On Random Matrices Related to Quantum Statistical Mechanics and Informatics

L. Pastur

Mathematical Division, Institute for Low Temperatures, Kharkiv, Ukraine

Paris, 8 - 10 October 2012

- Introduction
- Products of Triangular Matrices
 - Definition
 - Normalized Counting Measure
 - Comments
- Tensor Product Version of Sample Covariance Matrices
 - Definition
 - Normalized Counting Measure
 - Comments

Variations on the theme of "sample" (or "empirical") covariance matrices XX^{T} , where $X = \{X_{jk}\}_{j,k=1}^{n}$ are random square matrices. The subject is rather old with a lot of versions and motivations (e.g. a "typical" positive definite operator in spectral theory). Recent ones are from

(Quantum Statistical Mechanics \cap (Quantum Informatics).

Key words: quantum phase transitions, entanglement entropy, area law.

Let A be $n \times n$ real symmetric and B be $n \times n$ real anti-symmetric. Set

$$X=A+B,$$

assume a certain distribution for *A* and *B*, and study the Normalized Counting Measure (NCM)

$$N_n = n^{-1} \sum_{l=1}^n \delta_{\lambda_l^{(n)}}$$

of XX^T as $n \to \infty$, and also rate of convergence, extreme eigenvalues, fluctuations of N_n , local statistics, eigenvectors, etc.

If the entries of A and B are i.i.d. Gaussian (modulo symmetry), then XX^{T} is asymptotically Wishart, the hystorically first random matrix.

4 / 24

Product of Triangular Matrices Generalities

Recall that in the standard RMT setting $X = n^{-1/2}Y$, where $\{Y_{jk}\}_{j,k=1}^{n}$ are independent standard Gaussian ($\mathbf{E}\{Y_{jk}\} = 0$, $\mathbf{E}\{Y_{jk}^{2}\} = 1$) and then N_n tends weakly with probability 1 to the "quarter-circle" law

$$ho(\lambda):= {\it N}'(\lambda) = rac{1}{4\pi} \sqrt{rac{4-\lambda}{\lambda}} {f 1}_{[0,4]}(\lambda)$$

in which $\lambda = 4$ ($\lambda = 0$) is known as the standard *soft (hard) edge*. This is an old result of *Marchenko-P. 68*

Write

$$X = (X + X^{T})/2 + (X - X^{T})/2 := A + B$$

and obtain the simplest example of the above setting.

A bit more: replace $X \rightarrow X + yI_n$. This is a particular case of *Silverstein-Dozier 04*. Here the limiting DOS is:

 $y^2 < 1$: similar to quarter-circle law (standard soft and hard edges, the latter at 0);

 $y^2 = 1$: upper edge is standard soft, lower edge is at zero and non standard hard

$$\rho(\lambda) \simeq \text{Const } \lambda^{-1/3}, \ \lambda \searrow 0;$$

 $y^2 > 1$: both edges are strictly positive and standard soft.

Motivations

Quasi-free Fermions

$$H_{\Lambda} = \sum_{x,y \in \Lambda} A_{xy} c_x^+ c_y + \frac{1}{2} \sum_{x,y \in \Lambda} B_{xy} c_x^+ c_y^+ + h.c.$$

A is real symmetric, B is real antisymmetric. For d = 1 and n.n. interaction follows from quantum spin chains by Jordan-Wigner transformation.

QSM: Spectrum of H_{Λ} as $\Lambda \to \mathbb{Z}^d$. By Bogolyubov transformation reduces to the spectrum of

$$\mathbf{A}_{\Lambda} = \left(egin{array}{cc} A & B \ -B & -A \end{array}
ight).$$

QI: Spectrum of $\mathbf{K}_{\Lambda}|_{\Lambda_1}$, $\Lambda_1 \subset \Lambda$, where $\mathbf{K}_{\Lambda} = (I_{2n} + e^{-\beta \mathbf{A}_{\Lambda}})^{-1}$ and $1 << |\Lambda_1| << |\Lambda|$.

