On Random Matrices
Related to Quantum Statistical Mechanics
and Informatics

L. Pastur

Mathematical Division, Institute for Low Temperatures,
Kharkiv, Ukraine

Paris, 8 - 10 October 2012
Outline

- Introduction
- Products of Triangular Matrices
 - Definition
 - Normalized Counting Measure
 - Comments
- Tensor Product Version of Sample Covariance Matrices
 - Definition
 - Normalized Counting Measure
 - Comments
Variations on the theme of "sample" (or "empirical") covariance matrices XX^T, where $X = \{X_{jk}\}_{j,k=1}^n$ are random square matrices. The subject is rather old with a lot of versions and motivations (e.g. a "typical" positive definite operator in spectral theory). Recent ones are from

$$(Quantum\ Statistical\ Mechanics \cap (Quantum\ Informatics)).$$

Key words: quantum phase transitions, entanglement entropy, area law.
Let A be $n \times n$ real symmetric and B be $n \times n$ real anti-symmetric. Set

$$X = A + B,$$

assume a certain distribution for A and B, and study the Normalized Counting Measure (NCM)

$$N_n = n^{-1} \sum_{l=1}^{n} \delta_{\lambda_l^{(n)}}$$

of XX^T as $n \to \infty$, and also rate of convergence, extreme eigenvalues, fluctuations of N_n, local statistics, eigenvectors, etc.

If the entries of A and B are i.i.d. Gaussian (modulo symmetry), then XX^T is asymptotically Wishart, the historically first random matrix.
Product of Triangular Matrices

Generalities

Recall that in the standard RMT setting $X = n^{-1/2} Y$, where $\{ Y_{jk} \}_{j,k=1}^n$ are independent standard Gaussian ($\mathbb{E} Y_{jk} = 0$, $\mathbb{E} Y_{jk}^2 = 1$) and then N_n tends weakly with probability 1 to the "quarter-circle" law

$$\rho(\lambda) := N'(\lambda) = \frac{1}{4\pi} \sqrt{\frac{4 - \lambda}{\lambda}} \mathbf{1}_{[0,4]}(\lambda)$$

in which $\lambda = 4$ ($\lambda = 0$) is known as the standard soft (hard) edge. This is an old result of Marchenko-P. 68

Write

$$X = (X + X^T)/2 + (X - X^T)/2 := A + B$$

and obtain the simplest example of the above setting.
A bit more: replace $X \to X + yI_n$. This is a particular case of Silverstein-Dozier 04. Here the limiting DOS is:

$y^2 < 1$: similar to quarter-circle law (standard soft and hard edges, the latter at 0);
$y^2 = 1$: upper edge is standard soft, lower edge is at zero and non standard hard
$\rho(\lambda) \sim \text{Const } \lambda^{-1/3}, \lambda \downarrow 0$;
$y^2 > 1$: both edges are strictly positive and standard soft.
Product of Triangular Matrices

Motivations

Quasi-free Fermions

\[H_\Lambda = \sum_{x,y \in \Lambda} A_{xy} c_x^+ c_y + \frac{1}{2} \sum_{x,y \in \Lambda} B_{xy} c_x^+ c_y^+ + h.c. \]

\(A \) is real symmetric, \(B \) is real antisymmetric. For \(d = 1 \) and n.n. interaction follows from quantum spin chains by Jordan-Wigner transformation.

QSM: Spectrum of \(H_\Lambda \) as \(\Lambda \rightarrow \mathbb{Z}^d \). By Bogolyubov transformation reduces to the spectrum of

\[A_\Lambda = \begin{pmatrix} A & B \\ -B & -A \end{pmatrix}. \]

QI: Spectrum of \(K_\Lambda|_{\Lambda_1}, \Lambda_1 \subset \Lambda \), where \(K_\Lambda = (I_{2n} + e^{-\beta A_\Lambda})^{-1} \) and \(1 << |\Lambda_1| << |\Lambda| \).
Product of Triangular Matrices

Motivations

We have

\[\det(A_{\Lambda} - \lambda I_{2n}) = \det \left((A + B)(A - B) - \lambda^2 I_n \right) \]

Write

\[A = \frac{1}{2} A^+ + \frac{1}{2} (A^+)^T + A^0, \quad B = \frac{1}{2} B^+ - \frac{1}{2} (B^+)^T \]

where \(A^+ \) and \(B^+ \) are lower triangular, and \(A^0 \) is diagonal. Choose \(A^+ = B^+, \ A^0 = yI_n \) to get

\[A + B = A^+ + yI_n. \]

