Analysis of a Combinatorial Optimization Problem in Wireless Communications

Ralf R. Müller
Department of Electronics \& Telecommunications Norwegian University of Science \& Technology, Trondheim

joint work with
Benjamin Zaidel, Dongning Guo, Aris Moustakas, Rodrigo de Miguel, Vesna Gardašević, Finn Knudsen
October 9, 2012

The Problem in a Nutshell

Let

$$
E \equiv \frac{1}{K} \min _{\boldsymbol{x} \in \mathcal{X}} \boldsymbol{x}^{\dagger} \boldsymbol{J} \boldsymbol{x}
$$

with $\boldsymbol{x} \in \mathbb{C}^{K}$ and $\boldsymbol{J} \in \mathbb{C}^{K \times K}$.

The Problem in a Nutshell

Let

$$
E \equiv \frac{1}{K} \min _{x \in \mathcal{X}} x^{\dagger} \boldsymbol{J} x
$$

with $\boldsymbol{x} \in \mathbb{C}^{K}$ and $\boldsymbol{J} \in \mathbb{C}^{K \times K}$.

- Sphere:

$$
\mathcal{X}=\left\{\boldsymbol{x}: \boldsymbol{x}^{\dagger} \boldsymbol{x}=K\right\} \quad \Longrightarrow \quad E=\min \lambda(\boldsymbol{J})
$$

The Problem in a Nutshell

Let

$$
E \equiv \frac{1}{K} \min _{x \in \mathcal{X}} x^{\dagger} \boldsymbol{J} x
$$

with $\boldsymbol{x} \in \mathbb{C}^{K}$ and $\boldsymbol{J} \in \mathbb{C}^{K \times K}$.

- Sphere:

$$
\mathcal{X}=\left\{\boldsymbol{x}: \boldsymbol{x}^{\dagger} \boldsymbol{x}=K\right\} \quad \Longrightarrow \quad E=\min \lambda(J)
$$

- Cube:

$$
\mathcal{X}=\{+1,-1\}^{K} \Longrightarrow \text { ??? }
$$

The Problem in a Nutshell

Let

$$
E \equiv \frac{1}{K} \min _{x \in \mathcal{X}} x^{\dagger} \boldsymbol{J} x
$$

with $\boldsymbol{x} \in \mathbb{C}^{K}$ and $\boldsymbol{J} \in \mathbb{C}^{K \times K}$.

- Sphere:

$$
\mathcal{X}=\left\{\boldsymbol{x}: \boldsymbol{x}^{\dagger} \boldsymbol{x}=K\right\} \quad \Longrightarrow \quad E=\min \lambda(\boldsymbol{J})
$$

- Cube:

$$
\mathcal{X}=\{+1,-1\}^{K} \Longrightarrow \text { ??? }
$$

- Vector precoding:

$$
\mathcal{X}=(4 \mathbb{Z}+1)^{K} \quad \Longrightarrow \quad ? ? ?
$$

The Gaussian Vector Channel

Let the received vector be given by

$$
\boldsymbol{y}=H t+\boldsymbol{n}
$$

where

- t is the transmitted vector
- n is uncorrelated (white) Gaussian noise

- H is a coupling matrix accounting for crosstalk

Data rate scales linearly with the minimum of the number of antenna elements.

The Gaussian Vector Channel

Let the received vector be given by

$$
\boldsymbol{y}=H t+\boldsymbol{n}
$$

where

- t is the transmitted vector
- \boldsymbol{n} is uncorrelated (white) Gaussian noise
- H is a coupling matrix accounting for crosstalk

Crosstalk can be processed either at receiver or transmitter

Processing at Transmitter

- If the transmitter is a base-station and the receiver is a hand-held device, processing at the transmitter is preferred.
- In a broadcast situation, processing at the transmitter is mandatory.

Processing at Transmitter

- If the transmitter is a base-station and the receiver is a hand-held device, processing at the transmitter is preferred.
- In a broadcast situation, processing at the transmitter is mandatory.
E.g. let the transmitted vector be

$$
\boldsymbol{t}=\boldsymbol{H}^{\dagger}\left(\boldsymbol{H} \boldsymbol{H}^{\dagger}\right)^{-1} \boldsymbol{x}
$$

where $\boldsymbol{x}=\boldsymbol{s}$ is the data to be sent.

