Statistical inference in a spiked population model

Jian-feng YaO

香 港 大 學
THE UNIVERSITY OF HONG KONG

Joint work with Weiming Li（Beijing），Damien Passemier（Rennes）
(1) Spiked eigenvalues: an example
(2) Inference on spikes: determination of their number q_{0}

Known results on spiked population
Estimator of q_{0}
Discussions on the estimator \widehat{q}_{0}
Application to S\&P stocks data
(3) Inference of the bulk spectrum

The problem and existing methods
A generalized expectation based method
Asymptotic properties of the GEE estimator
Application to S\&P 500 stocks data

1) Spiked eigenvalues: an example

- SP 500 daily stock prices ; $p=488$ stocks;
- $n=1000$ daily returns $\mathbf{r}_{t}(i)=\log p_{t}(i) / p_{t-1}(i)$ from 2007-09-24 to 2011-09-12;

$$
5 \text { daily returns }
$$

The sample correlation matrix

- Let the SCM (488×488)

$$
S_{n}=\frac{1}{n} \sum_{t=1}^{n}\left(\mathbf{r}_{t}-\overline{\mathbf{r}}\right)\left(\mathbf{r}_{t}-\overline{\mathbf{r}}\right)^{T} .
$$

- We consider the sample correlation matrix R_{n} with

$$
\mathbf{R}_{n}(i, j)=\frac{S_{n}(i, j)}{\left[S_{n}(i, i) S_{n}(j, j)\right]^{1 / 2}} .
$$

- The 10 largest and 10 smallest eigenvalues of \mathbf{R}_{n} are:

237.95801	4.8568703	\ldots	0.0212137	0.0178129
17.762811	4.394394	\ldots	0.0205001	0.0173591
14.002838	3.4999069	\ldots	0.0198287	0.0164425
8.7633113	3.0880089	\ldots	0.0194216	0.0154849
5.2995321	2.7146658	\ldots	0.0190959	0.0147696

Plots of sample eigenvalues

Left: 488-1 = 487 eigenvalues right: $488-10=478$ eigenvalues

The largest excluded

10 largests excluded

\Longrightarrow the point: sample eigenvalues $=$ bulk + spikes
\Longrightarrow Analysis and estimation of spikes + bulk

A generic model

Random factor model

$$
x_{t}=\sum_{k=1}^{q_{0}} a_{k} s_{t}(t)+\varepsilon_{t}=A s_{t}+\varepsilon_{t}
$$

- $s_{t}=\left(s_{t}(1), \ldots, s_{t}\left(q_{0}\right)\right) \in \mathbb{R}^{q_{0}}$ are $q_{0}<p$ standardised random signals/factors,
- $A=\left(a_{1}, \ldots, a_{q_{0}}\right), p \times q_{0}$ deterministic matrix of factor loadings
- ε_{t} is an independent p-dimensional noise sequence, with a diagonal covariance matrix: $\Psi=\operatorname{cov}\left(\varepsilon_{t}\right)=\operatorname{diag}\left\{\sigma_{1}^{2}, \ldots, \sigma_{p}^{2}\right\}$.
Therefore,

$$
\Sigma=\operatorname{cov}\left(x_{t}\right)=A A^{*}+\Psi .
$$

- this model is very old; has wide range of application fields: psychology, chemometrics, signal processing, economics, etc.

2). Inference on spikes

a). Known results

Spiked population model
Population covariance matrix:

$$
\Sigma=\operatorname{Cov}\left[\mathrm{x}_{t}\right]=\mathrm{AA}^{*}+\sigma^{2} \mathrm{I}_{p}
$$

with eigenvalues

$$
\operatorname{spec}(\Sigma)=(\sigma^{2}+\alpha_{1}^{\prime}, \ldots, \sigma^{2}+\alpha_{q_{0}}^{\prime}, \underbrace{\sigma^{2}, \ldots, \sigma^{2}}_{p-q_{0}})
$$

where

- $\alpha_{1}^{\prime} \geq \alpha_{2}^{\prime} \geq \cdots \geq \alpha_{q_{0}}^{\prime}>0$ are non null eigenvalues of AA^{*},
or equivalently

$$
\operatorname{spec}(\Sigma)=\sigma^{2} \times(\alpha_{1}, \ldots, \alpha_{q_{0}}, \underbrace{1, \ldots, 1}_{p-q_{0}}),
$$

with

$$
\alpha_{i}=1+\alpha_{i}^{\prime} / \sigma^{2} .
$$

Asymptotic framework and assumptions

(1) $p, n \rightarrow+\infty$ such that $p / n \rightarrow c$;
(2) The population covariance matrix has K spikes $\alpha_{1}>\cdots>\alpha_{K}$ with respective multiplicity numbers n_{i}, i.e.

