On Random Matrices
 Related to Quantum Statistical Mechanics and Informatics

L. Pastur

Mathematical Division, Institute for Low Temperatures, Kharkiv, Ukraine

Paris, 8-10 October 2012

Outline

- Introduction
- Products of Triangular Matrices
- Definition
- Normalized Counting Measure
- Comments
- Tensor Product Version of Sample Covariance Matrices
- Definition
- Normalized Counting Measure
- Comments

Introduction

Variations on the theme of "sample" (or "empirical") covariance matrices $X X^{\top}$, where $X=\left\{X_{j k}\right\}_{j, k=1}^{n}$ are random square matrices. The subject is rather old with a lot of versions and motivations (e.g. a "typical" positive definite operator in spectral theory). Recent ones are from

(Quantum Statistical Mechanics \cap (Quantum Informatics).

Key words: quantum phase transitions, entanglement entropy, area law.

Product of Triangular Matrices

Generalities

Let A be $n \times n$ real symmetric and B be $n \times n$ real anti-symmetric. Set

$$
X=A+B
$$

assume a certain distribution for A and B, and study the Normalized Counting Measure (NCM)

$$
N_{n}=n^{-1} \sum_{l=1}^{n} \delta_{\lambda_{l}^{(n)}}
$$

of $X X^{\top}$ as $n \rightarrow \infty$, and also rate of convergence, extreme eigenvalues, fluctuations of N_{n}, local statistics, eigenvectors, etc.

If the entries of A and B are i.i.d. Gaussian (modulo symmetry), then $X X^{T}$ is axymptotically Wishart, the hystorically first random matrix.

Product of Triangular Matrices

Generalities

Recall that in the standard RMT setting $X=n^{-1 / 2} Y$, where $\left\{Y_{j k}\right\}_{j, k=1}^{n}$ are independent standard Gaussian $\left(\mathbf{E}\left\{Y_{j k}\right\}=0, \mathbf{E}\left\{Y_{j k}^{2}\right\}=1\right)$ and then N_{n} tends weakly with probability 1 to the "quarter-circle" law

$$
\rho(\lambda):=N^{\prime}(\lambda)=\frac{1}{4 \pi} \sqrt{\frac{4-\lambda}{\lambda}} \mathbf{1}_{[0,4]}(\lambda)
$$

in which $\lambda=4(\lambda=0)$ is known as the standard soft (hard) edge. This is an old result of Marchenko-P. 68

Write

$$
X=\left(X+X^{T}\right) / 2+\left(X-X^{T}\right) / 2:=A+B
$$

and obtain the simplest example of the above setting.

Product of Triangular Matrices

Generalities

A bit more: replace $X \rightarrow X+y I_{n}$. This is a particular case of Silverstein-Dozier 04. Here the limiting DOS is:
$y^{2}<1$: similar to quarter-circle law (standard soft and hard edges, the latter at 0);
$y^{2}=1$: upper edge is standard soft, lower edge is at zero and non standard hard

$$
\rho(\lambda) \simeq \operatorname{Const} \lambda^{-1 / 3}, \lambda \searrow 0 ;
$$

$y^{2}>1$: both edges are strictly positive and standard soft.

Product of Triangular Matrices

Motivations

Quasi-free Fermions

$$
H_{\Lambda}=\sum_{x, y \in \Lambda} A_{x y} c_{x}^{+} c_{y}+\frac{1}{2} \sum_{x, y \in \Lambda} B_{x y} c_{x}^{+} c_{y}^{+}+\text {h.c. }
$$

A is real symmetric, B is real antisymmetric. For $d=1$ and n.n. interaction follows from quantum spin chains by Jordan-Wigner transformation.

QSM: Spectrum of H_{Λ} as $\Lambda \rightarrow \mathbb{Z}^{d}$. By Bogolyubov transformation reduces to the spectrum of

$$
\mathbf{A}_{\Lambda}=\left(\begin{array}{cc}
A & B \\
-B & -A
\end{array}\right)
$$

QI: Spectrum of $\mathbf{K}_{\Lambda} \mid \Lambda_{1}, \Lambda_{1} \subset \Lambda$, where $\mathbf{K}_{\Lambda}=\left(I_{2 n}+e^{-\beta \mathbf{A}_{\Lambda}}\right)^{-1}$ and $1 \ll\left|\Lambda_{1}\right| \ll|\Lambda|$.

