2}{3}}}{eta}(\lambda_{n,q_0+i}-b)=O_{\mathbb{P}}(1)$$

where $eta = (1+\sqrt{c})(1+\sqrt{c^{-1}})^{rac{1}{3}}$.

Case of multiple spikes

- ▶ spacings $\delta_{n,j} \rightarrow 0$ from a same spike can also tend to 0;
- Confusion may be possible between these spacings and those from the bulk eigenvalues;
- Hopefully, fluctuations of both type of spacings have different rates:

 $n^{-1/2}$ v.s. $\simeq n^{-2/3}$.

Theorem (Bai and Y. (2008))

Under Assumptions (1)-(4) (2), the n_k -dimensional real vector

 \sqrt{n} { $\lambda_{n,j} - \phi(\alpha_k)$, $j \in$ { $s_{k-1} + 1, \ldots, s_k$ }}

converges weakly to the distribution of the n_k eigenvalues of a Gaussian random matrix whose covariance depend of α_k and c.

[related works are from Baik-Ben-Arous-Pêché, Paul]

Consistency of \hat{q}_n : case of multiple spikes

The previous theorem of Bai and Y. implies:

- If $\alpha_j = \alpha_{j+1}$, convergence in $O_{\mathbb{P}}(n^{-1/2})$;
- For unit eigenvalues, faster convergence in $O_{\mathbb{P}}(n^{-2/3})$.

This allows us to use the same estimator provided we use a new threshold d_n .

Theorem (Passemier & Y. (2011))

Under the above assumptions, if

$$d_n = o(n^{-1/2}),$$
 and $n^{2/3}d_n \rightarrow +\infty,$

then

$$\mathbb{P}(\hat{q}_n=q_0)
ightarrow 1$$
 .

Simulation experiments

We decided to use another version of our estimator which performs better

 $\hat{q}_n^* = \min\{j \in \{1, \dots, s\} : \delta_{n,j+1} < d_n \text{ and } \delta_{n,j+2} < d_n\}$

Threshold sequence: $d_n = Cn^{-2/3}\sqrt{2\log \log n}$, where *C* is a constant to be adjusted for each case (Idea: law of the iterated logarithm for $\lambda_{n,j}$, $j \leq q_0$.).

Simulation experiments

 Performance measure: empirical false detection rates over 500 independent replications

 $\mathbb{P}(\tilde{q}_n \neq q_0)$

- Simulation design:
 - *q*₀: number of spikes;
 - $(\alpha_i)_{1 \le i \le q_0}$: spikes;
 - p: dimension of the vectors;
 - n: sample size;
 - c = p/n;
 - $\sigma^2 = 1$ given or to be estimated;
 - C: constant in d_n.

Experimental design

Fig.	Factors	Mod.	Factor	Fixed parameters			V	
No.		No.	values	p, n	С	σ^2	C	par
1	Different		(α)	(200, 800) (2000, 500)	$\frac{1/4}{4}$	Given	$\frac{5.5}{9}$	α
		Α	(6, 5)			Ciuon		
2L	Different	в	(10, 5)		10	Given	11	n
		В	(10, 5)			Estimated		
2R D	Different	С	(1.5)		1	Given	5	
	Different	D	(2.5, 1.5)				0	n
2	Possibly	Ε	$(\alpha, \alpha, 5)$	(200, 800)	1/4	I Given	6	
3	equal	F	$(\alpha, \alpha, 15)$	(2000, 500)	4		9.9	α
4L	Possibly	G	(6, 5, 5)			Civon		
	equal	Н	(10, 5, 5)		10	Given	9.9	n
		Н	(10, 5, 5)			Estimated		
4R	Possibly	Ι	(1.5, 1.5)		1	Civon	5	27
	equal	J	(2.5, 1.5, 1.5)		1	Given		n
5			Mod	els A and D	ł.			
6		Models G and J						
7	No factor K No fact	No factor	1	Given	8	n		
		no factor	10 10		15			
8L			Mod	els A and G	6			
8R			Mod	els B and H				
9L		Mode	ls C and I, wi	th C autom	atic	ally chosen		
9R		Model	s D and J. wi	th C autom	atic	ally chosen		

TABLE 1. Summary of parameters used in the simulation experiments. (L: left, R: right)

FIGURE 1. Misestimation rates as a function of factor strength for (p, n) = (200, 800)and (p, n) = (2000, 500).

