β matrix models in the multi cut regime

M.Shcherbina

Institute for Low Temperature Physics, Kharkov, Ukraine

Paris

Model definition

Distributions in \mathbb{R}^{n}, depending on the function V and $\beta>0$

$$
\mathrm{p}_{\mathrm{n}, \beta}\left(\lambda_{1}, \ldots, \lambda_{\mathrm{n}}\right)=\mathrm{Z}_{\mathrm{n}, \beta}^{-1}[\mathrm{~V}] \mathrm{e}^{\beta \mathrm{H}\left(\lambda_{1}, \ldots, \lambda_{\mathrm{n}}\right) / 2},
$$

where H (Hamiltonian) and $\mathrm{Z}_{\mathrm{n}, \beta}[\mathrm{V}]$ (partition function) are

$$
\begin{aligned}
\mathrm{H}\left(\lambda_{1}, \ldots, \lambda_{\mathrm{n}}\right) & =-\mathrm{n} \sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{~V}\left(\lambda_{\mathrm{i}}\right)+\sum_{\mathrm{i} \neq \mathrm{j}} \log \left|\lambda_{\mathrm{i}}-\lambda_{\mathrm{j}}\right|, \\
\mathrm{Z}_{\mathrm{n}, \beta}[\mathrm{~V}] & =\int \mathrm{e}^{\beta \mathrm{H}\left(\lambda_{1}, \ldots, \lambda_{\mathrm{n}}\right) / 2} \mathrm{~d} \lambda_{1} \ldots \mathrm{~d} \lambda_{\mathrm{n}}, \quad \mathrm{~V}(\lambda)>(1+\varepsilon) \log \left(1+\lambda^{2}\right) .
\end{aligned}
$$

For $\beta=1,2,4$ it is a joint eigenvalues distribution of real symmetric, hermitian and symplectic matrix models respectively.

Marginal densities (correlation functions)

$$
\mathrm{p}_{1}^{(\mathrm{n})}\left(\lambda_{1}, \ldots, \lambda_{1}\right)=\int_{\mathbb{R}^{\mathrm{n}-1}} \mathrm{p}_{\mathrm{n}, \beta}\left(\lambda_{1}, \ldots \lambda_{1}, \lambda_{1+1}, \ldots, \lambda_{\mathrm{n}}\right) \mathrm{d} \lambda_{1+1} \ldots \mathrm{~d} \lambda_{\mathrm{n}}
$$

Linear eigenvalue statistics and characteristic functional

Linear eigenvalue statistics (LES) of the test function h and NCM

$$
\mathcal{N}_{\mathrm{n}}[\mathrm{~h}]=\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{~h}\left(\lambda_{\mathrm{i}}\right), \quad \mathrm{N}_{\mathrm{n}}[\Delta]=\sharp\left\{\lambda_{\mathrm{i}} \in \Delta\right\} / \mathrm{n}
$$

The moments of LES can be written in terms of correlation functions. In particular,

$$
\mathrm{E}\left\{\mathcal{N}_{\mathrm{n}}[\mathrm{~h}]\right\}=\mathrm{n} \int \mathrm{~h}(\lambda) \mathrm{p}_{1}^{(\mathrm{n})}(\lambda) \mathrm{d} \lambda
$$

and $\operatorname{Var}_{\mathrm{n}}\left\{\mathcal{N}_{\mathrm{n}}[\mathrm{h}]\right\}$ can be expressed in terms of $\mathrm{p}_{2}^{(\mathrm{n})}\left(\lambda_{1}, \lambda_{2}\right)$ and $\mathrm{p}_{1}^{(\mathrm{n})}\left(\lambda_{1}\right)$.
Characteristic functional

$$
\begin{aligned}
\widetilde{\mathrm{Z}}_{\mathrm{n}, \beta}[\mathrm{~h}] & =\mathrm{E}_{\beta, \mathrm{n}}\left\{\mathrm{e}^{\beta\left(\mathcal{N}_{\mathrm{n}}[\mathrm{~h}]-\mathrm{E}\left\{\mathcal{N}_{\mathrm{n}}[\mathrm{~h}]\right\}\right) / 2}\right\} \\
& =\mathrm{Z}_{\mathrm{n}, \beta}\left[\mathrm{~V}-\frac{1}{\mathrm{n}}\left(\mathrm{~h}-\mathrm{E}\left\{\mathcal{N}_{\mathrm{n}}[\mathrm{~h}]\right\}\right)\right] / \mathrm{Z}_{\mathrm{n}, \beta}[\mathrm{~V}],
\end{aligned}
$$