$$
\begin{aligned}
& \operatorname{spec}(\Sigma)=\sigma^{2}(\underbrace{\alpha_{1}, \ldots, \alpha_{1}}_{n_{1}}, \underbrace{\alpha_{2}, \ldots, \alpha_{2}}_{n_{2}}, \ldots, \underbrace{\alpha_{K}, \cdots, \alpha_{K}}_{n_{K}}, \underbrace{1, \cdots, 1}_{p-q_{0}}) \\
& {\left[n_{1}+\cdots+n_{K}=q_{0}\right]}
\end{aligned}
$$

(3) $\alpha_{K}>1+\sqrt{c}$ (detection level).
(4) $\mathbb{E}\left(\left|x_{i j}^{4}\right|\right)<+\infty$.

Convergence of spike eigenvalues

Consider the sample covariance matrix $\quad S_{n}=\frac{1}{n} \sum_{i=1}^{n} x_{i} x_{i}^{*}$, with sample eigenvalues: $\quad \lambda_{n, 1} \geq \lambda_{n, 2} \geq \cdots \geq \lambda_{n, p}$.

Proposition (Baik and Silverstein - 2006)
Let $s_{i}=n_{1}+\cdots+n_{i}$ for $1 \leq i \leq K$. Then

- For each $k \in\{1, \ldots, K\}$ and $s_{k-1}<j \leq s_{k}$ almost surely,

$$
\lambda_{n, j} \longrightarrow \psi\left(\alpha_{k}\right)=\alpha_{k}+\frac{c \alpha_{k}}{\alpha_{k}-1}
$$

- For all $1 \leq i \leq L$ with a prefixed range L almost surely,

$$
\lambda_{n, q_{0}+i} \rightarrow b=(1+\sqrt{c})^{2} .
$$

Note. This result has been extended for more general spikes by Bai \& Y., Benaych-Georges \& Nadakuditi.

b) Estimator of q_{0} (number of spikes)

- Based on these results, we observe that when all the spikes are simple, i.e. $n_{j} \equiv 1$, the spacings

$$
\delta_{n, j}=\lambda_{n, j}-\lambda_{n, j+1} \rightarrow \begin{cases}r>0 & \forall j \leq q_{0} \\ 0 & \forall j>q_{0}\end{cases}
$$

- it is possible to detect q_{0} form index-number j where $\delta_{n, j}$ becomes small (case of simple spikes). Our estimator is define by

$$
\begin{equation*}
\hat{q}_{n}=\min \left\{j \in\{1, \ldots, s\}: \delta_{n, j+1}<d_{n}\right\} \tag{1}
\end{equation*}
$$

where $\left(d_{n}\right)_{n}$ is a sequence to be defined and $s>q_{0}$ is a fixed number.

Consistency of \hat{q}_{n} : case of simple spikes

Assume

- All spikes are different (simple spike case);
- $\sigma^{2}=1$ (if not, take $\delta_{n, j} / \sigma^{2}$);
and
(5) Entries have sub-Gaussian tails: for some positive D, D^{\prime} we have for all $t \geq \mathrm{D}^{\prime}$,

$$
\mathbb{P}\left(\left|x_{\mathrm{ij}}\right| \geq t^{D}\right) \leq e^{-t} .
$$

Theorem [Passemier \& Y. 2011]