Assume that \(\{A^+_{jk}\}_{n \geq j > k \geq 1} \) are independent Gaussian, \(\mathbf{E}\{A^+_{jk}\} = 0, \mathbf{E}\{(A^+_{jk})^2\} = 1/n \) to obtain a mean field type model for quasi-free fermions requiring the spectrum of

\[M_n = (A^+ + yI_n)(A^+ + yI_n)^T. \]

Cf. Cholesky decomposition (linear algebra, numerics)
Theorem

Let M_n be as above. Then its NCM converges weakly with probability 1 to the non-random limit N, whose Stieltjes transform f solves uniquely

$$\log(1 + f) = \left(y^2 - z(1 + f)\right)^{-1}, \quad \Re f \cdot \Re z > 0, \quad \Re z \neq 0.$$

We have: $\text{supp } N = [a_-(y), a_+(y)] \subset \mathbb{R}_+$, N is a. c. and if $\rho = N'$, then

(i) $y \neq 0$: $a_-(y) \sim e^{-1}y^4 e^{-1/y^2}$, $y \to 0$, $a_+(y) \sim e(1 + y^2)$, $y \to 0$

$$\rho(\lambda) \sim \text{Const } |a_\pm - \lambda|^{1/2}, \quad |a_\pm - \lambda| \to 0,$$

(ii) $y = 0$: $a_-(0) = 0$, $a_+(0) = e$ and

$$\rho(\lambda) \sim \begin{cases} \text{Const } (e - \lambda)^{1/2}, & \lambda \nearrow e, \\ (\lambda \log^2 \lambda)^{-1}, & \lambda \searrow 0. \end{cases}$$
A short(est) proof of the quarter-circle law for Gaussian vectors is as follows:

(i) Pass to the Stieltjes transform of N_n:

$$g_n(z) := \int \frac{N_n(d\lambda)}{\lambda - z} = n^{-1} \text{Tr } G(z), \quad G = (M - z)^{-1}$$

(ii) Use the Poincaré inequality to prove

$$\text{Var}\{g_n(z)\} \leq \text{Const} / n^2 |\text{Im } z|^4$$

thereby reducing the problem to the convergence of $\mathbf{E}\{g_n(z)\}$.

(iii) Use the resolvent identity and the integration by parts to prove

$$f_n := \mathbf{E}\{g_n\} = -\frac{1}{z} + \frac{1}{z} f_n - \frac{1}{zn} \mathbf{E}\{g_n \text{Tr } M_n G\}.$$
(iv) Use again the resolvent identity and (ii) – (iii) to obtain

\[zf_n^2 + zf_n + 1 = C(z)/n, \ C(z) < \infty, \ \Im z \neq 0.\]

(v) Pass to the limit \(n \to \infty\), solve the limiting quadratic equation for \(\Im f(z) \Im z > 0\) and recover \(N\) from the Stieltjes-Frobenius inversion formula.
Consider the technically simpler case $y = 0$. Use again the Stieltjes transform of N_n and the Poincaré

$$\text{Var}\{g_n(z)\} \leq \frac{1}{n^2} |\Im z|^4,$$

reducing the problem to the study of

$$f = \lim_{n \to \infty} f_n, \ f_n := E\{g_n\} = n^{-1} \sum_{j=1}^{n} E\{G_{jj}\}, \ \Im z \neq 0.$$
The resolvent identity, the integration by parts and vanishing of fluctuations of $n^{-1}\text{Tr}...$ imply:

$$
E\{G_{jj}\} \sim -\frac{1}{z} + \frac{1}{z} \frac{j-1}{n} E\{G_{jj}\} - \frac{1}{z} E\{G_{jj}\} \sum_{k=1}^{j-1} E\{n^{-1}\text{Tr}(A^T GA)_{kk}\}
$$

$$
E\{n^{-1}\text{Tr}(A^T GA)_{jj}\} \sim \frac{1}{n} \sum_{k=j}^{n} E\{G_{kk}\} - \frac{1}{n} \sum_{k=j}^{n} E\{G_{kk}\} E\{n^{-1}\text{Tr}(A^T GA)_{jj}\}.
$$