FIGURE 2. Misestimation rates as a function of n for Models A, B (left) and Model C, D (right).

c) Discussions - Comparison with an estimator by Kritchman and Nadler

In the non-spikes case ($q_0 = 0$), $nS_n \sim W_p(I, n)$. In this case

Proposition (Johnstone - 2001)

$$\mathbb{P}\left(\lambda_{n,1} < \sigma^2 \frac{\beta_{n,p}}{n^{2/3}} s + b\right) \to F_1(s)$$

where F_1 is the Tracy-Widom distribution of order 1 and $\beta_{n,p} = (1 + \sqrt{p/n})(1 + \sqrt{n/p})^{\frac{1}{3}}$.

To distinguish a spike eigenvalue $\lambda_{n,k}$ from a non-spike one at an asymptotic significance level γ , their idea is to check whether

$$\lambda_{n,k} > \sigma^2 \left(\frac{\beta_{n,p-k}}{n^{2/3}} s(\gamma) + b \right)$$

where $s(\gamma)$ verifies $F_1(s(\gamma)) = 1 - \gamma$. Their estimator is

$$\widetilde{q}_n = \operatorname*{argmin}_k \left(\lambda_{n,k} < \widehat{\sigma}^2 \left(\frac{\beta_{n,p-k}}{n^{2/3}} s(\gamma) + b \right) \right) - 1.$$

FIGURE 5. Misestimation rates as a function of n for Model A (left) and Model D (right).

c) Discussions - on the tuning parameter *C*

- C has been tuned manually in each case ;
- > For real applications, need a procedure to choose this constant;
- Idea: use Wishart distributions as a benchmark to calibrate C;
- \blacktriangleright consider the gap between two largest eigenvalues: $\tilde{\lambda}_1 \tilde{\lambda}_2$

Cont'd

• By simulation to get empirical distribution of $\tilde{\lambda}_1 - \tilde{\lambda}_2$;

500 independent replications.

compute the upper 5% quantile s:

$$\mathbb{P}(ilde{\lambda}_1 - ilde{\lambda}_2 \leq s) \simeq = 0.95$$
 .

Define a value

$$ilde{C} = sn^{2/3}/\sqrt{2 imes \log\log(n)}$$
 .

Results:

						~	~	
TABLE 4.	Approximation	of the	threshold	s such	that	$\mathbb{P}(\lambda_1$	$-\lambda_2$	$\leq s) = 0.98.$

(p,n)	(200, 200)	(400, 400)	(600, 600)	(2000, 200)	(4000, 400)	(7000, 700)
Value of s	0.340	0.223	0.170	0.593	0.415	0.306
Ĉ	6.367	6.398	6.277	11.106	11.906	12.44

Assessment of the automated value \tilde{C} with c = 10

FIGURE 8. Misestimation rates as a function of n for Models A, G (left) and Models B, H (right).

• \tilde{C} > tuned C slightly ;

- Using $\tilde{C} \longrightarrow$ only a small drop of performance ;
- higher error rates in the case of equal factors for moderate sample sizes

Application to S&P stocks data

• Estimated number of factors: $\hat{q}_0 = 17$;

• Residual variance:
$$\hat{\sigma}^2 = 0.3616$$
.

3) Inference of the bulk spectrum

Problem: Estimate H_p from F_n .

