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1) Spiked eigenvalues: an example
I SP 500 daily stock prices ; p = 488 stocks;

I n = 1000 daily returns rt(i) = log pt(i)/pt−1(i) from 2007-09-24 to
2011-09-12;



The sample correlation matrix

I Let the SCM (488× 488)

Sn =
1

n

n∑
t=1

(rt − r̄)(rt − r̄)T .

I We consider the sample correlation matrix Rn with

Rn(i , j) =
Sn(i , j)

[Sn(i , i)Sn(j , j)]1/2
.

I The 10 largest and 10 smallest eigenvalues of Rn are:

237.95801 4.8568703 ... 0.0212137 0.0178129
17.762811 4.394394 ... 0.0205001 0.0173591
14.002838 3.4999069 ... 0.0198287 0.0164425
8.7633113 3.0880089 ... 0.0194216 0.0154849
5.2995321 2.7146658 ... 0.0190959 0.0147696



Plots of sample eigenvalues

Left: 488 - 1 = 487 eigenvalues right: 488 - 10 = 478 eigenvalues

=⇒ the point: sample eigenvalues = bulk + spikes

=⇒ Analysis and estimation of spikes + bulk



A generic model

Random factor model

xt =

q0∑
k=1

akst(t) + εt = Ast + εt ,

I st = (st(1), . . . , st(q0)) ∈ Rq0 are q0 < p standardised random
signals/factors,

I A = (a1, . . . , aq0), p × q0 deterministic matrix of factor loadings

I εt is an independent p-dimensional noise sequence, with a diagonal
covariance matrix: Ψ = cov(εt) = diag{σ2

1 , . . . , σ
2
p}.

Therefore,
Σ = cov(xt) = AA∗ + Ψ .

I this model is very old; has wide range of application fields: psychology,
chemometrics, signal processing, economics, etc.



2). Inference on spikes

a). Known results

Spiked population model
Population covariance matrix:

Σ = Cov[xt ] = AA∗ + σ2Ip ,

with eigenvalues

spec(Σ) = (σ2 + α′1, . . . , σ
2 + α′q0 , σ

2, . . . , σ2︸ ︷︷ ︸
p−q0

) ,

where

I α′1 ≥ α′2 ≥ · · · ≥ α′q0 > 0 are non null eigenvalues of AA∗,

or equivalently

spec(Σ) = σ2 × (α1, . . . , αq0 , 1, . . . , 1︸ ︷︷ ︸
p−q0

) ,

with
αi = 1 + α′i/σ

2 .



Asymptotic framework and assumptions

1 p, n→ +∞ such that p/n→ c;

2 The population covariance matrix has K spikes α1 > · · · > αK with
respective multiplicity numbers ni , i.e.

spec(Σ) = σ2(α1, . . . , α1︸ ︷︷ ︸
n1

, α2, . . . , α2︸ ︷︷ ︸
n2

, . . . , αK , · · · , αK︸ ︷︷ ︸
nK

, 1, · · · , 1︸ ︷︷ ︸
p−q0

);

[ n1 + · · ·+ nK = q0 ];

3 αK > 1 +
√

c ( detection level ).

4 E(|x4ij |) < +∞.



Convergence of spike eigenvalues

Consider the sample covariance matrix Sn = 1
n

∑n
i=1 xix

∗
i , with sample

eigenvalues: λn,1 ≥ λn,2 ≥ · · · ≥ λn,p .

Proposition (Baik and Silverstein - 2006)

Let si = n1 + · · ·+ ni for 1 ≤ i ≤ K. Then

I For each k ∈ {1, . . . ,K} and sk−1 < j ≤ sk almost surely,

λn,j −→ ψ(αk) = αk +
cαk

αk − 1
;

I For all 1 ≤ i ≤ L with a prefixed range L almost surely,

λn,q0+i → b = (1 +
√

c)2.

Note. This result has been extended for more general spikes by Bai & Y.,
Benaych-Georges & Nadakuditi.



b) Estimator of q0 (number of spikes)

I Based on these results, we observe that when all the spikes are simple, i.e.
nj ≡ 1, the spacings

δn,j = λn,j − λn,j+1 →

 r > 0 ∀j ≤ q0

0 ∀j > q0

I it is possible to detect q0 form index-number j where δn,j becomes small
(case of simple spikes). Our estimator is define by

q̂n = min{j ∈ {1, . . . , s} : δn,j+1 < dn}, (1)

where (dn)n is a sequence to be defined and s > q0 is a fixed number.