Processing at Transmitter

- If the transmitter is a base-station and the receiver is a hand-held device, processing at the transmitter is preferred.
- In a broadcast situation, processing at the transmitter is mandatory.
E.g. let the transmitted vector be

$$
\boldsymbol{t}=\boldsymbol{H}^{\dagger}\left(\boldsymbol{H} \boldsymbol{H}^{\dagger}\right)^{-1} \boldsymbol{x}
$$

where $\boldsymbol{x}=\boldsymbol{s}$ is the data to be sent.
Then,

$$
\begin{aligned}
\boldsymbol{y} & =\boldsymbol{H} t+\boldsymbol{n} . \\
& =\boldsymbol{H} \boldsymbol{H}^{\dagger}\left(\boldsymbol{H} \boldsymbol{H}^{\dagger}\right)^{-1} \boldsymbol{x}+\boldsymbol{n} . \\
& =\boldsymbol{s}+\boldsymbol{n} .
\end{aligned}
$$

No crosstalk anymore due to channel inversion.

Problems of Simple Channel Inversion

Channel inversion implies a significant power amplification, i.e.

$$
\mathrm{E}\left\{\boldsymbol{t}^{\dagger} \boldsymbol{t}\right\}=\mathrm{E}\left\{\boldsymbol{x}^{\dagger}\left(\boldsymbol{H} \boldsymbol{H}^{\dagger}\right)^{-1} \boldsymbol{x}\right\}>\mathrm{E}\left\{\boldsymbol{x}^{\dagger} \boldsymbol{x}\right\} \quad \text { even for } \quad \mathrm{E}\left\{\boldsymbol{H} \boldsymbol{H}^{\dagger}\right\}=\mathbf{I}
$$

In particular, let

- the entries of $\boldsymbol{H} \in \mathbb{C}^{K \times N}$ be i.i.d. with variance $1 / N$.
- $\alpha=\frac{K}{N} \leq 1$;

Then, for fixed aspect ratio α

$$
\lim _{K \rightarrow \infty} \frac{\boldsymbol{x}^{\dagger}\left(\boldsymbol{H} \boldsymbol{H}^{\dagger}\right)^{-1} \boldsymbol{x}}{\boldsymbol{x}^{\dagger} \boldsymbol{x}}=\frac{1}{1-\alpha}
$$

(with probability 1).

Vector Precoding

Lattice-based vector precoding

Vector Precoding

Lattice-based vector precoding

Vector Precoding

Lattice-based vector precoding

Instead of representing the logical " 0 " by +1 , represent it by any element of the set $\{\ldots,-7,-3,+1,+5, \ldots\}=4 \mathbb{Z}+1$. Correspondingly, the logical " 1 " is represented by any element of the set $4 \mathbb{Z}-1$.

Choose that representation that gives the smallest transmit power.

Lattice Relaxation of QPSK

General Vector Precoding

- Let \mathcal{B}_{0} and \mathcal{B}_{1} denote the sets presenting 0 and 1 , resp.
- Let $\left(s_{1}, s_{2}, \ldots, s_{K}\right) \in\{0,1\}^{K}$ denote the data to be transmitted.

General Vector Precoding

- Let \mathcal{B}_{0} and \mathcal{B}_{1} denote the sets presenting 0 and 1 , resp.
- Let $\left(s_{1}, s_{2}, \ldots, s_{K}\right) \in\{0,1\}^{K}$ denote the data to be transmitted.

Then, the transmitted energy per data symbol is given by

$$
E=\frac{1}{K} \min _{x \in \mathcal{X}} \boldsymbol{x}^{\dagger} J \boldsymbol{x}
$$

with

$$
\mathcal{X}=\mathcal{B}_{s_{1}} \times \mathcal{B}_{s_{2}} \times \cdots \times \mathcal{B}_{s_{K}}
$$

and

$$
\boldsymbol{J}=\left(\boldsymbol{H} \boldsymbol{H}^{\dagger}\right)^{-1}
$$

General Vector Precoding

- Let \mathcal{B}_{0} and \mathcal{B}_{1} denote the sets presenting 0 and 1 , resp.
- Let $\left(s_{1}, s_{2}, \ldots, s_{K}\right) \in\{0,1\}^{K}$ denote the data to be transmitted.