Under Assumptions (1)-(5) and in the simple spikes case, if $d_{n} \rightarrow 0$ such that $n^{2 / 3} d_{n} \rightarrow+\infty$ then

$$
\mathbb{P}\left(\hat{q}_{n}=q_{0}\right) \rightarrow 1 .
$$

Proof (idea)

$$
\begin{aligned}
\mathbb{P}\left(\hat{q}_{n}=q_{0}\right) & =1-\mathbb{P}\left(\bigcup_{1 \leq j \leq q_{0}}\left\{\delta_{n, j}<d_{n}\right\} \cup\left\{\delta_{n, q_{0}+1} \geq d_{n}\right\}\right) \\
& \geq 1-\sum_{j=1}^{q_{0}} \mathbb{P}\left(\delta_{n, j}<d_{n}\right)-\mathbb{P}\left(\delta_{n, q_{0}+1}^{(*)} \geq d_{n}\right) .
\end{aligned}
$$

The terms in the sum converge to zero as $d_{n} \rightarrow 0$ and $\delta_{n, j} \rightarrow r>0$. For the last term

$$
\begin{aligned}
1-(*) & =\mathbb{P}\left(n^{2 / 3}\left(\lambda_{n, q_{0}+1}-\lambda_{n, q_{0}+2}\right) \leq n^{2 / 3} d_{n}\right) \\
& \geq \mathbb{P}\left(\left\{\left|Y_{n, 1}\right| \leq n^{2 / 3} \frac{d_{n}}{2 \beta}\right\} \cap\left\{\left|Y_{n, 2}\right| \leq n^{2 / 3} \frac{d_{n}}{2 \beta}\right\}\right)
\end{aligned}
$$

where Y is a tight sequence by the next proposition, and $n^{2 / 3} d_{n} / 2 \beta \rightarrow+\infty$, so $1-(*) \rightarrow 1$.

Proof (an additional important ingredient)

An (partial) extension of Tracy-Widom law in presence of spikes:

Theorem (Benaych-Georges, Guionnet, Maida - 2010)
Under the above assumptions, for all $1 \leq i \leq L$ with a prefixed range L

$$
Y_{n, i}=\frac{n^{\frac{2}{3}}}{\beta}\left(\lambda_{n, q_{0}+i}-b\right)=O_{\mathbb{P}}(1)
$$

where $\beta=(1+\sqrt{c})\left(1+\sqrt{c^{-1}}\right)^{\frac{1}{3}}$.

Case of multiple spikes

- spacings $\delta_{n, j} \rightarrow 0$ from a same spike can also tend to 0 ;
- Confusion may be possible between these spacings and those from the bulk eigenvalues;
- Hopefully, fluctuations of both type of spacings have different rates:

$$
n^{-1 / 2} \quad \text { v.s. } \quad \simeq n^{-2 / 3}
$$

Theorem (Bai and Y. (2008))

Under Assumptions (1)-(4) (2), the n_{k}-dimensional real vector

$$
\sqrt{n}\left\{\lambda_{n, j}-\phi\left(\alpha_{k}\right), j \in\left\{s_{k-1}+1, \ldots, s_{k}\right\}\right\}
$$

converges weakly to the distribution of the n_{k} eigenvalues of a Gaussian random matrix whose covariance depend of α_{k} and c.
[related works are from Baik-Ben-Arous-Pêché, Paul]

Consistency of \hat{q}_{n} : case of multiple spikes

The previous theorem of Bai and Y . implies:

- If $\alpha_{j}=\alpha_{j+1}$, convergence in $O_{\mathbb{P}}\left(n^{-1 / 2}\right)$;
- For unit eigenvalues, faster convergence in $O_{\mathbb{P}}\left(n^{-2 / 3}\right)$.

This allows us to use the same estimator provided we use a new threshold d_{n}.

Theorem (Passemier \& Y. (2011))

Under the above assumptions, if

$$
d_{n}=o\left(n^{-1 / 2}\right), \quad \text { and } \quad n^{2 / 3} d_{n} \rightarrow+\infty
$$

then

$$
\mathbb{P}\left(\hat{q}_{n}=q_{0}\right) \rightarrow 1
$$

Simulation experiments

We decided to use another version of our estimator which performs better

$$
\hat{q}_{n}^{*}=\min \left\{j \in\{1, \ldots, s\}: \delta_{n, j+1}<d_{n} \text { and } \delta_{n, j+2}<d_{n}\right\}
$$

Threshold sequence: $d_{n}=C n^{-2 / 3} \sqrt{2 \log \log n}$, where C is a constant to be adjusted for each case (Idea: law of the iterated logarithm for $\lambda_{n, j}, j \leq q_{0}$.).