Consistency of q̂n: case of simple spikes

Assume

I All spikes are different (simple spike case);

I σ2 = 1 (if not, take δn,j/σ
2);

and

5 Entries have sub-Gaussian tails: for some positive D, D ′ we have for all
t ≥ D’,

P(|xij| ≥ tD) ≤ e−t .

Theorem [Passemier & Y. 2011]

Under Assumptions (1)-(5) and in the simple spikes case, if dn → 0 such that
n2/3dn → +∞ then

P(q̂n = q0)→ 1 .



Proof (idea)

P(q̂n = q0) = 1− P

 ⋃
1≤j≤q0

{δn,j < dn} ∪ {δn,q0+1 ≥ dn}


≥ 1−

q0∑
j=1

P(δn,j < dn)− P(δn,q0+1 ≥ dn)
(∗)

.

The terms in the sum converge to zero as dn → 0 and δn,j → r > 0. For the
last term

1− (∗) = P(n2/3(λn,q0+1 − λn,q0+2) ≤ n2/3dn)

≥ P
({
|Yn,1| ≤ n2/3 dn

2β

}
∩
{
|Yn,2| ≤ n2/3 dn

2β

})
where Y is a tight sequence by the next proposition, and n2/3dn/2β → +∞, so
1− (∗)→ 1.



Proof (an additional important ingredient)

An (partial) extension of Tracy-Widom law in presence of spikes:

Theorem (Benaych-Georges, Guionnet, Maida - 2010)

Under the above assumptions, for all 1 ≤ i ≤ L with a prefixed range L

Yn,i =
n

2
3

β
(λn,q0+i − b) = OP(1)

where β = (1 +
√

c)(1 +
√

c−1)
1
3 .



Case of multiple spikes

I spacings δn,j → 0 from a same spike can also tend to 0;

I Confusion may be possible between these spacings and those from the
bulk eigenvalues;

I Hopefully, fluctuations of both type of spacings have different rates:

n−1/2 v.s. ' n−2/3 .

Theorem (Bai and Y. (2008))

Under Assumptions (1)-(4) (2), the nk -dimensional real vector

√
n{λn,j − φ(αk), j ∈ {sk−1 + 1, . . . , sk}}

converges weakly to the distribution of the nk eigenvalues of a Gaussian
random matrix whose covariance depend of αk and c.

[ related works are from Baik-Ben-Arous-Pêché, Paul ]



Consistency of q̂n: case of multiple spikes

The previous theorem of Bai and Y. implies:

I If αj = αj+1, convergence in OP(n−1/2);

I For unit eigenvalues, faster convergence in OP(n−2/3).

This allows us to use the same estimator provided we use a new threshold dn.

Theorem (Passemier & Y. (2011))

Under the above assumptions, if

dn = o(n−1/2), and n2/3dn → +∞,

then
P(q̂n = q0)→ 1 .



Simulation experiments

We decided to use another version of our estimator which performs better

q̂∗n = min{j ∈ {1, . . . , s} : δn,j+1 < dn and δn,j+2 < dn}

Threshold sequence: dn = Cn−2/3√2 log log n, where C is a constant to be
adjusted for each case (Idea: law of the iterated logarithm for λn,j , j ≤ q0.).



Simulation experiments

I Performance measure: empirical false detection rates over 500
independent replications

P(q̃n 6= q0)

I Simulation design:

• q0: number of spikes;

• (αi )1≤i≤q0 : spikes;

• p: dimension of the vectors;

• n: sample size;

• c = p/n;

• σ2 = 1 given or to be estimated;

• C : constant in dn.



Experimental design







c) Discussions
- Comparison with an estimator by Kritchman

and Nadler
In the non-spikes case (q0 = 0), nSn ∼Wp(I, n). In this case

Proposition (Johnstone - 2001)

P
(
λn,1 < σ2 βn,p

n2/3
s + b

)
→ F1(s)

where F1 is the Tracy-Widom distribution of order 1 and

βn,p = (1 +
√

p/n)(1 +
√

n/p)
1
3 .

To distinguish a spike eigenvalue λn,k from a non-spike one at an asymptotic
significance level γ, their idea is to check whether

λn,k > σ2

(
βn,p−k

n2/3
s(γ) + b

)
where s(γ) verifies F1(s(γ)) = 1− γ. Their estimator is

q̃n = argmin
k

(
λn,k < σ̂2

(
βn,p−k

n2/3
s(γ) + b

))
− 1.





c) Discussions
- on the tuning parameter C

I C has been tuned manually in each case ;

I For real applications, need a procedure to choose this constant;

I Idea: use Wishart distributions as a benchmark to calibrate C ;

I consider the gap between two largest eigenvalues: λ̃1 − λ̃2



Cont’d

I By simulation to get empirical distribution of λ̃1 − λ̃2 ;

500 independent replications.