First step for β matrix models
Theorem [Boutet de Monvel, Pastur, S:95; Johansson:98]
If V is a Hölder function, then

$$
\log \mathrm{Z}_{\mathrm{n}, \beta}[\mathrm{~V}]=\frac{\mathrm{n}^{2} \beta}{2} \mathcal{E}[\mathrm{~V}]+\mathrm{O}(\mathrm{n} \log \mathrm{n})
$$

where $\mathcal{E}[\mathrm{V}]=-\min _{\mathrm{m} \in \mathcal{M}_{1}}\left\{\mathrm{~L}[\mathrm{dm}, \mathrm{dm}]+\int \mathrm{V}(\lambda) \mathrm{m}(\mathrm{d} \lambda)\right\}=\mathcal{E}_{\mathrm{V}}\left(\mathrm{m}^{*}\right)$,

$$
\mathrm{L}\left[\mathrm{dm}, \mathrm{dm}^{\prime}\right]=\int \log |\lambda-\mu|^{-1} \mathrm{dm}(\lambda) \mathrm{dm}^{\prime}(\mu)
$$

$\mathrm{m}^{*}(\mathrm{~d} \lambda)=\rho(\lambda) \mathrm{d} \lambda$ (called the equilibrium measure) has a compact support $\sigma:=\operatorname{supp} \mathrm{m}^{*}$.
Moreover, if $\mathrm{h}^{\prime} \in \mathrm{L}_{2}\left[\sigma_{\varepsilon}\right]$

$$
\left|\mathrm{n}^{-1} \mathrm{E}\left\{\mathcal{N}_{\mathrm{n}}[\mathrm{~h}]\right\}-\left(\mathrm{h}, \mathrm{~m}^{*}\right)\right| \leq \mathrm{Cn}^{-1 / 2} \log ^{1 / 2} \mathrm{n}| | \mathrm{h}^{\prime}\left\|_{2}^{1 / 2}\right\| \mathrm{h} \|_{2}^{1 / 2}
$$

Motivation to study $\log \mathrm{Z}_{\mathrm{n}, \beta}[\mathrm{V}]:$ universality for $\beta=1,4$

Result of Widom:99

For polynomial V of degree $2 m$ there is $(2 m-1) \times(2 m-1)$ matrix T_{n} (it can be constructed directly) such that if $\log \operatorname{det} \mathrm{T}_{\mathrm{n}}>-\mathrm{C}$ uniformly in n , then the Dyson universality conjecture is true for $\beta=1,4$

- $\mathrm{V}=\lambda^{4} / 4+\mathrm{a} \lambda^{2} / 2$ [Stojanovich:02],
- $\mathrm{V}=\lambda^{2 \mathrm{~m}} \quad$ [Deift,Gioev:07,07a],
- V-real analytic with one interval equilibrium density [S:09,09a].

Motivation to study $\log \mathrm{Z}_{\mathrm{n}, \beta}[\mathrm{V}]:$ universality for $\beta=1,4$

Result of Widom:99

For polynomial V of degree $2 m$ there is $(2 m-1) \times(2 m-1)$ matrix T_{n} (it can be constructed directly) such that if $\log \operatorname{det} \mathrm{T}_{\mathrm{n}}>-\mathrm{C}$ uniformly in n , then the Dyson universality conjecture is true for $\beta=1,4$

- $\mathrm{V}=\lambda^{4} / 4+\mathrm{a} \lambda^{2} / 2$ [Stojanovich:02],
- $\mathrm{V}=\lambda^{2 \mathrm{~m}} \quad$ [Deift,Gioev:07,07a],
- V-real analytic with one interval equilibrium density [S:09,09a].

Observation of Stojanovich [St:02]

$$
\operatorname{det}\left(\mathrm{T}_{\mathrm{n}}\right)=\left(\frac{\mathrm{Z}_{\mathrm{n}, 1}[\mathrm{~V}] \mathrm{Z}_{\mathrm{n} / 2,4}[\mathrm{~V}]}{\mathrm{Z}_{\mathrm{n}, 2}[\mathrm{~V}](\mathrm{n} / 2)!2^{\mathrm{n}}}\right)^{2}
$$

Hence to control $\operatorname{det}\left(T_{n}\right)$, it suffices to control $\log \left(Z_{n, \beta} / n!\right)$ for $\beta=1,2,4$ up to $\mathrm{O}(1)$ terms.

Results for one cut potentials
Theorem [Johansson:98] CLT for LES in the one cut case
V is polynomial, $\sigma=[\mathrm{a}, \mathrm{b}]$, and ρ is "generic". Then for any $\mathrm{h}: \mathbb{R} \rightarrow \mathbb{R}$ with $\left\|\mathrm{h}^{(4)}\right\|_{\infty},\left\|\mathrm{h}^{\prime}\right\|_{\infty} \leq \log \mathrm{n}$

$$
\widetilde{\mathrm{Z}}_{\mathrm{n}, \beta}[\mathrm{~h}]=\exp \left\{\frac{\beta}{2}\left(\left(\frac{2}{\beta}-1\right)(\mathrm{h}, \nu)+\frac{1}{4}\left(\overline{\mathrm{D}}_{\sigma} \mathrm{h}, \mathrm{~h}\right)\right)\right\}\left(1+\mathrm{n}^{-1} \mathrm{O}\left(\left\|\mathrm{~h}^{(4)}\right\|_{\infty}^{3}\right)\right)
$$

where the "variance operator" $\overline{\mathrm{D}}_{\sigma}$ and the measure ν have the form