Simulation experiments

- Performance measure: empirical false detection rates over 500 independent replications

$$
\mathbb{P}\left(\tilde{q}_{n} \neq q_{0}\right)
$$

- Simulation design:
- q_{0} : number of spikes;
- $\left(\alpha_{i}\right)_{1 \leq i \leq q_{0}}$: spikes;
- p : dimension of the vectors;
- n : sample size;
- $c=p / n$;
- $\sigma^{2}=1$ given or to be estimated;
- C: constant in d_{n}.

Experimental design

TABLE 1. Summary of parameters used in the simulation experiments. (L: left, R: right)

Fig. No.	Factors	Mod. No.	Factor values	Fixed parameters			Var. par.
				$p, n \quad c$	σ^{2}	C	
1	Different		(α)	$\begin{array}{cc} \hline \hline(200,800) & 1 / 4 \\ (2000,500) & 4 \end{array}$	Given	$\begin{gathered} \hline \hline 5.5 \\ 9 \end{gathered}$	α
2 L	Different	$\begin{aligned} & \hline \text { A } \\ & \text { B } \\ & \text { B } \end{aligned}$	$\begin{gathered} \hline(6,5) \\ (10,5) \\ (10,5) \\ \hline \end{gathered}$		Given Estimated		n
2R	Different	$\begin{aligned} & \mathrm{C} \\ & \mathrm{D} \end{aligned}$	$\begin{gathered} (1.5) \\ (2.5,1.5) \\ \hline \end{gathered}$	1	Given	5	n
3	$\begin{gathered} \text { Possibly } \\ \text { equal } \\ \hline \end{gathered}$	$\begin{aligned} & \hline \mathrm{E} \\ & \mathrm{~F} \\ & \hline \end{aligned}$	$\begin{gathered} (\alpha, \alpha, 5) \\ (\alpha, \alpha, 15) \\ \hline \end{gathered}$	$\begin{array}{cc} \hline(200,800) & 1 / 4 \\ (2000,500) & 4 \\ \hline \end{array}$	Given	$\begin{gathered} \hline 6 \\ 9.9 \\ \hline \end{gathered}$	α
4L	$\begin{aligned} & \text { Possibly } \\ & \text { equal } \end{aligned}$	$\begin{aligned} & \mathrm{G} \\ & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & (6,5,5) \\ & (10,5,5) \\ & (10,5,5) \\ & \hline \end{aligned}$		Given stimated		n
4R	$\begin{aligned} & \text { Possibly } \\ & \text { equal } \end{aligned}$	$\begin{aligned} & \mathrm{I} \\ & \mathrm{~J} \end{aligned}$	$\begin{gathered} (1.5,1.5) \\ (2.5,1.5,1.5) \end{gathered}$	1	Given	5	n
5	Models A and D						
6	Models G and J						
7	No factor	K	No factor	$\begin{gathered} 1 \\ 10 \end{gathered}$	Given	$\begin{gathered} 8 \\ 15 \end{gathered}$	n
8L	Models A and G						
8R	Models B and H						
9L	Models C and I, with C automatically chosen						
9R	Models D and J, with C automatically chosen						

Figure 1. Misestimation rates as a function of factor strength for $(p, n)=(200,800)$ and $(p, n)=(2000,500)$.

Figure 2. Misestimation rates as a function of n for Models A, B (left) and Model C, D (right).

c) Discussions

- Comparison with an estimator by Kritchman and Nadler

In the non-spikes case $\left(q_{0}=0\right), n S_{n} \sim W_{p}(1, n)$. In this case

Proposition (Johnstone - 2001)

$$
\mathbb{P}\left(\lambda_{n, 1}<\sigma^{2} \frac{\beta_{n, p}}{n^{2 / 3}} s+b\right) \rightarrow F_{1}(s)
$$

where F_{1} is the Tracy-Widom distribution of order 1 and $\beta_{n, p}=(1+\sqrt{p / n})(1+\sqrt{n / p})^{\frac{1}{3}}$.