The Marčenko-Pastur equation

Suppose that

$$p/n \rightarrow c > 0, \quad H_p \xrightarrow{w} H,$$

then under suitable conditions, cf. Marčenko-Pastur '68, Silverstein '95,

$$F_n \xrightarrow{w} F$$
, $n \to \infty$.

• Let
$$\underline{s}(z) = -(1-c)/z + c \int 1/(x-z)dF(x),$$

be the Stieltjes transform of (the companion distribution of) F, then

$$z = -rac{1}{\underline{s}(z)} + c \int rac{t}{1 + t \underline{s}(z)} dH(t), \quad z \in \mathbb{C}^+,$$

which is called Marčenko-Pastur (MP) equation.

• This gives the inverse map of $\underline{s}(z)$ on $\mathbb{C}\setminus\mathbb{R}$.

Almost all statistical tools for inference of H are based on this equation !!

a). Existing methods for estimation of PSD H

Inversion of the MP equation:

1.	[El Karoui (2008)],	nonparametric,	complex field;
2.	[Li et al. (2012)],	parametric,	real field.

Methods based on moments of F:

- 1. [Rao et al. (2008)],quasi-likelihood;2. [Bai et al. (2010)],complete moment method.
- Methods based on moments and contour-integrals:
 - 1. [Mestre (2008)], eigenvalue splitting condition;
 - 2. [Yao et al. (2012)],
- global moment of H;
 - 3. [Li and Yao (2012)],

Still needs new methods!

However,

- global inversion methods in [El Karoui (2008)] and [Li et al. (2012)] have some implementation issues that are non trivial to overcome;
- other methods are based on moments, but there are situations where these moments can not help to identify model parameters.

Example of a PSD H not identifiable by moments

▶ *H* has an inverse cubic density function ([Bouchaud and Potters (2009)])

$$h(t|\alpha) = \frac{b}{(t-a)^3}, \quad t \ge \alpha,$$

where the parameter is $0 \le \alpha < 1$ is the parameter to be estimated and $a = 2\alpha - 1$, $b = 2(1 - \alpha)^2$.

► Then

$$\int_{\alpha} xh(x)dx \equiv 1$$
, $\int_{\alpha} x^k h(x)dx = \infty$, for $k \ge 2$.

Moments of *H* are independent from the parameter α !

b). A generalized expectation based method

Main idea

- Use of general test functions f instead of monomials x^k (moments);
- These test functions are usually smaller than the monomials x^k so that

$$T(f) = \int f(x) dH(x)$$

are finite.

In the example above of inverse cubic density, f(x) = sin(x) has a finite integral:

$$T(f) = b \int_{\alpha}^{\infty} \frac{\sin(x)}{(x-a)^3} dx$$
.

Generalized expectations and their estimates

- Let f be a analytic function on an open $\mathcal{U} \supset \mathcal{S}_{\mathcal{F}}$, support of F;
- Define a generalized expectation $T(f) := \int f(t) dH(t);$
- It will be shown that

,

$$T(f) = K(c, f) + \frac{1}{2\pi \mathrm{i}c} \oint_{\mathcal{C}} z \underline{s}'(z) f(-1/\underline{s}(z)) dz,$$

where K(c, f) is a constant, independent from H and C is a contour enclosing S_F .

With sample eigenvalues, s(z has an empirical estimate

$$\underline{s}_n(z) = -(1-p/n)/z + (p/n) \int 1/(x-z) dF_n(x)$$

Therefore, the above generalized expectation can be estimated by

$$\widehat{T}(f) = \mathcal{K}(p/n, f) + \frac{n}{p} \frac{1}{2\pi i} \oint_C z \underline{s}'_n(z) f(-1/\underline{s}_n(z)) dz.$$
(1)

Generalized expectation based estimator of H

Suppose that *H* belongs to a parametric family:

```
\mathcal{H} = \{ H_{\theta} : \theta \in \Theta \subset \mathbb{R}^q \}.
```