Product of Triangular Matrices

Motivations

We have

$$
\operatorname{det}\left(\mathbf{A}_{\Lambda}-\lambda \mathbf{I}_{2 n}\right)=\operatorname{det}\left((A+B)(A-B)-\lambda^{2} I_{n}\right)
$$

Write

$$
A=\frac{1}{2} A^{+}+\frac{1}{2}\left(A^{+}\right)^{T}+A^{0}, B=\frac{1}{2} B^{+}-\frac{1}{2}\left(B^{+}\right)^{T}
$$

where A^{+}and B^{+}are lower triangular, and A^{0} is diagonal. Choose $A^{+}=B^{+}, A^{0}=y I_{n}$ to get

$$
A+B=A^{+}+y I_{n}
$$

Assume that $\left\{A_{j k}^{+}\right\}_{n \geq j>k \geq 1}$ are independent Gaussian, $\mathbf{E}\left\{A_{j k}^{+}\right\}=0$, $\mathbf{E}\left\{\left(A_{j k}^{+}\right)^{2}\right\}=1 / n$ to obtain a mean field type model for quasi-free fermions requiring the spectrum of

$$
M_{n}=\left(A^{+}+y l_{n}\right)\left(A^{+}+y l_{n}\right)^{T} .
$$

Cf. Cholesky decomposition (linear algebra, numerics)

Product of Triangular Matrices

Results

Theorem

Let M_{n} be as above. Then its NCM converges weakly with probability 1 to the non-random limit N, whose Stieltjes transform f solves uniquely

$$
\log (1+f)=\left(y^{2}-z(1+f)\right)^{-1}, \Im f \cdot \Im z>0, \Im z \neq 0
$$

We have: $\operatorname{supp} N=\left[a_{-}(y), a_{+}(y)\right] \subset \mathbb{R}_{+}, N$ is a. c. and if $\rho=N^{\prime}$, then (i) $y \neq 0: a_{-}(y) \simeq e^{-1} y^{4} e^{-1 / y^{2}}, y \rightarrow 0, \quad a_{+}(y) \simeq e\left(1+y^{2}\right), y \rightarrow 0$

$$
\rho(\lambda) \simeq \text { Const }\left|a_{ \pm}-\lambda\right|^{1 / 2},\left|a_{ \pm}-\lambda\right| \rightarrow 0
$$

(ii) $y=0: a_{-}(0)=0, a_{+}(0)=e \quad$ and

$$
\rho(\lambda) \simeq\left\{\begin{array}{cl}
\operatorname{Const}(e-\lambda)^{1 / 2}, & \lambda \nearrow e, \\
\left(\lambda \log ^{2} \lambda\right)^{-1}, & \lambda \searrow 0 .
\end{array}\right.
$$

Product of Triangular Matrices

Outline of Proof (reminder of the quarter-law derivation)
A short(est) proof of the quarter-circle law for Gaussian vectors is as follows:
(i) Pass to the Stieltjes transform of N_{n} :

$$
g_{n}(z):=\int \frac{N_{n}(d \lambda)}{\lambda-z}=n^{-1} \operatorname{Tr} G(z), G=(M-z)^{-1}
$$

(ii) Use the Poincaré inequality to prove

$$
\operatorname{Var}\left\{g_{n}(z)\right\} \leq \text { Const } / n^{2}|\operatorname{Im} z|^{4}
$$

thereby reducing the problem to the convergence of $\mathbf{E}\left\{g_{n}(z)\right\}$.
(iii) Use the resolvent identity and the integration by parts to prove

$$
f_{n}:=\mathbf{E}\left\{g_{n}\right\}=-\frac{1}{z}+\frac{1}{z} f_{n}-\frac{1}{z n} \mathbf{E}\left\{g_{n} \operatorname{Tr} M_{n} G\right\}
$$

(iv) Use again the resolvent identity and (ii) - (iii) to obtain

$$
z f_{n}^{2}+z f_{n}+1=C(z) / n, C(z)<\infty, \Im z \neq 0
$$

(v) Pass to the limit $n \rightarrow \infty$, solve the limiting quadratic equation for $\operatorname{Im} f(z) \operatorname{Im} z>0$ and recover N from the Stieltjes-Frobenuis inversion formula.