To distinguish a spike eigenvalue $\lambda_{n, k}$ from a non-spike one at an asymptotic significance level γ, their idea is to check whether

$$
\lambda_{n, k}>\sigma^{2}\left(\frac{\beta_{n, p-k}}{n^{2 / 3}} s(\gamma)+b\right)
$$

where $s(\gamma)$ verifies $F_{1}(s(\gamma))=1-\gamma$. Their estimator is

$$
\tilde{q}_{n}=\underset{k}{\operatorname{argmin}}\left(\lambda_{n, k}<\widehat{\sigma}^{2}\left(\frac{\beta_{n, p-k}}{n^{2 / 3}} s(\gamma)+b\right)\right)-1 .
$$

Figure 5. Misestimation rates as a function of n for Model A (left) and Model D (right).

c) Discussions

- on the tuning parameter C
- C has been tuned manually in each case ;
- For real applications, need a procedure to choose this constant;
- Idea: use Wishart distributions as a benchmark to calibrate C;
- consider the gap between two largest eigenvalues: $\tilde{\lambda}_{1}-\tilde{\lambda}_{2}$

Cont'd

- By simulation to get empirical distribution of $\tilde{\lambda}_{1}-\tilde{\lambda}_{2}$;

500 independent replications.

- compute the upper 5\% quantile s:

$$
\mathbb{P}\left(\tilde{\lambda}_{1}-\tilde{\lambda}_{2} \leq s\right) \simeq=0.95
$$

- Define a value

$$
\tilde{C}=s n^{2 / 3} / \sqrt{2 \times \log \log (n)}
$$

Results:

TABLE 4. Approximation of the threshold s such that $\mathbb{P}\left(\tilde{\lambda}_{1}-\tilde{\lambda}_{2} \leq s\right)=0.98$.

(p, n)	$(200,200)(400,400)(600,600)$		$(2000,200)(4000,400)(7000,700)$			
Value of s	0.340	0.223	0.170	0.593	0.415	0.306
\bar{C}	6.367	6.398	6.277	11.106	11.906	12.44

Assessment of the automated value \tilde{C} with $c=10$

Models B and H

Figure 8. Misestimation rates as a function of n for Models A, G (left) and Models B, H (right).

- $\tilde{C}>$ tuned C slightly;
- Using $\tilde{C} \longrightarrow$ only a small drop of performance ;
- higher error rates in the case of equal factors for moderate sample sizes

Application to S\&P stocks data

- Estimated number of factors: $\widehat{q}_{0}=17$;
- Residual variance: $\widehat{\sigma}^{2}=0.3616$.

3) Inference of the bulk spectrum

Estimation of population spectral distribution

$$
\begin{aligned}
& \text { Population } \\
& \mathbf{X}, \begin{array}{l}
\text { mean-zero, } p-\operatorname{dim} \\
\operatorname{Cov}(\mathbf{X})=\Sigma_{p}
\end{array}
\end{aligned}
$$

$$
\begin{gathered}
\text { Sample } \\
\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}, \text { i.i.d, size } n \\
S_{n}=\sum_{i=1}^{n} \mathbf{x}_{i} \mathbf{x}_{i}^{*} / n
\end{gathered}
$$

$$
\begin{array}{|c}
\hline \text { Large dimensional situations } \\
\qquad \lim _{n \rightarrow \infty} p / n=c>0
\end{array}
$$

$$
\begin{aligned}
& \text { PSD } H_{p} \\
& \text { the empirical spectral } \\
& \text { distribution of } \Sigma_{p}
\end{aligned}
$$

ESD F_{n}
the empirical spectral distribution of S_{n}.

Problem: Estimate H_{p} from F_{n}.

The Marčenko-Pastur equation

- Suppose that

$$
p / n \rightarrow c>0, \quad H_{p} \xrightarrow{w} H,
$$

then under suitable conditions, cf. Marčenko-Pastur '68, Silverstein '95,

$$
F_{n} \xrightarrow{w} F, \quad n \rightarrow \infty .
$$

- Let $\underline{s}(z)=-(1-c) / z+c \int 1 /(x-z) d F(x)$,
be the Stieltjes transform of (the companion distribution of) F, then

$$
z=-\frac{1}{\underline{s}(z)}+c \int \frac{t}{1+t \underline{s}(z)} d H(t), \quad z \in \mathbb{C}^{+}
$$

which is called Marčenko-Pastur (MP) equation.