I compute the upper 5% quantile s:

P(λ̃1 − λ̃2 ≤ s) '= 0.95 .

I Define a value
C̃ = sn2/3/

√
2× log log(n) .

Results:



Assessment of the automated value C̃ with c = 10

I C̃ > tuned C slightly ;

I Using C̃ −→ only a small drop of performance ;

I higher error rates in the case of equal factors for moderate sample sizes



Application to S&P stocks data

I Estimated number of factors: q̂0 = 17;

I Residual variance: σ̂2 = 0.3616.



3) Inference of the bulk spectrum

Estimation of population spectral distribution

Population

X, mean-zero, p-dim
Cov(X) = Σp

Sample

x1, . . . , xn, i.i.d, size n
Sn =

∑n
i=1 xix

∗
i /n

Large dimensional situations

lim
n→∞

p/n = c > 0

PSD Hp

the empirical spectral
distribution of Σp

ESD Fn

the empirical spectral
distribution of Sn.

Problem: Estimate Hp from Fn.



The Marčenko-Pastur equation

I Suppose that
p/n→ c > 0, Hp

w−→ H,

then under suitable conditions, cf. Marčenko-Pastur ’68, Silverstein ’95,

Fn
w−→ F , n→∞.

I Let s(z) = −(1− c)/z + c

∫
1/(x − z)dF (x),

be the Stieltjes transform of (the companion distribution of) F , then

z = − 1

s(z)
+ c

∫
t

1 + ts(z)
dH(t), z ∈ C+,

which is called Marčenko-Pastur (MP) equation.

I This gives the inverse map of s(z) on C\R.

Almost all statistical tools for inference of H are based on this equation !!



a). Existing methods for estimation of PSD H

I Inversion of the MP equation:

1. [El Karoui (2008)], nonparametric, complex field;
2. [Li et al. (2012)], parametric, real field.

I Methods based on moments of F :

1. [Rao et al. (2008)], quasi-likelihood;
2. [Bai et al. (2010)], complete moment method.

I Methods based on moments and contour-integrals:

1. [Mestre (2008)], eigenvalue splitting condition;
2. [Yao et al. (2012)], global moment of H;
3. [Li and Yao (2012)], local moment of H.



Still needs new methods!
However,

I global inversion methods in [El Karoui (2008)] and [Li et al. (2012)] have
some implementation issues that are non trivial to overcome;

I other methods are based on moments, but there are situations where these
moments can not help to identify model parameters.

Example of a PSD H not identifiable by moments

I H has an inverse cubic density function ([Bouchaud and Potters (2009)])

h(t|α) =
b

(t − a)3
, t ≥ α,

where the parameter is 0 ≤ α < 1 is the parameter to be estimated and
a = 2α− 1, b = 2(1− α)2.

I Then ∫
α

xh(x)dx ≡ 1 ,

∫
α

xkh(x)dx =∞ , for k ≥ 2.

Moments of H are independent from the parameter α!



b). A generalized expectation based method

Main idea

I Use of general test functions f instead of monomials xk (moments) ;

I These test functions are usually smaller than the monomials xk so that

T (f ) =

∫
f (x)dH(x)

are finite.

In the example above of inverse cubic density, f (x) = sin(x) has a finite
integral:

T (f ) = b

∫ ∞
α

sin(x)

(x − a)3
dx .



Generalized expectations and their estimates

I Let f be a analytic function on an open U ⊃ SF , support of F ;

I Define a generalized expectation T (f ) :=
∫

f (t)dH(t);

I It will be shown that

T (f ) = K(c, f ) +
1

2πic

∮
C

zs ′(z)f (−1/s(z))dz ,

where K(c, f ) is a constant, independent from H and C is a contour
enclosing SF .

I With sample eigenvalues, s(z has an empirical estimate

sn(z) = −(1− p/n)/z + (p/n)

∫
1/(x − z)dFn(x)

,

I Therefore, the above generalized expectation can be estimated by

T̂ (f ) = K(p/n, f ) +
n

p

1

2πi

∮
C

zs ′n(z)f (−1/sn(z))dz . (1)



Generalized expectation based estimator of H

I Suppose that H belongs to a parametric family:

H = {Hθ : θ ∈ Θ ⊂ Rq}.