Then, the transmitted energy per data symbol is given by

$$
E=\frac{1}{K} \min _{x \in \mathcal{X}} \boldsymbol{x}^{\dagger} J \boldsymbol{x}
$$

with

$$
\mathcal{X}=\mathcal{B}_{s_{1}} \times \mathcal{B}_{s_{2}} \times \cdots \times \mathcal{B}_{s_{K}}
$$

and

$$
\boldsymbol{J}=\left(\boldsymbol{H} \boldsymbol{H}^{\dagger}\right)^{-1}
$$

What is a smart choice for \mathcal{B}_{0} and \mathcal{B}_{1} ?

Zero Temperature Formulation

Vector precoding is the problem of finding the zero temperature limit of a quadratic energy potential.

The transmitted power is written as a zero temperature limit

$$
E=-\lim _{\beta \rightarrow \infty} \frac{1}{\beta K} \log \sum_{x \in \mathcal{X}} \mathrm{e}^{-\beta \operatorname{tr}\left(x^{\dagger} J x\right)}
$$

with $\frac{1}{\beta}$ denoting temperature.

Zero Temperature Formulation

Vector precoding is the problem of finding the zero temperature limit of a quadratic energy potential.

The transmitted power is written as a zero temperature limit

$$
\begin{aligned}
E & =-\lim _{\beta \rightarrow \infty} \frac{1}{\beta K} \log \sum_{x \in \mathcal{X}} \mathrm{e}^{-\beta \operatorname{tr}\left(x^{\dagger} J x\right)} \\
& \longrightarrow-\lim _{\beta \rightarrow \infty} \lim _{K \rightarrow \infty} \frac{\mathrm{E}}{J} \frac{1}{\beta K} \log \sum_{x \in \mathcal{X}} \mathrm{e}^{-\beta \operatorname{tr}\left(J x x^{\dagger}\right)}
\end{aligned}
$$

with $\frac{1}{\beta}$ denoting temperature.

The Harish-Chandra Integral (Itzykson-Zuber Integral)

Let P be any positive semi-definite matrix of bounded rank n and J be unitarily invariant and free of P, then

$$
\lim _{K \rightarrow \infty} \frac{1}{K} \log \underset{J}{E} \mathrm{e}^{-K \operatorname{tr} J P}=-\sum_{a=1}^{n} \int_{0}^{\lambda_{a}} R_{J}(-w) d w
$$

with

- λ_{a} denoting the positive eigenvalues of P and
- $R_{J}(w)$ denoting the R-transform of the spectral measure of J.
(Marinari et al. '94; Guionnet, Maïda '05)

Examples of R-Transforms

For \boldsymbol{H} with i.i.d. entries:

$$
\begin{aligned}
R_{\mathbf{I}}(w) & =1 \\
R_{\boldsymbol{H H}^{\dagger}}(w) & =\frac{1}{1-\alpha w} \\
R_{\left(H \boldsymbol{H}^{+}\right)^{-1}}(w) & =\frac{1-\alpha-\sqrt{(1-\alpha)^{2}-4 \alpha w}}{2 \alpha w}
\end{aligned}
$$

The Replica Method

We want

$$
E=-\lim _{\beta \rightarrow \infty} \frac{1}{\beta} \lim _{K \rightarrow \infty} \frac{1}{K} \mathrm{E}_{J}^{\log } \sum_{x \in \mathcal{X}} \mathrm{e}^{-\beta \operatorname{tr}\left(J x x^{\dagger}\right)} .
$$

The Replica Method

We want

$$
\lim _{K \rightarrow \infty} \frac{1}{K} \mathrm{E}_{\boldsymbol{J}} \log \sum_{x \in \mathcal{X}} \mathrm{e}^{-\beta \operatorname{tr}\left(J x x^{\dagger}\right)} .
$$