Product of Triangular Matrices

Outline of Proof for Triangular Gaussian Matrices

Consider the technically simpler case $y=0$. Use again the Stieltjes transform of N_{n} and the Poincaré

$$
\operatorname{Var}\left\{g_{n}(z)\right\} \leq 1 / n^{2}|\Im z|^{4},
$$

reducing the problem to the study of

$$
f=\lim _{n \rightarrow \infty} f_{n}, f_{n}:=\mathbf{E}\left\{g_{n}\right\}=n^{-1} \sum_{j=1}^{n} \mathbf{E}\left\{G_{j j}\right\}, \Im z \neq 0
$$

Product of Triangular Matrices

Outline of Proof

The resolvent identity, the integration by parts and vanishing of fluctuations of $n^{-1} \mathrm{Tr}$... imply:

$$
\begin{array}{r}
\mathbf{E}\left\{G_{j j}\right\} \simeq-\frac{1}{z}+\frac{1}{z} \frac{j-1}{n} \mathbf{E}\left\{G_{j j}\right\}-\frac{1}{z} \mathbf{E}\left\{G_{j j}\right\} \sum_{\sim \sim k=1}^{j-1} \mathbf{E}\left\{n^{-1} \operatorname{Tr}\left(A^{T} G A\right)_{k k}\right\} \\
\mathbf{E}\left\{n^{-1} \operatorname{Tr}\left(A^{T} G A\right)_{j j}\right\} \simeq \frac{1}{n} \sum_{k=j}^{n} \mathbf{E}\left\{G_{k k}\right\}-\frac{1}{n} \sum_{k=j}^{n} \mathbf{E}\left\{G_{k k}\right\} \mathbf{E}\left\{n^{-1} \operatorname{Tr}\left(A^{T} G A\right)_{j j}\right\}
\end{array}
$$

View this as the finite-difference scheme for

$$
f(t, z)=\lim _{n \rightarrow \infty, j / n \rightarrow t} \mathbf{E}\left\{G_{j j}\right\} .
$$

Product of Triangular Matrices

Outline of Proof

Then the limit $j / n \rightarrow t \in[0,1]$ yields the equations

$$
f(t, z)=-\left(z-\int_{0}^{t} h(s, z) d s\right)^{-1}, h(t, z)=\left(1+\int_{t}^{1} f(s, z) d s\right)^{-1}
$$

and

$$
f(z)=\int_{0}^{1} f(t, z) d t
$$

Denote

$$
\varphi(t, z)=\int_{t}^{1} f(s, z) d s, \quad \varphi(0, z)=f(z)
$$

to obtain

$$
\frac{\partial^{2}}{\partial t^{2}} \varphi=\left(\frac{\partial}{\partial t} \varphi\right)^{2}(1+\varphi)^{-1},\left.\frac{\partial}{\partial t} \varphi\right|_{t=0}=z^{-1}, \varphi(0, z)=f(z)
$$

thus

$$
\varphi(t, z)=-1+e^{-C(t-1)}, C e^{-C}=-z^{-1}
$$

Product of Triangular Matrices

Comments

(i) f is not algebraic, of Anderson-Zeitouni 08, e.g. Silverstein-Dozier case

$$
f=\left(y^{2}(1+f)^{-1}-z(1+f)\right)^{-1}
$$

(ii) Most singular hard edge known. Recall the standard hard edge

$$
\rho(\lambda)=\text { Const } \lambda^{-1 / 2}(1+o(1)), \lambda \searrow 0,
$$

of the quarter-circle law and more general Laguerre-type ensembles. (iii) Implies an interesting quantum phase transition via the "scaling asymptotics" of ρ for $\lambda \sim y^{2} \rightarrow 0$.
(iv) The rate of convergence of minimum eigenvalue of M_{n}, eigenvectors, etc.