- This gives the inverse map of $\underline{s}(z)$ on $\mathbb{C} \backslash \mathbb{R}$.

Almost all statistical tools for inference of H are based on this equation !!

a). Existing methods for estimation of PSD H

- Inversion of the MP equation:

1. [El Karoui (2008)], nonparametric, complex field;
2. [Li et al. (2012)], parametric, real field.

- Methods based on moments of F :

1. [Rao et al. (2008)], quasi-likelihood;
2. [Bai et al. (2010)], complete moment method.

- Methods based on moments and contour-integrals:

1. [Mestre (2008)], eigenvalue splitting condition;
2. [Yao et al. (2012)], global moment of H;
3. [Li and Yao (2012)], local moment of H.

Still needs new methods!

However,

- global inversion methods in [El Karoui (2008)] and [Li et al. (2012)] have some implementation issues that are non trivial to overcome;
- other methods are based on moments, but there are situations where these moments can not help to identify model parameters.

Example of a PSD H not identifiable by moments

- H has an inverse cubic density function ([Bouchaud and Potters (2009)])

$$
h(t \mid \alpha)=\frac{b}{(t-a)^{3}}, \quad t \geq \alpha
$$

where the parameter is $0 \leq \alpha<1$ is the parameter to be estimated and $a=2 \alpha-1, \quad b=2(1-\alpha)^{2}$.

- Then

$$
\int_{\alpha} x h(x) d x \equiv 1, \quad \int_{\alpha} x^{k} h(x) d x=\infty, \quad \text { for } \quad k \geq 2
$$

Moments of H are independent from the parameter α !

b). A generalized expectation based method

Main idea

- Use of general test functions f instead of monomials x^{k} (moments) ;
- These test functions are usually smaller than the monomials x^{k} so that

$$
T(f)=\int f(x) d H(x)
$$

are finite.

In the example above of inverse cubic density, $f(x)=\sin (x)$ has a finite integral:

$$
T(f)=b \int_{\alpha}^{\infty} \frac{\sin (x)}{(x-a)^{3}} d x
$$

Generalized expectations and their estimates

- Let f be a analytic function on an open $\mathcal{U} \supset \mathcal{S}_{\mathcal{F}}$, support of F;
- Define a generalized expectation $T(f):=\int f(t) d H(t)$;
- It will be shown that

$$
T(f)=K(c, f)+\frac{1}{2 \pi \mathrm{i} c} \oint_{\mathcal{C}} z \underline{s}^{\prime}(z) f(-1 / \underline{s}(z)) d z
$$

where $K(c, f)$ is a constant, independent from H and \mathcal{C} is a contour enclosing S_{F}.

- With sample eigenvalues, $s(z$ has an empirical estimate

$$
\underline{s}_{n}(z)=-(1-p / n) / z+(p / n) \int 1 /(x-z) d F_{n}(x)
$$

- Therefore, the above generalized expectation can be estimated by

$$
\begin{equation*}
\widehat{T}(f)=K(p / n, f)+\frac{n}{p} \frac{1}{2 \pi \mathrm{i}} \oint_{C} z \underline{s}_{n}^{\prime}(z) f\left(-1 / \underline{s}_{n}(z)\right) d z \tag{1}
\end{equation*}
$$

Generalized expectation based estimator of H

- Suppose that H belongs to a parametric family:

$$
\mathcal{H}=\left\{H_{\theta}: \theta \in \Theta \subset \mathbb{R}^{q}\right\} .
$$

- Construct a q-dim vector of generalized expectations,

$$
\gamma=\left(T\left(f_{j}\right)\right)_{1 \leq j \leq q}=\left(\int f_{j} d H_{\theta}\right)
$$

such that $g: \theta \mapsto \gamma$ is an one-to-one map on Θ;

- The generalized expectation estimator (GEE) of θ is defined to be

$$
\widehat{\theta}_{n}=g^{-1}\left(\widehat{\gamma}_{n}\right)
$$

where $\widehat{\gamma}_{n}=\left(\widehat{T}\left(f_{j}\right)\right)_{1 \leq j \leq L_{i}}$ with elements defined by (1).