Construct a q-dim vector of generalized expectations,

$$\gamma = (T(f_j))_{1 \leq j \leq q} = \left(\int f_j dH_{ heta}\right)$$
;

such that $g: \theta \mapsto \gamma$ is an one-to-one map on Θ ;

• The generalized expectation estimator (GEE) of θ is defined to be

$$\widehat{\theta}_n = g^{-1}(\widehat{\gamma}_n),$$

where $\widehat{\gamma}_n = (\widehat{T}(f_j))_{1 \le j \le L_i}$ with elements defined by (1).

c). Asymptotic properties of the GEE estimator

Assumptions:

Assumption (a). $n, p \to \infty$ with $p/n \to c \in (0, \infty)$.

Assumption (b). The sample covariance takes form

 $S_n = \Sigma_p^{1/2} W_n W_n^* \Sigma_p^{1/2} / n,$

where the entries of $W_n(p \times n)$ are i.i.d. standard real or complex normal variables, and $\sum_{p}^{1/2}$ stands for any Hermitian square root of \sum_{p} .

Assumption (c). $H_{\rho} \stackrel{\text{w}}{\longrightarrow} H$, a proper probability distribution on $[0, \infty)$. Moreover, the sequence of spectral norms $(||\Sigma_{\rho}||)$ is bounded.

Asymptotics of $\{\widehat{T}(f_j)\}$'s

Theorem (Li and Y. (2012))

Under the assumptions (a)-(c), for each j = 1, ..., q),

1. the generalized expectation $T(f_j)$ can be expressed as

$$T(f_j) = K(c, f_j) + \frac{1}{2\pi \mathrm{i}c} \oint_{\mathcal{C}} z \underline{s}'(z) f_j(-1/\underline{s}(z)) dz,$$

where the constant $K(c, f_j) = (1 - 1/c)f_j(0)$ if C encloses 0, and zero otherwise;

- 2. its empirical counterpart $\hat{T}(f_i)$ based on $\underline{s}_n(z)$ converges almost surely to $T(f_i)$;
- 3. if in addition, the entries of W_n ($p \times n$) are complex normal, the random vector

$$n\left[\widehat{T}(f_j)-H_p(f_j)\right]_{1\leq j\leq q}\xrightarrow{\mathcal{D}} N_q(0,\Phi),$$

where the centralization term $H_p(f_j)$ stands for the expectation of f_j with respect to H_p , where the asymptotic covariances $\Phi = (\phi_{ij})_{a \times a}$ are

$$\phi_{ij} = \frac{-1}{4\pi^2 c^2} \oint_C \oint_{C'} f_i(-1/\underline{s}(z_1))f_j(-1/\underline{s}(z_2))k(z_1, z_2)dz_1dz_2$$

where $k(z_1, z_2) = \underline{s}'(z_1)\underline{s}'(z_2)/(\underline{s}(z_1) - \underline{s}(z_2))^2 - 1/(z_1 - z_2)^2$.

Asymptotics of the GEE estimator $\hat{\theta}_n$

Theorem (Li and Y. (2012))

In addition to the assumptions (a)-(c), suppose that the true value of the parameter θ_0 is an inner point of Θ . Also, suppose that the function $g(\theta)$ is differentiable in a neighborhood of θ_0 and the Jacobian matrix $J(\theta) = \partial g / \partial \theta$ is invertible at θ_0 . Then,

1. the GEE $\hat{\theta}_n$ is strongly consistent, i.e.

$$\widehat{\theta}_n \to \theta_0, \quad a.s.,$$

2. moreover, if in addition, the entries of W_n ($p \times n$) are complex normal, then

$$n(\widehat{\theta}_n - g^{-1}(\boldsymbol{\gamma}_p)) \xrightarrow{\mathcal{D}} N_q(0, \Gamma(\theta_0)),$$

where $\gamma_p = (H_p(f_j))_{1 \le j \le q}$, and $\Gamma(\theta_0) = J^{-1}(\theta_0)\Phi(\theta_0)(J^{-1}(\theta_0))'$ with Φ being defined in Theorem 1.

d). Application: PSD of S&P 500 stocks covariances

Data analysis:

- Removed the 6 largest eigenvalues (deemed as spike eigenvalues);
- Assume an inverse cubic density for PSD H associated to the 482 bulk eigenvalues, that is,

$$h(t|\alpha) = rac{b}{(t-a)^3}, \ t \geq lpha \ ,$$

where $0 < \alpha < 1$, $b = 2(1 - \alpha)^2$ and $a = 2\alpha - 1$;

Moments-based methods fail, LEE may work!