$$
\begin{aligned}
& \left(\overline{\mathrm{D}}_{\sigma} \mathrm{h}, \mathrm{~h}\right)=\int_{\sigma} \frac{\mathrm{h}(\lambda) \mathrm{d} \lambda}{\pi^{2} \mathrm{X}^{1 / 2}(\lambda)} \int_{\sigma} \frac{\mathrm{h}^{\prime}(\mu) \mathrm{X}^{1 / 2}(\mu) \mathrm{d} \mu}{\lambda-\mu}, \mathrm{X}_{\sigma}(\lambda)=(\mathrm{b}-\lambda)(\lambda-\mathrm{a}) \\
& (\nu, \mathrm{h}):=\frac{1}{4}(\mathrm{~h}(\mathrm{~b})+\mathrm{h}(\mathrm{a}))-\frac{1}{2 \pi} \int_{\sigma} \frac{\mathrm{h}(\lambda) \mathrm{d} \lambda}{\mathrm{X}^{1 / 2}(\lambda)}+\frac{1}{2}\left(\mathrm{D}_{\sigma} \log \mathrm{P}, \mathrm{~h}\right)
\end{aligned}
$$

Remark

D_{σ} is "almost" $\mathcal{L}_{\sigma}^{-1}$, where \mathcal{L}_{σ} is the integral operator defined by the kernel $\log |\lambda-\mu|^{-1}$ for the interval σ

Theorem [Kriecherbauer, S:10]

(1) For $\mathrm{h}=0$

$$
\begin{aligned}
\log \left(\mathrm{Z}_{\mathrm{n}, \beta} / \mathrm{n}!\right)= & \frac{\beta \mathrm{n}^{2}}{2} \mathcal{E}[\mathrm{~V}]+\mathrm{F}_{\beta}(\mathrm{n})+\mathrm{n}\left(\frac{\beta}{2}-1\right)((\log \rho, \rho)-1-\log 2 \pi) \\
& +\mathrm{r}_{\beta}[\rho]+\mathrm{O}\left(\mathrm{n}^{-1}\right)
\end{aligned}
$$

where $\mathrm{F}_{\beta}(\mathrm{n})$ corresponds to the linear, logarithmic and zero order terms of the expansion in n of $\log \mathrm{Z}_{\mathrm{n}, \beta}\left[\mathrm{V}^{*}\right]$ for $\mathrm{V}^{*}(\lambda)=\lambda^{2} / 2$:

$$
\mathrm{F}_{\beta}(\mathrm{n})=\mathrm{n}\left(\frac{\beta}{2}-1\right)\left(\log \frac{\mathrm{n} \beta}{2}-\frac{1}{2}\right)+\mathrm{n} \log \frac{\sqrt{2 \pi}}{\Gamma(\beta / 2)}-\mathrm{c}_{\beta} \log \mathrm{n}+\mathrm{c}_{\beta}^{(1)},
$$

where $\mathrm{c}_{\beta}=\frac{\beta}{24}-\frac{1}{4}+\frac{1}{6 \beta}$ and $\mathrm{c}_{\beta}^{(1)}$ is some depending only on β
constant (for $\beta=2, \mathrm{c}_{\beta}^{(1)}=\zeta^{\prime}(1)$)

Other results for one cut potentials:

(1) [Albeverio,Pastur,S:01] expansion of the first and the second correlators for one-cut real analytic V and $\beta=2$;
(2) [Ercolani, McLaughlin:03] expansion of $\log \mathrm{Z}_{\mathrm{n}, \beta}[\mathrm{V}]$ for polynomial one-cut V and $\beta=2$;
(3) [Borot, Guionnet:11] expansion of all correlators and $\log \mathrm{Z}_{\mathrm{n}, \beta}[\mathrm{V}]$ for one-cut real analytic V and any β.

CLT and expansions for multi - cut case. Results.

(1) [Chekhov,Eynard:06, Eynard:09] formal expansions for multi-cut V and any β;
(2) [Pastur:07] derivation of CLT from OP-asymptotics of [Deift at al:99] for real analytic h and $\beta=2$;

Idea from the mean field theory of statistical mechanics Consider the Hamiltonian

$$
\mathrm{H}_{\mathrm{n}}(\bar{\sigma})=\mathrm{H}_{\mathrm{n}}^{*}(\bar{\lambda})+\frac{1}{2}\left(\sum_{\mathrm{j}} \varphi\left(\lambda_{\mathrm{j}}\right)\right)^{2},
$$

where $\mathrm{H}_{\mathrm{n}}^{*}$ is the Hamiltonian for which we are able to find the $\log \mathrm{Z}_{\mathrm{n}}^{*}(\mathrm{u})$ up to the order $\mathrm{O}\left(\mathrm{n}^{-\mathrm{k}}\right)$

$$
\mathrm{f}_{\mathrm{n}}^{*}(\mathrm{u})=\beta^{-1} \log \mathrm{Z}_{\mathrm{n}}^{*}(\mathrm{u})=\beta^{-1}\left(\log \mathrm{Z}_{\mathrm{n}}^{*}(0)+\mathrm{d} \frac{\mathrm{u}^{2}}{2}+\sum \mathrm{d}_{\mathrm{k}}(\mathrm{u}) \mathrm{n}^{-\mathrm{k}}\right)
$$

where

$$
\mathrm{Z}_{\mathrm{n}}^{*}[\mathrm{u}]:=\int \mathrm{d} \overline{\mathrm{e}}{ }^{\beta\left(\mathrm{H}_{\mathrm{n}}(\bar{\lambda})+\mathrm{nv} \sum \varphi\left(\lambda_{\mathrm{i}}\right)+\mathrm{u} \sum\left(\varphi\left(\lambda_{\mathrm{i}}\right)-\langle\varphi\rangle\right)\right)} .
$$