View this as the finite-difference scheme for

$$
f(t, z) = \lim_{n \to \infty, j/n \to t} E\{G_{jj}\}.
$$
Then the limit $j/n \to t \in [0, 1]$ yields the equations

$$f(t, z) = -\left(z - \int_0^t h(s, z) ds \right)^{-1},$$

$$h(t, z) = \left(1 + \int_t^1 f(s, z) ds \right)^{-1},$$

and

$$f(z) = \int_0^1 f(t, z) dt.$$

Denote

$$\varphi(t, z) = \int_t^1 f(s, z) ds, \quad \varphi(0, z) = f(z),$$

to obtain

$$\frac{\partial^2}{\partial t^2} \varphi = \left(\frac{\partial}{\partial t} \varphi \right)^2 (1 + \varphi)^{-1}, \quad \left. \frac{\partial}{\partial t} \varphi \right|_{t=0} = z^{-1}, \quad \varphi(0, z) = f(z),$$

thus

$$\varphi(t, z) = -1 + e^{-C(t-1)}, \quad Ce^{-C} = -z^{-1}.$$
(i) f is not algebraic, cf Anderson-Zeitouni 08, e.g. Silverstein-Dozier case

$$f = \left(y^2 (1 + f)^{-1} - z(1 + f) \right)^{-1}.$$

(ii) Most singular hard edge known. Recall the standard hard edge

$$\rho(\lambda) = \text{Const} \lambda^{-1/2} (1 + o(1)), \quad \lambda \downarrow 0,$$

of the quarter-circle law and more general Laguerre-type ensembles.

(iii) Implies an interesting quantum phase transition via the "scaling asymptotics" of ρ for $\lambda \sim y^2 \to 0$.

(iv) The rate of convergence of minimum eigenvalue of M_n, eigenvectors, etc.
(v) Matrices $\{ Z_{jk}^+ \}_{j,k=1}^n$ with i.i.d. (but not necessarily Gaussian) entries. Use the "interpolation trick" (a two-term integration by parts) for

$$n^{-1/2}(\sqrt{1-tA^+} + \sqrt{tZ^+}).$$

(vi) More general versions

$$H + n^{-1}Z^+ T(Z^+)^T, \text{ and } (Z_0 + n^{-1/2}Z^+) T(Z_0 + n^{-1/2}Z^+)^T$$

where Z has independent entries and H, T and Z_0 are given.
Definition

Consider complex random i.i.d. vectors \(\{ \varphi^j_{\alpha} \}_{\alpha,j=1}^{p,k} \), \(p = 1, 2..., k \) is fixed, and \(\varphi^j_{\alpha} \in \mathbb{C}^d \) is

- either \(d^{-1/2} X^j_{\alpha} \), and \(X^j_{\alpha} \) is complex Gaussian vectors with i.i.d. standard components
- or uniformly distributed over the unit sphere.

Set

\[\Phi_{\alpha} = \varphi^1_{\alpha} \otimes ... \otimes \varphi^k_{\alpha} \]

and consider the \(d^k \times d^k \) random matrix

\[M_{p,d,k} = \sum_{\alpha=1}^{p} \Phi_{\alpha} \otimes \Phi_{\alpha}. \]

We are interested in the (non-random) limit as \(p \to \infty, d \to \infty, \frac{p}{d^k} = \frac{p}{n} \to c \in (0, \infty) \) of
the Normalized Counting Measure (NCM)

\[N_{p,d,k} = d^{-k} \sum_{l=1}^{d^k} \delta_{\lambda_l}, \quad n = d^k. \]

It is also of interest the limits of the extreme eigenvalues, local statistics, fluctuations of \(N_{p,d,k} \), etc.

Proved the MP law for the limit \(N \) of the expectation of the NCM and the convergence of extreme eigenvalues to the endpoints of the support of \(N \) by fairly involved combinatorial analysis of moments \(d^{-k} \text{Tr} M_{p,d,k}^m, \ m \in \mathbb{N} \).
Remark. For Gaussian φ’s $\Phi_\alpha \in (\mathbb{C}^d)^\otimes k$ has just dk independent parameters, while a generic $\Psi \in (\mathbb{C}^d)^\otimes k$ has d^k independent parameters. Nevertheless the MP law and the convergence of extreme eigenvalues hold in this case.