c). Asymptotic properties of the GEE estimator

Assumptions:

Assumption (a). $\quad n, p \rightarrow \infty$ with $p / n \rightarrow c \in(0, \infty)$.
Assumption (b). The sample covariance takes form

$$
S_{n}=\Sigma_{p}^{1 / 2} W_{n} W_{n}^{*} \Sigma_{p}^{1 / 2} / n
$$

where the entries of $W_{n}(p \times n)$ are i.i.d. standard real or complex normal variables, and $\Sigma_{p}^{1 / 2}$ stands for any Hermitian square root of Σ_{p}.

Assumption (c). $\quad H_{p} \xrightarrow{w} H$, a proper probability distribution on $[0, \infty)$. Moreover, the sequence of spectral norms $\left(\left\|\Sigma_{p}\right\|\right)$ is bounded.

Asymptotics of $\left\{\widehat{T}\left(f_{j}\right)\right\}$'s

Theorem (Li and Y. (2012))

Under the assumptions (a)-(c), for each $j=1, \ldots, q$),

1. the generalized expectation $T\left(f_{j}\right)$ can be expressed as

$$
T\left(f_{j}\right)=K\left(c, f_{j}\right)+\frac{1}{2 \pi \mathrm{i} c} \oint_{\mathcal{C}} z \underline{s}^{\prime}(z) f_{j}(-1 / \underline{s}(z)) d z
$$

where the constant $K\left(c, f_{j}\right)=(1-1 / c) f_{j}(0)$ if \mathcal{C} encloses 0 , and zero otherwise;
2. its empirical counterpart $\widehat{T}\left(f_{j}\right)$ based on $\underline{s}_{n}(z)$ converges almost surely to $T\left(f_{j}\right)$;
3. if in addition, the entries of $W_{n}(p \times n)$ are complex normal, the random vector

$$
n\left[\widehat{T}\left(f_{j}\right)-H_{p}\left(f_{j}\right)\right]_{1 \leq j \leq q} \xrightarrow{\mathcal{D}} N_{q}(0, \Phi),
$$

where the centralization term $H_{p}\left(f_{j}\right)$ stands for the expectation of f_{j} with respect to H_{p}, where the asymptotic covariances $\Phi=\left(\phi_{i j}\right)_{q \times q}$ are

$$
\phi_{i j}=\frac{-1}{4 \pi^{2} c^{2}} \oint_{C} \oint_{C^{\prime}} f_{i}\left(-1 / \underline{s}\left(z_{1}\right)\right) f_{j}\left(-1 / \underline{s}\left(z_{2}\right)\right) k\left(z_{1}, z_{2}\right) d z_{1} d z_{2}
$$

where $k\left(z_{1}, z_{2}\right)=\underline{s}^{\prime}\left(z_{1}\right) \underline{s}^{\prime}\left(z_{2}\right) /\left(\underline{s}\left(z_{1}\right)-\underline{s}\left(z_{2}\right)\right)^{2}-1 /\left(z_{1}-z_{2}\right)^{2}$.

Asymptotics of the GEE estimator $\widehat{\theta}_{n}$

Theorem (Li and Y. (2012))

In addition to the assumptions (a)-(c), suppose that the true value of the parameter θ_{0} is an inner point of Θ. Also, suppose that the function $g(\theta)$ is differentiable in a neighborhood of θ_{0} and the Jacobian matrix $J(\theta)=\partial g / \partial \theta$ is invertible at θ_{0}. Then,

1. the $G E E \widehat{\theta}_{n}$ is strongly consistent, i.e.

$$
\widehat{\theta}_{n} \rightarrow \theta_{0}, \quad \text { a.s. }
$$

2. moreover, if in addition, the entries of $W_{n}(p \times n)$ are complex normal, then

$$
n\left(\widehat{\theta}_{n}-g^{-1}\left(\gamma_{p}\right)\right) \xrightarrow{\mathcal{D}} N_{q}\left(0, \Gamma\left(\theta_{0}\right)\right),
$$

where $\gamma_{p}=\left(H_{p}\left(f_{j}\right)\right)_{1 \leq j \leq q}$, and $\Gamma\left(\theta_{0}\right)=J^{-1}\left(\theta_{0}\right) \Phi\left(\theta_{0}\right)\left(J^{-1}\left(\theta_{0}\right)\right)^{\prime}$ with Φ being defined in Theorem 1.