We would like to find the partition function of H_{n} :

$$
\mathrm{Z}_{\mathrm{n}}=\int \mathrm{d} \bar{\lambda} \mathrm{e}^{\beta \mathrm{H}_{\mathrm{n}}(\bar{\lambda})}
$$

- Introduce the "approximate" Hamiltonian

$$
\begin{aligned}
& \mathrm{H}_{\mathrm{n}}^{(\mathrm{a})}(\bar{\lambda})=\mathrm{H}_{\mathrm{n}}^{*}(\bar{\lambda})+\mathrm{nv} \sum_{\mathrm{j}} \varphi\left(\lambda_{\mathrm{i}}\right)-\mathrm{n}^{2} \frac{\mathrm{v}^{2}}{2}, \quad \mathrm{v}=\langle\varphi\rangle_{\mathrm{H}_{\mathrm{n}}} \\
& \mathrm{H}_{\mathrm{n}}=\mathrm{H}_{\mathrm{n}}^{(\mathrm{a})}(\bar{\lambda})+\frac{1}{2} \sum_{\mathrm{i}, \mathrm{j}}\left(\varphi\left(\lambda_{\mathrm{i}}\right)-\langle\varphi\rangle_{\mathrm{H}_{\mathrm{n}}}\right)\left(\varphi\left(\lambda_{\mathrm{j}}\right)-\langle\varphi\rangle_{\mathrm{H}_{\mathrm{n}}}\right)
\end{aligned}
$$

- Use the Hubbard-Stratonovich transformation

$$
\mathrm{Z}_{\mathrm{n}}=\sqrt{\frac{\beta}{2 \pi}} \int \mathrm{~d} \bar{\lambda} \int \mathrm{due}^{\beta \mathrm{H}_{\mathrm{n}}^{(\mathrm{a})}(\bar{\lambda})+\mathrm{u} \beta \sum_{\mathrm{j}}\left(\varphi\left(\lambda_{\mathrm{i}}\right)-\langle\varphi\rangle_{\mathrm{H}_{\mathrm{n}}}\right)-\beta \mathrm{u}^{2} / 2}
$$

- Take the integral with respect to $\bar{\lambda}$ first. We obtain

$$
\mathrm{Z}_{\mathrm{n}}=\int \mathrm{due} \mathrm{f}_{\mathrm{n}}^{\beta(\mathrm{u})-\beta \mathrm{u}^{2} / 2}
$$

- Expand $f_{n}^{*}(u)$ in the series with respect to n^{-1} and live at the exponent only $\mathrm{O}(1)$ quadratic term. Taking the integrals with respect to u we obtain the expansion for Z_{n}.

Assumptions and the restriction of the integration domain

Assumptions

(1) V is real analytic,

$$
\sigma=\bigcup_{\alpha=1}^{\mathrm{q}} \sigma_{\alpha}, \quad \mu_{\alpha}=\int_{\sigma_{\alpha}} \rho_{\alpha}(\lambda) \mathrm{d} \lambda, \quad \rho_{\alpha}:=1_{\sigma_{\alpha}} \rho .
$$

(0) V is of generic behavior.

Replace the integration domain in the definition of $\mathrm{Z}_{\mathrm{n}, \beta}[\mathrm{V}]$ from \mathbb{R} to σ_{ε}, where

$$
\sigma_{\varepsilon}=\bigcup_{\alpha=1}^{\mathrm{q}} \sigma_{\alpha, \varepsilon}, \quad \sigma_{\alpha, \varepsilon} \cap \sigma_{\alpha+1, \varepsilon}=\emptyset
$$

Then, according to the result of [Pastur,S:07], $\mathrm{Z}_{\mathrm{n}, \beta}[\mathrm{V}]$ will be changed by $\left(1+\mathrm{O}\left(\mathrm{e}^{-\mathrm{nc}}\right)\right)$ factor.