7 / 24

Motivations

We have

$$\det(\mathbf{A}_{\Lambda} - \lambda \mathbf{I}_{2n}) = \det\left((A + B)(A - B) - \lambda^2 I_n\right)$$

Write

$$A = \frac{1}{2}A^{+} + \frac{1}{2}(A^{+})^{T} + A^{0}, \ B = \frac{1}{2}B^{+} - \frac{1}{2}(B^{+})^{T}$$

where A^+ and B^+ are lower triangular, and A^0 is diagonal. Choose $A^+ = B^+$, $A^0 = yI_n$ to get

$$A+B=A^++yI_n.$$

Assume that $\{A_{jk}^+\}_{n \ge j > k \ge 1}$ are independent Gaussian, $\mathbf{E}\{A_{jk}^+\} = 0$, $\mathbf{E}\{(A_{jk}^+)^2\} = 1/n$ to obtain a mean field type model for quasi-free fermions requiring the spectrum of

$$M_n = (A^+ + yI_n)(A^+ + yI_n)^T.$$

Cf. Cholesky decomposition (linear algebra, numerics)

L.Pastur (MD ILT)

Results

Theorem

Let M_n be as above. Then its NCM converges weakly with probability 1 to the non-random limit N, whose Stieltjes transform f solves uniquely

$$\log(1+f) = (y^2 - z(1+f))^{-1}, \ \Im f \cdot \Im z > 0, \ \Im z \neq 0.$$

We have: supp $N = [a_{-}(y), a_{+}(y)] \subset \mathbb{R}_{+}$, N is a. c. and if $\rho = N'$, then (i) $y \neq 0$: $a_{-}(y) \simeq e^{-1}y^{4}e^{-1/y^{2}}$, $y \to 0$, $a_{+}(y) \simeq e(1+y^{2})$, $y \to 0$

$$\rho(\lambda) \simeq \text{Const} |\mathbf{a}_{\pm} - \lambda|^{1/2}, |\mathbf{a}_{\pm} - \lambda| \to \mathbf{0},$$

(ii) y = 0: $a_{-}(0) = 0$, $a_{+}(0) = e$ and

$$\rho(\lambda) \simeq \left\{ \begin{array}{cc} {\rm Const} \; (e-\lambda)^{1/2}, & \lambda \nearrow e, \\ (\lambda \log^2 \lambda)^{-1}, & \lambda \searrow 0. \end{array} \right.$$

Outline of Proof (reminder of the quarter-law derivation)

A short(est) proof of the quarter-circle law for Gaussian vectors is as follows:

(i) Pass to the Stieltjes transform of N_n :

$$g_n(z) := \int \frac{N_n(d\lambda)}{\lambda - z} = n^{-1} \operatorname{Tr} G(z), \ G = (M - z)^{-1}$$

(ii) Use the Poincaré inequality to prove

$$\operatorname{Var}\{g_n(z)\} \leq \operatorname{Const} / n^2 |\operatorname{Im} z|^4$$

thereby reducing the problem to the convergence of $\mathbf{E}\{g_n(z)\}$. (iii) Use the resolvent identity and the integration by parts to prove

$$f_n := \mathbf{E}\{g_n\} = -\frac{1}{z} + \frac{1}{z}f_n - \frac{1}{zn}\mathbf{E}\{g_n \operatorname{Tr} M_n G\}.$$

(iv) Use again the resolvent identity and (ii) - (iii) to obtain

$$zf_n^2 + zf_n + 1 = C(z)/n$$
, $C(z) < \infty$, $\Im z \neq 0$.

(v) Pass to the limit $n \to \infty$, solve the limiting quadratic equation for Im $f(z) \operatorname{Im} z > 0$ and recover N from the Stieltjes-Frobenuis inversion formula.

Consider the technically simpler case y = 0. Use again the Stieltjes transform of N_n and the Poincaré

$$\operatorname{Var}\{g_n(z)\} \le 1/n^2 |\Im z|^4,$$

reducing the problem to the study of

$$f = \lim_{n \to \infty} f_n, \ f_n := \mathbf{E}\{g_n\} = n^{-1} \sum_{j=1}^n \mathbf{E}\{G_{jj}\}, \ \Im z \neq 0.$$

The resolvent identity, the integration by parts and vanishing of fluctuations of n^{-1} Tr... imply:

$$\mathbf{E}\{G_{jj}\} \simeq -\frac{1}{z} + \frac{1}{z}\frac{j-1}{n}\mathbf{E}\{G_{jj}\} - \frac{1}{z}\mathbf{E}\{G_{jj}\}\sum_{n=1}^{J-1}\mathbf{E}\{n^{-1}\mathrm{Tr}(A^{T}GA)_{kk}\}$$
$$\mathbf{E}\{n^{-1}\mathrm{Tr}(A^{T}GA)_{jj}\} \simeq \frac{1}{n}\sum_{k=j}^{n}\mathbf{E}\{G_{kk}\} - \frac{1}{n}\sum_{k=j}^{n}\mathbf{E}\{G_{kk}\}\mathbf{E}\{n^{-1}\mathrm{Tr}(A^{T}GA)_{jj}\}.$$