d). Application: PSD of S\&P 500 stocks covariances

Data analysis:

- Removed the 6 largest eigenvalues (deemed as spike eigenvalues);
- Assume an inverse cubic density for PSD H associated to the 482 bulk eigenvalues, that is,

$$
h(t \mid \alpha)=\frac{b}{(t-a)^{3}}, \quad t \geq \alpha
$$

where $0<\alpha<1, \quad b=2(1-\alpha)^{2}$ and $a=2 \alpha-1$;

- Moments-based methods fail, LEE may work!

Application to S\&P 500 stocks data

- Consider

$$
f(z)=\sin (z), \quad T(f, \alpha)=\int \sin (t) h(t \mid \alpha) d t
$$

- $T(f, \alpha)$ is increasing with respect to α,

Figure: Curves of $T(f, \alpha)$ (left) and $\partial T(f, \alpha) / \partial \alpha$ (right).

Results on S\&P 500 stocks data

- GEE: $\widehat{T}(f, \alpha)=0.5546, \widehat{\alpha}=0.3205$;
- LSE: $\widehat{\alpha}^{\prime}=0.4384$ (see [Li et al. (2012)]);
- Denote by f_{α} the density function of LSD F with respect to $H(\alpha)$. Compute a kernel density estimate $\widehat{f}_{\text {ker }}$ from the 482 bulk eigenvalues (Gaussian kernel, bandwidth $h=0.01$).
- Consider $d(\alpha)=L^{2}\left(f_{\alpha}, \widehat{f}_{\text {ker }}\right)$, then $d(\widehat{\alpha})=0.2047, d\left(\widehat{\alpha}^{\prime}\right)=0.2863$.

Figure: $\widehat{f}_{\text {ker }}$ (plain black), $f_{\widehat{\alpha}}$ (left, blue), and $f_{\widehat{\alpha}^{\prime}}$ (right, blue).

- GEE yields a significantly better fit to the density of bulk eigenvalues.

Thank you!

Bat, Z. D., Chen, J. Q. and Yao, J. F. (2010). On estimation of the population spectral distribution from a high-dimensional sample covariance matrix. Aust. N. Z. J. Stat. 52 423-437.

Bai, Z. D. and Silverstein, J. W. (2004). CLT for linear spectral statistics of large-dimensional sample covariance matrices. Ann. Probab., 32, 553-605.

Bai, Z. D. and Silverstein, J. W. (2010). Spectral analysis of large dimensional random matrices, 2nd ed. Springer, New York.

Bouchaud, J. P. and Potters, M. (2009). Financial applications of random matrix theory: A short review. ArXiv:0910.1205v1.

目 Donoho, D. L., Johnstone, I. M., Kerkyacharian, G., and Picard, D. (1996). Density estimation by wavelet thresholding. Ann. Statist., 24, 508-539.

El Karoui, N. (2008) Spectrum estimation for large dimensional covariance matrices using random matrix theory. Ann. Statist. 36 2757-2790.

Li, W. M., Chen, J. Q., Qin, Y. L., Yao, J. F. and Bai, Z. D. (2011) Estimation of the population spectral distribution from a large dimensional sample covariance matrix. Submitted.

Li, W. M. and Yao, J. F. (2011) A local moments estimation of the spectrum of a large dimensional covariance matrix. Submitted.

固 Mestre, X. (2008) Improved estimation of eigenvalues and eigenvectors of covariance matrices using their sample estimates. IEEE Trans. Inform. Theory 54, 5113-5129.

囯
Rao, N. R., Mingo, J. A., Speicher, R. and Edelman, A. (2008) Statistical eigen-inference from large Wishart matrices. Ann. Statist. 36 2850-2885.

Yao, J. F., Kammoun, A., and Najim, J. (2012) Estimation of the covariance matrix of large dimensional data. ArXiv:1201.4672v1.