Construction of the "approximate" Hamiltonian

Below we will use the notation

$$
\chi_{\alpha}(\lambda)=1_{\sigma_{\alpha, \varepsilon}}(\lambda)
$$

Then for our domain $1=\sum_{\alpha} \chi_{\alpha}(\lambda)$ and we can write $\mathrm{H}(\lambda)$ as

$$
\begin{aligned}
\mathrm{H}(\bar{\lambda})= & -\mathrm{n} \sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{~V}\left(\lambda_{\mathrm{i}}\right)+\sum_{\mathrm{i} \neq \mathrm{j}, \alpha, \alpha^{\prime}=1}^{\mathrm{q}} \chi_{\alpha}\left(\lambda_{\mathrm{i}}\right) \chi_{\alpha^{\prime}}\left(\lambda_{\mathrm{j}}\right) \log \left|\lambda_{\mathrm{i}}-\lambda_{\mathrm{j}}\right| \\
= & -\mathrm{n} \sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{~V}\left(\lambda_{\mathrm{i}}\right)+\sum_{\mathrm{i} \neq \mathrm{j}} \sum_{\alpha=1}^{\mathrm{q}} \chi_{\alpha}\left(\lambda_{\mathrm{i}}\right) \chi_{\alpha}\left(\lambda_{\mathrm{j}}\right) \log \left|\lambda_{\mathrm{i}}-\lambda_{\mathrm{j}}\right| \\
& +\sum_{\substack{\mathrm{i}, \mathrm{j}=1 \\
\alpha \neq \alpha^{\prime}}}^{\mathrm{n}} \int \log |\lambda-\mu| \chi_{\alpha}(\lambda) \chi_{\alpha^{\prime}}(\mu) \delta_{\lambda_{\mathrm{i}}}(\lambda) \delta_{\lambda_{\mathrm{j}}}(\mu) \mathrm{d} \lambda \mathrm{~d} \mu=\mathrm{H}^{*}
\end{aligned}
$$

Then write under the integral sign

$$
\delta_{\lambda_{\mathbf{i}}}(\lambda)=\delta_{\lambda_{\mathbf{i}}}(\lambda)-\left\langle\delta_{\lambda_{\mathbf{i}}}(\lambda)\right\rangle+\left\langle\delta_{\lambda_{\mathbf{i}}}(\lambda)\right\rangle=\Delta_{\mathbf{i}}(\lambda)+\left\langle\delta_{\lambda_{\mathbf{i}}}(\lambda)\right\rangle
$$

Construction of the "approximate" Hamiltonian

$$
\begin{aligned}
\mathrm{H}(\bar{\lambda})= & \mathrm{H}^{*}(\bar{\lambda})+2 \mathrm{n} \sum_{\mathrm{j}=1}^{\mathrm{n}} \mathrm{~V}_{\alpha}^{(\mathrm{a})}\left(\lambda_{\mathrm{i}}\right)-\mathrm{n}^{2} \Sigma^{*} \\
& +\sum_{\substack{\mathrm{i}, j=1 \\
\alpha \neq \alpha^{\prime}}}^{\mathrm{n}} \int \log |\lambda-\mu| \chi_{\alpha}(\lambda) \chi_{\alpha^{\prime}}(\mu) \Delta_{\mathrm{i}}(\lambda) \Delta_{\mathrm{j}}(\mu) \mathrm{d} \lambda \mathrm{~d} \mu \\
= & \mathrm{H}_{\mathrm{a}}(\bar{\lambda})+\Delta \mathrm{H}(\bar{\lambda}),
\end{aligned}
$$

where, taking into account that $\left\langle\delta_{\lambda_{\mathrm{i}}}(\lambda)\right\rangle=\rho(\lambda)$, we obtain that the "effective potentials" $\mathrm{V}_{\alpha}^{(\mathrm{a})}$ and Σ^{*} have the form

$$
\begin{aligned}
\mathrm{V}_{\alpha}^{(\mathrm{a})}(\lambda) & =\chi_{\alpha}(\lambda) \sum_{\alpha^{\prime} \neq \alpha} \int \log |\lambda-\mu| \chi_{\alpha^{\prime}}(\mu) \rho(\mu) \mathrm{d} \mu \\
\Sigma^{*} & :=\sum_{\alpha \neq \alpha^{\prime}} \int_{\sigma_{\alpha}} \mathrm{d} \lambda \int_{\sigma_{\alpha^{\prime}}} \mathrm{d} \mu \log |\lambda-\mu| \rho(\lambda) \rho(\mu)
\end{aligned}
$$

It is easy to see that

$$
\mathrm{Z}_{\mathrm{n}, \beta}[\mathrm{~V}] / \mathrm{n}!=\sum_{|\overline{\mathrm{n}}|=\mathrm{n}} \frac{\int 1_{\overline{\mathrm{n}}}(\bar{\lambda}) \mathrm{e}^{\beta \mathrm{H}(\bar{\lambda}) / 2}}{\mathrm{n}_{1}!\ldots \mathrm{n}_{\mathrm{q}}!}=\sum_{|\overline{\mathrm{n}}|=\mathrm{n}} \frac{\int 1_{\overline{\mathrm{n}}}(\bar{\lambda}) \mathrm{e}^{\beta\left(\mathrm{H}_{\mathrm{a}}(\bar{\lambda})+\Delta \mathrm{H}(\bar{\lambda})\right) / 2}}{\mathrm{n}_{1}!\ldots \mathrm{n}_{\mathrm{q}}!}
$$