The Replica Method

We want

$$
\lim _{K \rightarrow \infty} \frac{1}{K} \mathrm{E} \log \sum_{\boldsymbol{x} \in \mathcal{X}} \mathrm{e}^{-\beta \operatorname{tr}\left(\boldsymbol{J} \boldsymbol{x} \boldsymbol{x}^{\dagger}\right)}
$$

We know (Harish-Chandra integral)

$$
\lim _{K \rightarrow \infty} \frac{1}{K} \log E_{J} \mathrm{e}^{-K \operatorname{tr} \boldsymbol{J} \boldsymbol{P}}=-\sum_{a=1}^{n} \int_{0}^{\lambda_{a}(\boldsymbol{P})} R_{\boldsymbol{J}}(-w) d w
$$

We would like to exchange expectation and logarithm.

The Replica Method

We want

$$
\lim _{K \rightarrow \infty} \frac{1}{K} \mathrm{E} \log \sum_{\boldsymbol{x} \in \mathcal{X}} \mathrm{e}^{-\beta \operatorname{tr}\left(\boldsymbol{J} \boldsymbol{x} \boldsymbol{x}^{\dagger}\right)}
$$

We know (Harish-Chandra integral)

$$
\lim _{K \rightarrow \infty} \frac{1}{K} \log E_{J} \mathrm{e}^{-K \operatorname{tr} \boldsymbol{J} \boldsymbol{P}}=-\sum_{a=1}^{n} \int_{0}^{\lambda_{a}(\boldsymbol{P})} R_{\boldsymbol{J}}(-w) d w
$$

We would like to exchange expectation and logarithm.

$$
\underset{X}{\mathrm{E}} \log X=\lim _{n \rightarrow 0} \frac{1}{n} \log \underset{X}{E} X^{n}
$$

The Replica Method cont'd

We want

$\lim _{K \rightarrow \infty} \frac{1}{K} E_{J} \log \sum_{x \in \mathcal{X}} \mathrm{e}^{-\beta \operatorname{tr}\left(J x x^{\dagger}\right)}=\lim _{K \rightarrow \infty} \lim _{n \rightarrow 0} \frac{1}{n K} \log \mathrm{E}_{J}\left(\sum_{x \in \mathcal{X}} \mathrm{e}^{-\beta \operatorname{tr}\left(J x^{\dagger}\right)}\right)^{n}$

The Replica Method cont'd

We want

$\lim _{K \rightarrow \infty} \frac{1}{K} E \operatorname{E} \log \sum_{x \in \mathcal{X}} \mathrm{e}^{-\beta \operatorname{tr}\left(J_{x x^{\dagger}}\right)}=\lim _{K \rightarrow \infty} \lim _{n \rightarrow 0} \frac{1}{n K} \log \underset{J}{E}\left(\sum_{x \in \mathcal{X}} \mathrm{e}^{-\beta \operatorname{tr}\left(J x x^{\dagger}\right)}\right)^{n}$

$$
=\lim _{K \rightarrow \infty} \lim _{n \rightarrow 0} \frac{1}{n K} \log E_{J} \prod_{a=1}^{n} \sum_{x_{a} \in \mathcal{X}} \mathrm{e}^{-\beta \operatorname{tr}\left(J x_{a} x_{a}^{\dagger}\right)}
$$

The Replica Method cont'd

We want

$\begin{aligned} \lim _{K \rightarrow \infty} \frac{1}{K} \underset{J}{\mathrm{E}} \log \sum_{x \in \mathcal{X}} \mathrm{e}^{-\beta \operatorname{tr}\left(J x x^{\dagger}\right)} & =\lim _{K \rightarrow \infty} \lim _{n \rightarrow 0} \frac{1}{n K} \log \underset{J}{\mathrm{E}}\left(\sum_{x \in \mathcal{X}} \mathrm{e}^{-\beta \operatorname{tr}\left(J x^{\dagger}\right)}\right)^{n} \\ & =\lim _{K \rightarrow \infty} \lim _{n \rightarrow 0} \frac{1}{n K} \log \mathrm{E}_{J} \prod_{a=1}^{n} \sum_{x_{a} \in \mathcal{X}} \mathrm{e}^{-\beta \operatorname{tr}\left(J x_{a} x_{a}^{\dagger}\right)}\end{aligned}$

$$
=\lim _{K \rightarrow \infty} \lim _{n \rightarrow 0} \frac{1}{n K} \log \mathrm{E}_{J} \sum_{x_{1} \in \mathcal{X}} \cdots \sum_{x_{n} \in \mathcal{X}} \mathrm{e}^{-\operatorname{tr}\left(\boldsymbol{J} \beta \sum_{a=1}^{n} x_{a} x_{a}^{\dagger}\right)}
$$