We show below that the MP law is valid for the limit with probability 1 of $N_{p,d,k}$ in the above and more general cases (vectors with independent but not necessarily Gaussian components as well as for vectors with log-concave distribution).
The approach used above for the quarter-circle law and its "triangular" analog does not apply to the tensor product version, i.e. $k > 1$ (unlike the case $k = 1$). We use an extension of the Marchenko-P. and Girko approach. Its version for $k = 1$ is given by Pajor-P. It is applicable not necessarily Gaussian φ_α's and any $1 \leq k < \infty$.

(i) Observe that

$$M = \sum_{\alpha=1}^{p} L_\alpha, \quad L_\alpha = (\cdot, \varphi_\alpha)\varphi_\alpha.$$

(ii) Use either martingale differences (or Poincaré for Gaussian) to prove

$$\text{Var}\{g_n(z)\} = o(1), \quad \exists z \neq 0, \quad n \to \infty, \quad p \to \infty, \quad p/n \in [0, \infty).$$

(iii) Use the resolvent identity to write

$$g_n := n^{-1}\text{Tr}G = -z^{-1} + (zn)^{-1} \sum_{\alpha=1}^{p} (G\varphi_\alpha, \varphi_\alpha).$$
(iv) Use the rank one perturbation formulas:

\[G = G_\alpha - \frac{G_\alpha L_\alpha G_\alpha}{1 + (G_\alpha \varphi_\alpha, \varphi_\alpha)}, \quad G_\alpha = G|_{\varphi_\alpha = 0} \]

implying

\[(G \varphi_\alpha, \varphi_\alpha) = \frac{(G_\alpha \varphi_\alpha, \varphi_\alpha)}{1 + (G_\alpha \varphi_\alpha, \varphi_\alpha)}. \]

to rewrite (iii) as

\[g_n = -z^{-1} + (zn)^{-1} \sum_{\alpha=1}^{p} \frac{(G_\alpha \varphi_\alpha, \varphi_\alpha)}{1 + (G_\alpha \varphi_\alpha, \varphi_\alpha)}. \]
(v) Use the independence of G_α and φ_α and to obtain:

$$E_\alpha\{(G_\alpha\varphi_\alpha, \varphi_\alpha)\} = n^{-1}\text{Tr}G_\alpha, \quad \text{Var}\{(G_\alpha\varphi_\alpha, \varphi_\alpha)\} \leq \text{Const}/n|\Im z|^2.$$

(iv) Use (ii) and (v) to replace $(G_\alpha\varphi_\alpha, \varphi_\alpha)$ in (iv) by its expectation $f_{\alpha n} := E\{n^{-1}\text{Tr}G_\alpha\}$.

(v) Use the rank one perturbation formula of (iv) to find that $f_{\alpha n} = f_n + O(1/n)$ and get the "pre"-limiting quadratic equation

$$f_n = -\frac{1}{z} + \frac{c}{z} \frac{f_n}{1 + f_n} + o(1), \quad \Im z \neq 0, \quad c = p/n$$

equivalent to the above.
Tensor Product Version of Sample Covariance Matrices

Basic Relations

For any $n \times n$ matrix A we need random vectors $\varphi \in \mathbb{C}^n$ possessing

(i) isotropy

$\mathbb{E}\{(A\varphi, \varphi)\} = n^{-1} \text{Tr } A$;

(ii) vanishing of fluctuations of $(A\varphi, \varphi)$ ("good" vectors)

$\text{Var}\{(A\varphi, \varphi)\} = \|A\| \delta_n$, $\delta_n = O(1)$, $n \to \infty$.

Lemma

Let $\varphi \in \mathbb{C}^d$ be a random vector as above and A is $d^k \times d^k$ matrix. If $\varphi^1, \ldots, \varphi^k$ are k independent copies of φ then the random vector $\Phi = \varphi^1 \otimes \ldots \otimes \varphi^k$ also possesses the above properties in which $n = d^k$ and δ_n is replaced by $C_k \delta_d$, where C_k depends only on k.

Proof is based on the martingale-differences.
Study the extreme eigenvalues, both for $c > 1$ (both edges are standard soft) and $c = 1$ (lower edge is standard soft). Have likely different rates of convergence (depending on k).

Example: for Gaussian vectors

$$\text{Var} \{ g_n \} \leq \frac{C(z)k}{n^{1+1/k}}, \quad 0 < C(z) < \infty, \quad \text{Im} \ z \neq 0,$$

thus, different scaling of fluctuations of linear eigenvalue statistics (CLT), etc.