where $\overline{\mathrm{n}}:=\left(\mathrm{n}_{1}, \ldots, \mathrm{n}_{\mathrm{q}}\right),|\overline{\mathrm{n}}|:=\sum_{\alpha=1}^{\mathrm{q}} \mathrm{n}_{\alpha}$, and $1_{\overline{\mathrm{n}}}(\bar{\lambda})$ is the indicator of the configurations of $\lambda_{1}, \ldots, \lambda_{\mathrm{n}}$, such that $\lambda_{1}, \ldots, \lambda_{\mathrm{n}_{1}} \in \sigma_{1, \varepsilon}, \lambda_{\mathrm{n}_{1}+1}, \ldots, \lambda_{\mathrm{n}_{1}+\mathrm{n}_{2}} \in \sigma_{2, \varepsilon}, \ldots \lambda_{\mathrm{n}-\mathrm{n}_{\mathrm{q}}+1}, \ldots, \lambda_{\mathrm{q}} \in \sigma_{\mathrm{q}, \varepsilon}$ Choose $\mathrm{M}=\left[\log ^{2} \mathrm{n}\right]$ and represent $\Delta \mathrm{H}(\bar{\lambda}) 1_{\overline{\mathrm{n}}}(\bar{\lambda})$ as

$$
\begin{aligned}
& 1_{\overline{\mathrm{n}}}(\bar{\lambda}) \sum_{\substack{\mathrm{j}, \mathrm{j}^{\prime}=1 \\
\alpha \neq \alpha^{\prime}}}^{\mathrm{n}} \sum_{\mathrm{k}, \mathrm{~m}=1}^{\mathrm{M}} \mathrm{~L}_{\mathrm{k}, \mathrm{~m}}^{\left(\alpha, \alpha^{\prime}\right)}\left(\mathrm{p}_{\mathrm{k}}^{(\alpha)}\left(\lambda_{\mathrm{j}}\right)-\frac{\mathrm{n}}{\mathrm{n}_{\alpha}} \mathrm{c}_{\mathrm{k}}^{(\alpha)}\right)\left(\mathrm{p}_{\mathrm{m}}^{\left(\alpha^{\prime}\right)}\left(\lambda_{\mathrm{j}^{\prime}}\right)-\frac{\mathrm{n}}{\mathrm{n}_{\alpha^{\prime}}} \mathrm{c}_{\mathrm{k}}^{(\alpha)}\right) \\
& +\mathrm{O}\left(\mathrm{e}^{-\mathrm{c} \log ^{2} \mathrm{n}}\right), \quad \mathrm{c}_{\mathrm{k}}^{(\alpha)}:=\left(\mathrm{p}_{\mathrm{k}}^{(\alpha)}, \rho 1_{\sigma_{\alpha}}\right)
\end{aligned}
$$

where $\mathrm{L}_{\mathrm{k}, \mathrm{m}}^{\left(\alpha, \alpha^{\prime}\right)}$ are the Fourier coefficient of the function $\log |\lambda-\mu| \chi_{\alpha}(\lambda) \chi_{\alpha^{\prime}}(\mu)$ with respect to the basis $\left\{\mathrm{p}_{\mathrm{k}}^{(\alpha)}(\lambda) \mathrm{p}_{\mathrm{m}}^{\left(\alpha^{\prime}\right)}(\mu)\right\}$

Main steps of the proof

- For each $\overline{\mathrm{n}}$ we linearize $\Delta \mathrm{H}(\bar{\lambda}) 1_{\overline{\mathrm{n}}}(\bar{\lambda})$, using the HubbardStratonovich transformation. This adds to $\mathrm{H}^{(\mathrm{a})}(\bar{\lambda}) 1_{\bar{n}}(\bar{\lambda})$ the additional potential $h_{\alpha}[\bar{u}]$, depending on the integration parameters $\overline{\mathrm{u}}$. Then for each σ_{α} we are in the situation of Theorem 3 .
- Apply Theorems 2,3 to find $\mathrm{Z}_{\mathrm{n}_{\alpha}, \beta}\left[\mathrm{V}+2 \mathrm{~V}_{\alpha}^{(\mathrm{a})}+\frac{1}{\mathrm{n}} \mathrm{h}_{\alpha}[\overline{\mathrm{u}}]\right]$. We obtain the quadratic form of \bar{u} in the exponent.
- Integrate with respect to \bar{u}. We obtain the expansion for the initial partition function.

Important definitions

$$
\mathrm{X}_{\sigma}(\lambda)=\prod_{\alpha=1}^{\mathrm{q}}\left(\mathrm{~b}_{\alpha}-\lambda\right)\left(\lambda-\mathrm{a}_{\alpha}\right)
$$

Definition of \mathcal{Q}

$$
\mathcal{Q}=\left\{\mathcal{Q}_{\alpha \alpha^{\prime}}\right\}_{\alpha, \alpha^{\prime}=1}^{\mathrm{q}}, \quad \mathcal{Q}_{\alpha \alpha^{\prime}}=\left(\mathcal{L} \psi^{(\alpha)}, \psi^{\left(\alpha^{\prime}\right)}\right)
$$

where $\psi^{(\alpha)}(\lambda)=\mathrm{p}_{\alpha}(\lambda) \mathrm{X}^{-1 / 2}(\lambda) 1_{\sigma}\left(\mathrm{p}_{\alpha}\right.$ is a polynomial of degree $\left.\mathrm{q}-1\right)$ is a unique solution of the system of equations

$$
\left(\mathcal{L} \psi^{(\alpha)}\right)_{\alpha^{\prime}}=\delta_{\alpha \alpha^{\prime}}, \quad \alpha^{\prime}=1, \ldots, \mathrm{q}
$$