The Replica Method cont'd

We want

$\lim _{K \rightarrow \infty} \frac{1}{K} \underset{J}{E} \log \sum_{x \in \mathcal{X}} \mathrm{e}^{-\beta \operatorname{tr}\left(J x x^{\dagger}\right)}=\lim _{K \rightarrow \infty} \lim _{n \rightarrow 0} \frac{1}{n K} \log \underset{J}{E}\left(\sum_{x \in \mathcal{X}} \mathrm{e}^{-\beta \operatorname{tr}\left(J x x^{\dagger}\right)}\right)^{n}$

$$
=\lim _{K \rightarrow \infty} \lim _{n \rightarrow 0} \frac{1}{n K} \log E \sum_{a=1}^{n} \sum_{x_{a} \in \mathcal{X}} \mathrm{e}^{-\beta \operatorname{tr}\left(J x_{a} x_{a}^{\dagger}\right)}
$$

$$
=\lim _{K \rightarrow \infty} \lim _{n \rightarrow 0} \frac{1}{n K} \log \mathrm{E}_{\boldsymbol{J}} \sum_{x_{1} \in \mathcal{X}} \cdots \sum_{x_{n} \in \mathcal{X}} \mathrm{e}^{-\operatorname{tr}\left(\boldsymbol{J} \beta \sum_{\mathrm{a}=1}^{n} x_{a} x_{a}^{\dagger}\right)}
$$

$$
=\lim _{K \rightarrow \infty} \lim _{n \rightarrow 0} \frac{1}{n K} \log {\underset{Q}{Q}}^{e x p}\left[-K \sum_{a=1}^{n} \int_{0}^{\beta \lambda_{a}(Q)} R_{J}(-w) d w\right]
$$

with

$$
Q_{a b} \equiv \frac{1}{K} x_{a}^{\dagger} x_{b} .
$$

Laplace Integration

We find
$\lim _{K \rightarrow \infty} \frac{1}{K} \mathrm{E}_{J} \log \sum_{x \in \mathcal{X}} \mathrm{e}^{-\beta \operatorname{tr}\left(J x x^{\dagger}\right)}=\lim _{K \rightarrow \infty} \lim _{n \rightarrow 0} \frac{1}{n K} \log E_{Q} \exp \left[-K \sum_{a=1}^{n} \int_{0}^{\beta \lambda_{a}(Q)} R_{J}(-w) d w\right]$

Laplace Integration

We find
$\lim _{K \rightarrow \infty} \frac{1}{K} \underset{J}{E} \log \sum_{x \in \mathcal{X}} \mathrm{e}^{-\beta \operatorname{tr}\left(J_{\left.x x^{\dagger}\right)}\right.}=\lim _{K \rightarrow \infty} \lim _{n \rightarrow 0} \frac{1}{n K} \log \underset{Q}{E} \exp \left[-K \sum_{a=1}^{n} \int_{0}^{\beta \lambda_{a}(Q)} R_{J}(-w) d w\right]$

$$
=\lim _{n \rightarrow 0} \frac{1}{n} \min _{Q}\left[-\sum_{a=1}^{n} \int_{0}^{\beta \lambda_{a}(Q)} R_{J}(-w) d w\right]
$$