I Construct a q-dim vector of generalized expectations,

γ = (T (fj)) 1≤j≤q =

(∫
fjdHθ

)
;

such that g : θ 7→ γ is an one-to-one map on Θ;

I The generalized expectation estimator (GEE) of θ is defined to be

θ̂n = g−1(γ̂n),

where γ̂n = (T̂ (fj)) 1≤j≤Li with elements defined by (1).



c). Asymptotic properties of the GEE estimator

Assumptions:

Assumption (a). n, p →∞ with p/n→ c ∈ (0,∞).

Assumption (b). The sample covariance takes form

Sn = Σ1/2
p WnW ∗

n Σ1/2
p /n,

where the entries of Wn(p × n) are i.i.d. standard real or complex normal

variables, and Σ
1/2
p stands for any Hermitian square root of Σp.

Assumption (c). Hp
w−→ H, a proper probability distribution on [0,∞).

Moreover, the sequence of spectral norms (‖Σp‖) is bounded.



Asymptotics of {T̂ (fj)}’s

Theorem (Li and Y. (2012))

Under the assumptions (a)-(c), for each j = 1, . . . , q),

1. the generalized expectation T (fj ) can be expressed as

T (fj ) = K(c, fj ) +
1

2πic

∮
C
zs′(z)fj (−1/s(z))dz,

where the constant K(c, fj ) = (1− 1/c)fj (0) if C encloses 0, and zero otherwise;

2. its empirical counterpart T̂ (fj ) based on sn(z) converges almost surely to T (fj );

3. if in addition, the entries of Wn (p × n) are complex normal, the random vector

n
[
T̂ (fj )− Hp(fj )

]
1≤j≤q

D−→ Nq(0,Φ),

where the centralization term Hp(fj ) stands for the expectation of fj with respect to Hp ,
where the asymptotic covariances Φ = (φij )q×q are

φij =
−1

4π2c2

∮
C

∮
C′

fi (−1/s(z1))fj (−1/s(z2))k(z1, z2)dz1dz2,

where k(z1, z2) = s′(z1)s′(z2)/(s(z1)− s(z2))2 − 1/(z1 − z2)2.



Asymptotics of the GEE estimator θ̂n

Theorem (Li and Y. (2012))

In addition to the assumptions (a)-(c), suppose that the true value of the
parameter θ0 is an inner point of Θ. Also, suppose that the function g(θ) is
differentiable in a neighborhood of θ0 and the Jacobian matrix J(θ) = ∂g/∂θ is
invertible at θ0. Then,

1. the GEE θ̂n is strongly consistent, i.e.

θ̂n → θ0, a.s.,

2. moreover, if in addition, the entries of Wn (p × n) are complex normal,
then

n(θ̂n − g−1(γp))
D−→ Nq(0, Γ(θ0)),

where γp = (Hp(fj))1≤j≤q, and Γ(θ0) = J−1(θ0)Φ(θ0)(J−1(θ0))′ with Φ
being defined in Theorem 1.



d). Application: PSD of S&P 500 stocks
covariances

Data analysis:

I Removed the 6 largest eigenvalues (deemed as spike eigenvalues);

I Assume an inverse cubic density for PSD H associated to the 482 bulk
eigenvalues, that is,

h(t|α) =
b

(t − a)3
, t ≥ α ,

where 0 < α < 1, b = 2(1− α)2 and a = 2α− 1;

I Moments-based methods fail, LEE may work!



Application to S&P 500 stocks data

I Consider

f (z) = sin(z), T (f , α) =

∫
sin(t)h(t|α)dt;

I T (f , α) is increasing with respect to α,

0.0 0.2 0.4 0.6 0.8 1.0
Α

0.2

0.4

0.6

0.8

1.0

T� f, Α�

0.0 0.2 0.4 0.6 0.8 1.0
Α

0.2

0.4

0.6

0.8

1.0

�T� f, Α� � �Α

Figure: Curves of T (f , α) (left) and ∂T (f , α)/∂α (right).



Results on S&P 500 stocks data

I GEE: T̂ (f , α) = 0.5546, α̂ = 0.3205;

I LSE: α̂′ = 0.4384 (see [Li et al. (2012)]);

I Denote by fα the density function of LSD F with respect to H(α).

Compute a kernel density estimate f̂ker from the 482 bulk eigenvalues
(Gaussian kernel, bandwidth h = 0.01).

I Consider d(α) = L2(fα, f̂ker ), then d(α̂) = 0.2047, d(α̂′) = 0.2863.
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Figure: f̂ker (plain black), fα̂ (left, blue), and fα̂′ (right, blue).

I GEE yields a significantly better fit to the density of bulk eigenvalues.



Thank you !
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