View this as the finite-difference scheme for

$$f(t,z) = \lim_{n \to \infty, j/n \to t} \mathbf{E} \{G_{jj}\}.$$

Product of Triangular Matrices Outline of Proof

Then the limit $j/n \rightarrow t \in [0, 1]$ yields the equations

$$f(t,z) = -\left(z - \int_0^t h(s,z)ds\right)^{-1}$$
, $h(t,z) = \left(1 + \int_t^1 f(s,z)ds\right)^{-1}$,

and

$$f(z)=\int_0^1 f(t,z)dt.$$

Denote

$$arphi(t,z)=\int_t^1 f(s,z)ds, \quad arphi(0,z)=f(z),$$

to obtain

$$\frac{\partial^2}{\partial t^2}\varphi = \left(\frac{\partial}{\partial t}\varphi\right)^2 (1+\varphi)^{-1}, \ \frac{\partial}{\partial t}\varphi\Big|_{t=0} = z^{-1}, \ \varphi(0,z) = f(z),$$

thus

$$\varphi(t,z) = -1 + e^{-C(t-1)}, \ Ce^{-C} = -z^{-1}$$

L.Pastur (MD ILT)

э

(i) f is not algebraic, cf Anderson-Zeitouni 08, e.g. Silverstein-Dozier case

$$f = (y^2(1+f)^{-1} - z(1+f))^{-1}.$$

(ii) Most singular hard edge known. Recall the standard hard edge

$$ho(\lambda) = \operatorname{Const} \lambda^{-1/2} (1 + o(1)), \ \lambda \searrow 0,$$

of the quarter-circle law and more general Laguerre-type ensembles. (iii) Implies an interesting quantum phase transition via the "scaling asymptotics" of ρ for $\lambda \sim y^2 \rightarrow 0$. (iv) The rate of convergence of minimum eigenvalue of M_n , eigenvectors, etc. (v) Matrices $\{Z_{jk}^+\}_{j,k=1}^n$ with i.i.d. (but not necessarily Gaussian) entries. Use the "interpolation trick" (a two-term integration by parts) for

$$n^{-1/2}(\sqrt{1-t}A^+ + \sqrt{t}Z^+).$$

(vi) More general versions

$$H + n^{-1}Z^{+}T(Z^{+})^{T}$$
, and $(Z_{0} + n^{-1/2}Z^{+})T(Z_{0} + n^{-1/2}Z^{+})^{T}$

where Z has independent entries and H, T and Z_0 are given.

Tensor Product Version of Sample Covariance Matrices Definition

Consider complex random i.i.d. vectors $\{\varphi^j_{\alpha}\}_{\alpha,j=1}^{p,k}$, p = 1, 2..., k is fixed, and $\varphi^j_{\alpha} \in \mathbb{C}^d$ is

- either $d^{-1/2}X^j_{\alpha}$, and X^j_{α} is complex Gaussian vectors with i.i.d. standard components
- or uniformly distributed over the unit sphere.

4

Set

$$\Phi_{lpha}=arphi_{lpha}^1\otimes...\otimesarphi_{lpha}^k$$

and consider the $d^k \times d^k$ random matrix

$$M_{p,d,k} = \sum_{\alpha=1}^{p} \Phi_{\alpha} \otimes \Phi_{\alpha}.$$

We are interested in the (non-random) limit as $p \to \infty$, $d \to \infty$, $p/d^k = p/n \to c \in (0, \infty)$ of

L.Pastur (MD ILT)

Tensor Product Version of Sample Covariance Matrices Definition

the Normalized Counting Measure (NCM)

$$N_{p,d,k}=d^{-k}\sum_{l=1}^{d^k}\delta_{\lambda_l},\ n=d^k.$$

It is also of interest the limits of the extreme eigenvalues, local statistics, fluctuations of $N_{p,d,k}$, etc.

Studied by M. Hastings et al (CMP **310** (2012) 25-74) as a part of analysis of quantum analog of classical probability problem on the distribution of p balls between p bins (quantum models of data hiding and correlation locking schema).

Proved the MP law for the limit N of the expectation of the NCM and the convergence of extreme eigenvalues to the endpoints of the support of N by fairly involved combinatorial analysis of moments $d^{-k} \operatorname{Tr} M_{p,d,k}^m$, $m \in \mathbb{N}$.

Remark. For Gaussian φ 's $\Phi_{\alpha} \in (\mathbb{C}^d)^{\otimes k}$ has just dk independent parameters, while a generic $\Psi \in (\mathbb{C}^d)^{\otimes k}$ has d^k independent parameters. Nevertheless the MP law and the convergence of extreme eigenvalues hold in this case.

We show below that the MP law is valid for the limit with probability 1 of $N_{p,d,k}$ in the above and more general cases (vectors with independent but not necessarily Gaussian components as well as for vectors with log-concave distribution).