(harmonic measure of σ_{α} with respect to $\mathbb{C} \backslash \sigma$)

Definition of I[h]

$$
\mathrm{I}[\mathrm{~h}]=\left(\mathrm{I}_{1}[\mathrm{~h}], \ldots, \mathrm{I}_{\mathrm{q}}[\mathrm{~h}]\right), \quad \mathrm{I}_{\alpha}[\mathrm{h}]:=\sum_{\alpha^{\prime}} \mathcal{Q}_{\alpha \alpha^{\prime}}^{-1}\left(\mathrm{~h}, \psi^{\left(\alpha^{\prime}\right)}\right)
$$

Main results

Theorem 3 [S:12]
Let the potential V satisfy conditions C1-C2. Then
(1) for $\mathrm{h}:\left\|\mathrm{h}^{(6)}\right\|_{\infty}<\infty$

$$
\begin{aligned}
\widetilde{\mathrm{Z}}_{\mathrm{n}, \beta}[\mathrm{~h}]= & \mathrm{e}^{\frac{\beta}{8}(\mathcal{D h}, \mathrm{~h})+\left(\frac{\beta}{2}-1\right)(\mathcal{G} \nu, \mathrm{h})} \frac{\Theta(\overline{\mathrm{I}}[\mathrm{~h}] ;\{\mathrm{n} \bar{\mu}\})}{\Theta(0 ;\{\mathrm{n} \bar{\mu}\})} \\
& \times\left(1+\mathrm{O}\left(\mathrm{n}^{-\kappa}\left(\left\|\mathrm{h}^{\prime}\right\|_{\infty}\left\|\mathrm{h}^{(6)}\right\|_{\infty}^{2}\right)\right)\right)
\end{aligned}
$$

where the operators $\mathcal{D}, \mathcal{G}, \widetilde{\mathcal{L}}$ are defined in terms of \mathcal{L} and $\oplus \mathrm{D}_{\sigma_{\alpha}}$

$$
\begin{aligned}
\Theta(\mathrm{I}[\mathrm{~h}] ;\{\mathrm{n} \bar{\mu}\}):= & \sum_{\mathrm{n}_{1}+\cdots+\mathrm{n}_{\mathrm{G}}=\mathrm{n}_{0}} \exp \left\{-\frac{\beta}{2}\left(\mathcal{Q}^{-1} \Delta \overline{\mathrm{n}}, \Delta \overline{\mathrm{n}}\right)+\frac{\beta}{2}(\Delta \overline{\mathrm{n}}, \mathrm{I}[\mathrm{~h}])\right. \\
& \left.+\left(\frac{\beta}{2}-1\right)(\Delta \overline{\mathrm{n}}, \mathrm{I}[\log \bar{\rho}])\right\},
\end{aligned}
$$

$$
\{\mathrm{n} \bar{\mu}\}=\left(\left\{\mathrm{n} \mu_{1}\right\}, \ldots,\left\{\mathrm{n} \mu_{\mathrm{q}}\right\}\right),(\Delta \overline{\mathrm{n}})_{\alpha}=\mathrm{n}_{\alpha}-\left\{\mathrm{n} \mu_{\alpha}\right\}, \mathrm{n}_{0}=\sum^{\mathrm{q}}\left\{\mathrm{n} \mu_{\alpha}\right\},
$$

(1) for $\mathrm{h}=0$ we have

$$
\begin{aligned}
\mathrm{Z}_{\mathrm{n}, \beta}[\mathrm{~V}]= & \mathcal{S}_{\mathrm{n}, \beta}[\mathrm{~V}] \frac{\exp \left\{\frac{2}{\beta}\left(\frac{\beta}{2}-1\right)^{2}(\widetilde{\mathcal{L}} \mathcal{G} \nu, \nu)\right\}}{\operatorname{det}^{1 / 2}(1-\overline{\mathrm{D}} \widetilde{\mathcal{L}})} \Theta(0 ;\{\mathrm{n} \bar{\mu}\})\left(1+\mathrm{O}\left(\mathrm{n}^{-\kappa}\right)\right), \\
\mathcal{S}_{\mathrm{n}, \beta}[\mathrm{~V}]= & \exp \left\{\frac{\mathrm{n}^{2} \beta}{2} \mathcal{E}[\mathrm{~V}]+\mathrm{F}_{\beta}(\mathrm{n})+\mathrm{n}\left(\frac{\beta}{2}-1\right)((\log \rho, \rho)-1-\log 2 \pi)\right. \\
& \left.-\mathrm{c}_{\beta}(\mathrm{q}-1) \log \mathrm{n}+\sum_{\alpha=1}^{\mathrm{q}}\left(\mathrm{r}_{\beta}\left[\mu_{\alpha}^{-1} \rho_{\alpha}\right]-\mathrm{c}_{\beta} \log \mu_{\alpha}\right)\right\},
\end{aligned}
$$