Product of Triangular Matrices

Comments

(v) Matrices $\left\{Z_{j k}^{+}\right\}_{j, k=1}^{n}$ with i.i.d. (but not necessarily Gaussian) entries. Use the "interpolation trick" (a two-term integration by parts) for

$$
n^{-1 / 2}\left(\sqrt{1-t} A^{+}+\sqrt{t} Z^{+}\right)
$$

(vi) More general versions

$$
H+n^{-1} Z^{+} T\left(Z^{+}\right)^{T}, \text { and }\left(Z_{0}+n^{-1 / 2} Z^{+}\right) T\left(Z_{0}+n^{-1 / 2} Z^{+}\right)^{T}
$$

where Z has independent entries and H, T and Z_{0} are given.

Tensor Product Version of Sample Covariance Matrices

 DefinitionConsider complex random i.i.d. vectors $\left\{\varphi_{\alpha}^{j}\right\}_{\alpha, j=1}^{p, k}, p=1,2 \ldots, k$ is fixed, and $\varphi_{\alpha}^{j} \in \mathbb{C}^{d}$ is

- either $d^{-1 / 2} X_{\alpha}^{j}$, and X_{α}^{j} is complex Gaussian vectors with i.i.d. standard components
- or uniformly distributed over the unit sphere.

Set

$$
\Phi_{\alpha}=\varphi_{\alpha}^{1} \otimes \ldots \otimes \varphi_{\alpha}^{k}
$$

and consider the $d^{k} \times d^{k}$ random matrix

$$
M_{p, d, k}=\sum_{\alpha=1}^{p} \Phi_{\alpha} \otimes \Phi_{\alpha}
$$

We are interested in the (non-random) limit as $p \rightarrow \infty, d \rightarrow \infty$, $p / d^{k}=p / n \rightarrow c \in(0, \infty)$ of

Tensor Product Version of Sample Covariance Matrices

 Definitionthe Normalized Counting Measure (NCM)

$$
N_{p, d, k}=d^{-k} \sum_{l=1}^{d^{k}} \delta_{\lambda_{l}}, n=d^{k}
$$

It is also of interest the limits of the extreme eigenvalues, local statistics, fluctuations of $N_{p, d, k}$, etc.

Studied by M. Hastings et al (CMP 310 (2012) 25-74) as a part of analysis of quantum analog of classical probability problem on the distribution of p balls between p bins (quantum models of data hiding and correlation locking schema).

Proved the MP law for the limit N of the expectation of the NCM and the convergence of extreme eigenvalues to the endpoints of the support of N by fairly involved combinatorial analysis of moments $d^{-k} \operatorname{Tr} M_{p, d, k}^{m}, m \in \mathbb{N}$.

Tensor Product Version of Sample Covariance Matrices

Remark. For Gaussian φ 's $\Phi_{\alpha} \in\left(\mathbb{C}^{d}\right)^{\otimes k}$ has just $d k$ independent parameters, while a generic $\Psi \in\left(\mathbb{C}^{d}\right)^{\otimes k}$ has d^{k} independent parameters. Nevertheless the MP law and the convergence of extreme eigenvalues hold in this case.

We show below that the MP law is valid for the limit with probability 1 of $N_{p, d, k}$ in the above and more general cases (vectors with independent but not necessarily Gaussian components as well as for vectors with log-concave distribution).

Tensor Product Version of Sample Covariance Matrices

 Pajor-P. ApproachThe approach used above for the quarter-circle law and its "triangular" analog does not apply to the tensor product version, i.e. $k>1$ (unlike the case $k=1$). We use an extension of the Marchenko-P. and Girko approach. Its version for $k=1$ is given by Pajor-P. It is applicable not necessarily Gaussian φ_{α} 's and any $1 \leq k<\infty$.
(i) Observe that

$$
M=\sum_{\alpha=1}^{p} L_{\alpha}, L_{\alpha}=\left(\cdot, \varphi_{\alpha}\right) \varphi_{\alpha}
$$

(ii) Use either martingale differences (or Poincaré for Gaussian) to prove

$$
\operatorname{Var}\left\{g_{n}(z)\right\}=o(1), \Im z \neq 0, n \rightarrow \infty, p \rightarrow \infty, p / n \in[0, \infty)
$$