Laplace Integration

We find
$\lim _{K \rightarrow \infty} \frac{1}{K} \underset{J}{\mathrm{E}} \log \sum_{x \in \mathcal{X}} \mathrm{e}^{-\beta \operatorname{tr}\left(J x x^{\dagger}\right)}=\lim _{K \rightarrow \infty} \lim _{n \rightarrow 0} \frac{1}{n K} \log \underset{Q}{E} \exp \left[-K \sum_{a=1}^{n} \int_{0}^{\beta \lambda_{a}(Q)} R_{J}(-w) d w\right]$

$$
\begin{aligned}
& =\lim _{n \rightarrow 0} \frac{1}{n} \min _{Q}\left[-\sum_{a=1}^{n} \int_{0}^{\beta \lambda_{a}(Q)} R_{J}(-w) d w\right] \\
& \rightsquigarrow \lim _{n \rightarrow 0} \frac{1}{n} \min _{Q} \operatorname{tr}\left[Q R_{J}(-\beta \boldsymbol{Q})\right] .
\end{aligned}
$$

How to optimize over the $n \times n$ matrix Q for $n \rightarrow 0$?

Replica Symmetry (RS)

We try the following ansatz

$$
\boldsymbol{Q} \equiv\left[\begin{array}{ccccc}
q+\frac{\chi}{\beta} & q & \cdots & q & q \\
q & q+\frac{\chi}{\beta} & \ddots & q & q \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
q & q & \ddots & q+\frac{\chi}{\beta} & q \\
q & q & \cdots & q & q+\frac{\chi}{\beta}
\end{array}\right]
$$

with some macroscopic parameters q and χ.

Replica Symmetry (RS)

We try the following ansatz

$$
\boldsymbol{Q} \equiv\left[\begin{array}{ccccc}
q+\frac{\chi}{\beta} & q & \cdots & q & q \\
q & q+\frac{\chi}{\beta} & \ddots & q & q \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
q & q & \ddots & q+\frac{\chi}{\beta} & q \\
q & q & \cdots & q & q+\frac{\chi}{\beta}
\end{array}\right]
$$

with some macroscopic parameters q and χ.
This is a critical step. In some cases, the structure of \boldsymbol{Q} is more complicated. We try this structure first.

RS Solution

Let q and χ be the simultaneous solutions to

$$
\begin{aligned}
& q=\underset{s, z}{\mathrm{E}} \underset{\chi \in \mathcal{B}_{s}}{\operatorname{argmin}}{ }^{2}\left|z \sqrt{2 q R_{J}^{\prime}(-\chi)}-2 x R_{J}(-\chi)\right| \\
& \chi=\frac{1}{\sqrt{2 q R_{J}^{\prime}(-\chi)}} \underset{s, z}{E} \Re\left\{z^{*} \underset{\chi \in \mathcal{B}_{s}}{\operatorname{argmin}}\left|z \sqrt{2 q R_{J}^{\prime}(-\chi)}-2 x R_{J}(-\chi)\right|\right\}
\end{aligned}
$$

where z is a unit variance zero-mean Gaussian random variable.
Then, replica symmetry (RS) implies

$$
E=\frac{1}{K} \min _{x \in \mathcal{X}} \boldsymbol{x}^{\dagger} \boldsymbol{J} \boldsymbol{x} \rightarrow \boldsymbol{q} \frac{\partial}{\partial \chi} \chi R_{J}(-\chi)
$$

as $K \rightarrow \infty$.

Complex Lattice Precoding

1-Step Replica Symmetry Breaking

$$
\left.\boldsymbol{Q} \equiv\left[\begin{array}{ccccccc}
\overbrace{q+p+\frac{\chi}{\beta}} & q+p \\
q+p & q+p+\frac{\chi}{\beta}
\end{array}\right) \begin{array}{cccccc}
\frac{\mu}{\beta} \text { columns } & q & q & \cdots & q & q \\
q & q & q+p+\frac{\chi}{\beta} & q+p & \ddots & q \\
q & q & q+p & q+p+\frac{\chi}{\beta} & & \vdots \\
\vdots & \vdots & \ddots & & \ddots & q \\
q & q & q & \cdots & q & q+p+\frac{\chi}{\beta} \\
q & q & q & \cdots & q & q+p \\
q & q & q+p & q+p+\frac{\chi}{\beta}
\end{array}\right]
$$

with the macroscopic parameters q, p and χ and the blocksize $\frac{\mu}{\beta}$.