Theorem 4 [S:in prep]

Under the conditions C1-C2 $\mathrm{Q}_{\mathrm{n}, \beta}[\mathrm{V}]$ admits the asymptotic expansion in $\mathrm{n}^{-\mathrm{j}}$ with quasi-periodic in n coefficients $\mathrm{q}_{\beta, \mathrm{j}}[\mathrm{n}]$:

$$
\mathrm{Z}_{\mathrm{n}, \beta}[\mathrm{~V}]=\mathcal{S}_{\mathrm{n}, \beta}[\mathrm{~V}] \frac{\exp \left\{\frac{2}{\beta}\left(\frac{\beta}{2}-1\right)^{2}(\widetilde{\mathcal{L}} \mathcal{G} \nu, \nu)\right\}}{\operatorname{det}^{1 / 2}(1-\overline{\mathrm{D}} \widetilde{\mathcal{L}})} \Theta(0 ;\{\mathrm{n} \bar{\mu}\}) \sum_{\mathrm{j}=1} \mathrm{n}^{-\mathrm{j}} \mathrm{q}_{\beta, \mathrm{j}}[\mathrm{n}]
$$

Corollaries

Corollary 1

Theorem 3 yields that the fluctuations of $\mathcal{N}_{\mathrm{n}}[\mathrm{h}]$ for generic h are non Gaussian. They are Gaussian, if there exists some c such that

$$
\mathrm{I}_{\alpha}[\mathrm{h}]=\mathrm{c}, \quad \alpha=1, \ldots, \mathrm{q} ; \quad \Leftrightarrow \quad\left(\mathrm{h}-\mathrm{c}, \psi^{(\alpha)}\right)=0, \quad \alpha=1, \ldots, \mathrm{q} .
$$

Remark 1

The operator \mathcal{D}, which appears in the place of the "variance operator" in the multi-cut case, differs from \mathcal{L}^{-1} only by the finite rank perturbation. This perturbation provides, in particular, that $\mathcal{D f}=0$, if $\mathrm{f}(\lambda)=$ const, $\lambda \in \sigma$

$$
(\mathcal{D h}, \mathrm{h})=\frac{1}{\pi^{2}} \int_{\sigma} \frac{\mathrm{h}(\lambda) \mathrm{d} \lambda}{\mathrm{X}^{-1 / 2}(\lambda)} \int_{\sigma} \frac{\mathrm{h}^{\prime}(\mu) \mathrm{X}^{1 / 2}(\mu) \mathrm{d} \mu}{(\lambda-\mu)}-?
$$

Corollaries of Theorem 3 for the moments of $\mathcal{N}_{\mathrm{n}}[\mathrm{h}]$

Expectation of $\mathcal{N}_{\mathrm{n}}[\mathrm{h}]$

For any β in the multi cut case we obtain $\mathrm{O}\left(\mathrm{n}^{-1}\right)$ correction to $\mathrm{E}_{\beta, \mathrm{n}}\left\{\mathrm{n}^{-1} \mathcal{N}_{\mathrm{n}}[\mathrm{h}]\right\}:$
$\mathrm{E}_{\beta, \mathrm{n}}\left\{\mathrm{n}^{-1} \mathcal{N}_{\mathrm{n}}[\mathrm{h}]\right\}-(\mathrm{h}, \rho)=\frac{1}{\mathrm{n}}\left[\left(\frac{\beta}{2}-1\right)(\mathcal{G} \nu, \mathrm{h})+\sum_{\alpha=1}^{\mathrm{q}} \mathrm{I}_{\alpha}[\mathrm{h}] \mathrm{c}_{\alpha}(\mathrm{n})\right]+\mathrm{O}\left(\frac{1}{\mathrm{n}^{1+\delta}}\right)$,

Variance of $\mathcal{N}_{\mathrm{n}}[\mathrm{h}]$

$$
\operatorname{Var}\left\{\mathcal{N}_{\mathrm{n}}[\varphi]\right\}=\frac{\beta}{8}(\mathcal{D h}, \mathrm{~h})+\sum_{\alpha=1}^{\mathrm{q}} \mathrm{~d}_{\alpha, \alpha^{\prime}}(\mathrm{n}) \mathrm{I}_{\alpha}[\mathrm{h}] \mathrm{I}_{\alpha^{\prime}}[\mathrm{h}]
$$

where $\mathrm{c}_{\alpha}(\mathrm{n})$ and $\mathrm{d}_{\alpha, \alpha^{\prime}}(\mathrm{n})$ are quasi-periodic functions (derivatives of Θ-function above).

Corollaries from Theorem 3 for the universality of local regimes
(1) bulk universality for $\beta=1,4$;
(2) edge universality for $\beta=1,4$;
(3) bulk universality for any β could be reduced to the universality for the one-cut case for $\mathrm{V}+\mathrm{n}^{-1} \mathrm{~h}$ with $\left\|\mathrm{h}^{\prime}\right\|_{\infty} \leq \log \mathrm{n}$.