(iii) Use the resolvent identity to write

$$
g_{n}:=n^{-1} \operatorname{Tr} G=-z^{-1}+(z n)^{-1} \sum_{\alpha=1}^{p}\left(G \varphi_{\alpha}, \varphi_{\alpha}\right)
$$

Tensor Product Version of Sample Covariance Matrices

Pajor-P. Approach
(iv) Use the rank one perturbation formulas:

$$
G=G_{\alpha}-\frac{G_{\alpha} L_{\alpha} G_{\alpha}}{1+\left(G_{\alpha} \varphi_{\alpha}, \varphi_{\alpha}\right)}, G_{\alpha}=\left.G\right|_{\varphi_{\alpha}=0}
$$

implying

$$
\left(G \varphi_{\alpha}, \varphi_{\alpha}\right)=\frac{\left(G_{\alpha} \varphi_{\alpha}, \varphi_{\alpha}\right)}{1+\left(G_{\alpha} \varphi_{\alpha}, \varphi_{\alpha}\right)}
$$

to rewrite (iii) as

$$
g_{n}=-z^{-1}+(z n)^{-1} \sum_{\alpha=1}^{p} \frac{\left(G_{\alpha} \varphi_{\alpha}, \varphi_{\alpha}\right)}{1+\left(G_{\alpha} \varphi_{\alpha}, \varphi_{\alpha}\right)}
$$

(v) Use the independence of G_{α} and φ_{α} and to obtain:

$$
\mathbf{E}_{\alpha}\left\{\left(G_{\alpha} \varphi_{\alpha}, \varphi_{\alpha}\right)\right\}=n^{-1} \operatorname{Tr} G_{\alpha}, \operatorname{Var}\left\{\left(G_{\alpha} \varphi_{\alpha}, \varphi_{\alpha}\right)\right\} \leq \text { Const } / n|\Im z|^{2} .
$$

(iv) Use (ii) and (v) to replace $\left(G_{\alpha} \varphi_{\alpha}, \varphi_{\alpha}\right)$ in (iv) by its expectation $f_{\alpha n}:=\mathbf{E}\left\{n^{-1} \operatorname{Tr} G_{\alpha}\right\}$.
(v) Use the rank one perturbation formula of (iv) to find that $f_{\alpha n}=f_{n}+O(1 / n)$ and get the "pre"- limiting quadratic equation

$$
f_{n}=-\frac{1}{z}+\frac{c}{z} \frac{f_{n}}{1+f_{n}}+o(1), \Im z \neq 0, c=p / n
$$

equivalent to the above.

Tensor Product Version of Sample Covariance Matrices

Basic Relations

For any $n \times n$ matrix A we need random vectors $\varphi \in \mathbb{C}^{n}$ possessing
(i) isotropy

$$
\mathbf{E}\{(A \varphi, \varphi)\}=n^{-1} \operatorname{Tr} A
$$

(ii) vanishing of fluctuations of $(A \varphi, \varphi)$ ("good" vectors)

$$
\operatorname{Var}\{(A \varphi, \varphi)\}=\|A\| \delta_{n}, \delta_{n}=O(1), n \rightarrow \infty
$$

Lemma

Let $\varphi \in \mathbb{C}^{d}$ be a random vector as above and A is $d^{k} \times d^{k}$ matrix. If $\varphi^{1}, \ldots \varphi^{k}$ are k independent copies of φ then the random vector $\Phi=\varphi^{1} \otimes \ldots \otimes \varphi^{k}$ also possesses the above properties in which $n=d^{k}$ and δ_{n} is replaced by $C_{k} \delta_{d}$, where C_{k} depends only on k.

Proof is based on the martingale-differences.

Tensor Product Version of Sample Covariance Matrices

Study the extreme eigenvalues, both for $c>1$ (both edges are standard soft) and $c=1$ (lower edge is standard soft). Have likely different rates of convergence (depending on k).

Example: for Gaussian vectors

$$
\operatorname{Var}\left\{g_{n}\right\} \leq \frac{C(z) k}{n^{1+1 / k}}, 0<C(z)<\infty, \operatorname{Im} z \neq 0
$$

thus, different scaling of fluctuations of linear eigenvalue statistics (CLT), etc.