1-Step Replica Symmetry Breaking

$$
\begin{aligned}
E & =\frac{1}{K} \min _{x \in \mathcal{X}} \boldsymbol{x}^{\dagger} \boldsymbol{J} \boldsymbol{x} \\
& \rightarrow\left(q+p+\frac{\chi}{\mu}\right) R_{J}(-\chi-\mu p)-\frac{\chi}{\mu} R_{J}(-\chi)-q(\mu p+\chi) R_{\boldsymbol{J}}^{\prime}(-\chi-\mu p)
\end{aligned}
$$

The macroscopic parameters q, p, χ and μ are given by 4 coupled non-linear equations (omited here).

Complex Lattice Precoding

The Meaning of Replica Symmetry Breaking

- Replica symmetry means that all vectors close to the optimum have the same inner products, i.e. they differ only in few components.

The Meaning of Replica Symmetry Breaking

- Replica symmetry means that all vectors close to the optimum have the same inner products, i.e. they differ only in few components.
- Replica symmetry breaking means that even vectors arbitrarily close to the optimum, may differ in a large portion of its components.

The Meaning of Replica Symmetry Breaking

- Replica symmetry means that all vectors close to the optimum have the same inner products, i.e. they differ only in few components.
- If there are multiple local extrema, many of those are quite close to each other.
- Replica symmetry breaking means that even vectors arbitrarily close to the optimum, may differ in a large portion of its components.

The Meaning of Replica Symmetry Breaking

- Replica symmetry means that all vectors close to the optimum have the same inner products, i.e. they differ only in few components.
- If there are multiple local extrema, many of those are quite close to each other.
- The problem can often be well approximated by iterative algorithms like belief propagation.
- Replica symmetry breaking means that even vectors arbitrarily close to the optimum, may differ in a large portion of its components.

The Meaning of Replica Symmetry Breaking

- Replica symmetry means that all vectors close to the optimum have the same inner products, i.e. they differ only in few components.
- If there are multiple local extrema, many of those are quite close to each other.
- The problem can often be well approximated by iterative algorithms like belief propagation.
- Replica symmetry breaking means that even vectors arbitrarily close to the optimum, may differ in a large portion of its components.
- There are local extrema at very different positions.

The Meaning of Replica Symmetry Breaking

- Replica symmetry means that all vectors close to the optimum have the same inner products, i.e. they differ only in few components.
- If there are multiple local extrema, many of those are quite close to each other.
- The problem can often be well approximated by iterative algorithms like belief propagation.
- Replica symmetry breaking means that even vectors arbitrarily close to the optimum, may differ in a large portion of its components.
- There are local extrema at very different positions.
- Belief propagation is often significantly suboptimum.

The Meaning of Replica Symmetry Breaking

- Replica symmetry means that all vectors close to the optimum have the same inner products, i.e. they differ only in few components.
- If there are multiple local extrema, many of those are quite close to each other.
- The problem can often be well approximated by iterative algorithms like belief propagation.
- Replica symmetry breaking means that even vectors arbitrarily close to the optimum, may differ in a large portion of its components.
- There are local extrema at very different positions.
- Belief propagation is often significantly suboptimum.
$R S$ (breaking) ranks the difficulty of approximating an NP-hard problem, in practice.

Belief Propagation vs. Exhaustive Search

Convex Relaxation

... allows for convex programming.

Energy Penalty Comparison (QPSK)

Outer Single User Coding

Spectral efficiency (per transmit antenna) is given by $C=\frac{1}{N} \sum_{k=1}^{K} I\left(s_{k}, y_{k}\right)$

Conditional Channel Output Distribution $P(y \mid s)$

We characterize the joint distribution of all relevant variables in the channel.

$$
p(s, x, y)=p(s) p(x \mid s) p(y \mid x, s)
$$

Conditional Channel Output Distribution $P(y \mid s)$

We characterize the joint distribution of all relevant variables in the channel.

$$
p(s, x, y)=p(s) p(x \mid s) p(y \mid x, s)
$$

- The precoded signal x is a deterministic function of data s. Thus, we have a Markov chain $s \rightarrow x \rightarrow y$.