Application to S&P 500 stocks data

$$f(z) = \sin(z), \quad T(f, \alpha) = \int \sin(t)h(t|\alpha)dt;$$

• $T(f, \alpha)$ is increasing with respect to α ,

Consider

Figure: Curves of $T(f, \alpha)$ (left) and $\partial T(f, \alpha)/\partial \alpha$ (right).

Results on S&P 500 stocks data

- GEE: $\widehat{T}(f, \alpha) = 0.5546$, $\widehat{\alpha} = 0.3205$;
- LSE: $\hat{\alpha}' = 0.4384$ (see [Li et al. (2012)]);
- Denote by f_{α} the density function of LSD *F* with respect to $H(\alpha)$. Compute a kernel density estimate \hat{f}_{ker} from the 482 bulk eigenvalues (Gaussian kernel, bandwidth h = 0.01).
- Consider $d(\alpha) = L^2(f_\alpha, \widehat{f}_{ker})$, then $d(\widehat{\alpha}) = 0.2047$, $d(\widehat{\alpha}') = 0.2863$.

Figure: \hat{f}_{ker} (plain black), $f_{\hat{\alpha}}$ (left, blue), and $f_{\hat{\alpha}'}$ (right, blue).

GEE yields a significantly better fit to the density of bulk eigenvalues.

Thank you !

- BAI, Z. D., CHEN, J. Q. AND YAO, J. F. (2010). On estimation of the population spectral distribution from a high-dimensional sample covariance matrix. Aust. N. Z. J. Stat. 52 423–437.
- BAI, Z. D. AND SILVERSTEIN, J. W. (2004). CLT for linear spectral statistics of large-dimensional sample covariance matrices. *Ann. Probab.*, 32, 553–605.
- BAI, Z. D. AND SILVERSTEIN, J. W. (2010). Spectral analysis of large dimensional random matrices, 2nd ed. Springer, New York.
- BOUCHAUD, J. P. AND POTTERS, M. (2009). Financial applications of random matrix theory: A short review. *ArXiv:0910.1205v1*.
- DONOHO, D. L., JOHNSTONE, I. M., KERKYACHARIAN, G., AND PICARD, D. (1996). Density estimation by wavelet thresholding. Ann. Statist., 24, 508-539.
- EL KAROUI, N. (2008) Spectrum estimation for large dimensional covariance matrices using random matrix theory. *Ann. Statist.* **36** 2757–2790.

- LI, W. M., CHEN, J. Q., QIN, Y. L., YAO, J. F. AND BAI, Z. D. (2011) Estimation of the population spectral distribution from a large dimensional sample covariance matrix. *Submitted.*
- LI, W. M. AND YAO, J. F. (2011) A local moments estimation of the spectrum of a large dimensional covariance matrix. *Submitted*.
 - MESTRE, X. (2008) Improved estimation of eigenvalues and eigenvectors of covariance matrices using their sample estimates. *IEEE Trans. Inform. Theory* **54**, 5113–5129.
- RAO, N. R., MINGO, J. A., SPEICHER, R. AND EDELMAN, A. (2008) Statistical eigen-inference from large Wishart matrices. Ann. Statist. 36 2850–2885.
- YAO, J. F., KAMMOUN, A., AND NAJIM, J. (2012) Estimation of the covariance matrix of large dimensional data. *ArXiv:1201.4672v1.*