Tensor Product Version of Sample Covariance Matrices Pajor-P. Approach

The approach used above for the quarter-circle law and its "triangular" analog does not apply to the tensor product version, i.e. k > 1 (unlike the case k = 1). We use an extension of the Marchenko-P. and Girko approach. Its version for k = 1 is given by Pajor-P. It is applicable not necessarily Gaussian φ_{α} 's and any $1 \le k < \infty$.

(i) Observe that

$$M=\sum_{\alpha=1}^{p}L_{\alpha}, \ L_{\alpha}=(\cdot,\varphi_{\alpha})\varphi_{\alpha}.$$

(ii) Use either martingale differences (or Poincaré for Gaussian) to prove

$$\operatorname{Var} \{ g_n(z) \} = o(1), \Im z
eq 0, \ n o \infty, p o \infty, p / n \in [0, \infty)$$

(iii) Use the resolvent identity to write

$$g_n := n^{-1} \operatorname{Tr} G = -z^{-1} + (zn)^{-1} \sum_{\alpha=1}^{p} (G\varphi_{\alpha}, \varphi_{\alpha})$$

Tensor Product Version of Sample Covariance Matrices Pajor-P. Approach

(iv) Use the rank one perturbation formulas:

$$G = G_{lpha} - rac{G_{lpha} L_{lpha} G_{lpha}}{1 + (G_{lpha} \varphi_{lpha}, \varphi_{lpha})}, \ G_{lpha} = G|_{arphi_{lpha} = 0}$$

implying

$$(G\varphi_{\alpha},\varphi_{\alpha})=\frac{(G_{\alpha}\varphi_{\alpha},\varphi_{\alpha})}{1+(G_{\alpha}\varphi_{\alpha},\varphi_{\alpha})}.$$

to rewrite (iii) as

$$g_n = -z^{-1} + (zn)^{-1} \sum_{\alpha=1}^p \frac{(G_\alpha \varphi_\alpha, \varphi_\alpha)}{1 + (G_\alpha \varphi_\alpha, \varphi_\alpha)}.$$

(v) Use the independence of G_{α} and φ_{α} and to obtain:

$$\mathsf{E}_{\alpha}\{(\mathit{G}_{\alpha}\varphi_{\alpha},\varphi_{\alpha})\}=\mathit{n}^{-1}\mathrm{Tr}\mathit{G}_{\alpha},\;\mathsf{Var}\{(\mathit{G}_{\alpha}\varphi_{\alpha},\varphi_{\alpha})\}\leq\mathrm{Const}/\mathit{n}|\Im z|^{2}.$$

(iv) Use (ii) and (v) to replace $(G_{\alpha}\varphi_{\alpha}, \varphi_{\alpha})$ in (iv) by its expectation $f_{\alpha n} := \mathbf{E}\{n^{-1}\mathrm{Tr}\,G_{\alpha}\}.$ (v) Use the rank one perturbation formula of (iv) to find that $f_{\alpha n} = f_n + O(1/n)$ and get the "pre"- limiting quadratic equation

$$f_n = -\frac{1}{z} + \frac{c}{z} \frac{f_n}{1+f_n} + o(1), \ \Im z \neq 0, \ c = p/n$$

equivalent to the above.

Tensor Product Version of Sample Covariance Matrices Basic Relations

For any $n \times n$ matrix A we need random vectors $\varphi \in \mathbb{C}^n$ possessing (i) isotropy

$$\mathsf{E}\{(A\varphi,\varphi)\}=n^{-1}\mathrm{Tr}\ A;$$

(ii) vanishing of fluctuations of $(A\varphi, \varphi)$ ("good" vectors)

$$\operatorname{Var} \{ (A arphi, arphi) \} = ||A|| \delta_n, \ \delta_n = O(1), \ n o \infty.$$

Lemma

Let $\varphi \in \mathbb{C}^d$ be a random vector as above and A is $d^k \times d^k$ matrix. If $\varphi^1, ..., \varphi^k$ are k independent copies of φ then the random vector $\Phi = \varphi^1 \otimes ... \otimes \varphi^k$ also possesses the above properties in which $n = d^k$ and δ_n is replaced by $C_k \delta_d$, where C_k depends only on k.

Proof is based on the martingale-differences.

Study the extreme eigenvalues, both for c > 1 (both edges are standard soft) and c = 1 (lower edge is standard soft). Have likely different rates of convergence (depending on k).

Example: for Gaussian vectors

$$\operatorname{Var} \{g_n\} \leq rac{C(z)k}{n^{1+1/k}}, \ 0 < C(z) < \infty, \ \operatorname{Im} z
eq 0,$$

thus, different scaling of fluctuations of linear eigenvalue statistics (CLT), etc.