Conditional Channel Output Distribution $P(y \mid s)$

We characterize the joint distribution of all relevant variables in the channel.

$$
p(s, x, y)=p(s) p(x \mid s) p(y \mid x)
$$

- The precoded signal x is a deterministic function of data s. Thus, we have a Markov chain $s \rightarrow x \rightarrow y$.

Conditional Channel Output Distribution $P(y \mid s)$

We characterize the joint distribution of all relevant variables in the channel.

$$
p(s, x, y)=p(s) p(x \mid s) p(y \mid x)
$$

- The precoded signal x is a deterministic function of data s. Thus, we have a Markov chain $s \rightarrow x \rightarrow y$.
- The channel $p(y \mid x)$ is an additive Gaussian noise channel.

Conditional Channel Output Distribution $P(y \mid s)$

We characterize the joint distribution of all relevant variables in the channel.

$$
p(s, x, y)=p(s) p(x \mid s) p(y \mid x)
$$

- The precoded signal x is a deterministic function of data s. Thus, we have a Markov chain $s \rightarrow x \rightarrow y$.
- The channel $p(y \mid x)$ is an additive Gaussian noise channel.
- The channel $p(x \mid s)$ is found by the replica method via

$$
P(x, s)=\lim _{h \rightarrow 0} \frac{\partial}{\partial h} \lim _{K \rightarrow \infty} \lim _{\beta \rightarrow \infty} \mathrm{E} \frac{1}{\beta K} \log \sum_{\boldsymbol{x} \in \mathcal{X}} \mathrm{e}^{-\beta \boldsymbol{x}^{\dagger} \boldsymbol{J}+\beta h} \sum_{k=1}^{K} 1\left\{\left(x_{k}, s_{k}\right)=(x, s)\right\}
$$

Inverting Singular Channels

What happens if the channel is rank-deficient, e.g. $K>N$?
Can we precode without interference?

Inverting Singular Channels

What happens if the channel is rank-deficient, e.g. $K>N$?
Can we precode without interference?

- The precoder produces

$$
\lim _{\epsilon \rightarrow 0} \underset{\boldsymbol{x} \in \mathcal{X}}{\operatorname{argmin}} \frac{\boldsymbol{x}^{\dagger}\left(\boldsymbol{H} \boldsymbol{H}^{\dagger}+\epsilon \mathbf{I}\right)^{-1} \boldsymbol{x}}{K}
$$

- The received signal becomes

$$
\boldsymbol{y}=\lim _{\epsilon \rightarrow 0} \boldsymbol{H} \boldsymbol{H}^{\dagger}\left(\boldsymbol{H} \boldsymbol{H}^{\dagger}+\epsilon \mathbf{l}\right)^{-1} \boldsymbol{x}+\boldsymbol{n} .
$$

If the energy is finite, there is no interference.

Overloaded Convex Precoding

The probability that a random N dimensional subspace in K real dimensions intersects the 1 . K-tant is (Wendel '62)

$$
P(K, N)=2^{1-K} \sum_{\ell=0}^{N-1}\binom{K-1}{\ell}
$$

As K, N to infinity, we get

$$
P(K, N)= \begin{cases}1 & K<2 N \\ 1 / 2 & K=2 N \\ 0 & K>2 N\end{cases}
$$

Overloaded Convex Precoding

The probability that a random N dimensional subspace in K complex dimensions intersects the 1 . K-tant is

$$
P(K, N)=2^{1-2 K} \sum_{\ell=0}^{2 N-1}\binom{2 K-1}{\ell}
$$

As K, N to infinity, we get

$$
P(K, N)= \begin{cases}1 & K<2 N \\ 1 / 2 & K=2 N \\ 0 & K>2 N\end{cases}
$$

Overloaded Convex Precoding

Wanted

More general versions of the Harish-Chandra integral, e.g.

- no unitary invariance, only freeness required
-

$$
\lim _{K \rightarrow \infty} \frac{1}{K} \log \underset{A, B}{E} \mathrm{e}^{-K \operatorname{tr} A P B P}=f\left\{R_{A}(\cdot), R_{B}(\cdot), \ldots\right\}
$$

- or other more complicated exponents

Negative Entropy

$$
\begin{array}{ll}
\text { (}
\end{array}
$$

The closer the entropy is to zero, the better the RSB approximation.

