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The Appetizer for Mathematicians

The Problem in a Nutshell
Let

E ≡ 1
K min

x∈X
x†Jx

with x ∈ CK and J ∈ CK×K .

Sphere:
X = {x : x†x = K} =⇒ E = minλ(J)

Cube:
X = {+1,−1}K =⇒ ???

Vector precoding:

X = (4Z+ 1)K =⇒ ???
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The Appetizer for Engineers

The Gaussian Vector Channel

Let the received vector be given by

y = Ht + n

where
t is the transmitted vector
n is uncorrelated (white) Gaussian noise
H is a coupling matrix accounting for crosstalk

Data rate scales linearly with the minimum of the number of antenna elements.
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The Appetizer for Engineers

The Gaussian Vector Channel

Let the received vector be given by

y = Ht + n

where
t is the transmitted vector
n is uncorrelated (white) Gaussian noise
H is a coupling matrix accounting for crosstalk

Crosstalk can be processed either at receiver or transmitter
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The Appetizer for Engineers

Processing at Transmitter

If the transmitter is a base-station and the receiver is a hand-held device,
processing at the transmitter is preferred.
In a broadcast situation, processing at the transmitter is mandatory.

E.g. let the transmitted vector be

t = H†(HH†)−1x

where x = s is the data to be sent.

Then,

y = Ht + n.
= HH†(HH†)−1x + n.
= s + n.

No crosstalk anymore due to channel inversion.
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The Appetizer for Engineers

Problems of Simple Channel Inversion

Channel inversion implies a significant power amplification, i.e.

E
{

t†t
}
= E

{
x†
(

HH†
)−1

x
}
> E

{
x†x
}

even for E
{

HH†
}
= I

In particular, let
the entries of H ∈ CK×N be i.i.d. with variance 1/N.
α = K

N ≤ 1;

Then, for fixed aspect ratio α

lim
K→∞

x†
(

HH†
)−1

x
x†x =

1
1− α

(with probability 1).
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The Appetizer for Engineers

Vector Precoding

Lattice-based vector precoding

 

Instead of representing the logical "0" by +1, represent it by any element of the
set {. . . ,−7,−3,+1,+5, . . . } = 4Z+ 1. Correspondingly, the logical "1" is
represented by any element of the set 4Z− 1.

Choose that representation that gives the smallest transmit power.
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The Appetizer for Engineers

Lattice Relaxation of QPSK
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The Appetizer for Engineers

General Vector Precoding

Let B0 and B1 denote the sets presenting 0 and 1, resp.
Let (s1, s2, . . ., sK ) ∈ {0, 1}K denote the data to be transmitted.

Then, the transmitted energy per data symbol is given by

E = 1
K min

x∈X
x†Jx

with
X = Bs1 × Bs2 × · · · × BsK

and
J =

(
HH†

)−1
.

What is a smart choice for B0 and B1?
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The Appetizer for Physicists

Zero Temperature Formulation

Vector precoding is the problem of finding the zero temperature limit of a
quadratic energy potential.

The transmitted power is written as a zero temperature limit

E = − lim
β→∞

1
βK log

∑
x∈X

e−β tr(x†Jx)

−→ − lim
β→∞

lim
K→∞

E
J

1
βK log

∑
x∈X

e−β tr(Jxx†)

with 1
β denoting temperature.
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The Main Course for Mathematicians

The Harish-Chandra Integral (Itzykson-Zuber Integral)

Let P be any positive semi-definite matrix of bounded rank n and J be unitarily
invariant and free of P, then

lim
K→∞

1
K log E

J
e−K tr JP = −

n∑
a=1

λa∫
0

RJ(−w)dw

with
λa denoting the positive eigenvalues of P and
RJ(w) denoting the R-transform of the spectral measure of J.

(Marinari et al. ’94; Guionnet, Maïda ’05)
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The Main Course for Mathematicians

Examples of R-Transforms

For H with i.i.d. entries:

RI(w) = 1

RHH†(w) =
1

1− αw

R(HH†)−1(w) =
1− α−

√
(1− α)2 − 4αw
2αw
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The Main Course for Mathematicians

The Replica Method

We want
E = − lim

β→∞

1
β

lim
K→∞

1
K E

J
log
∑
x∈X

e−β tr(Jxx†).

We know (Harish-Chandra integral)

lim
K→∞

1
K log E

J
e−K tr JP = −

n∑
a=1

λa(P)∫
0

RJ(−w)dw .

We would like to exchange expectation and logarithm.

E
X
logX = lim

n→0

1
n log E

X
X n
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The Main Course for Physicists

The Replica Method cont’d

We want

lim
K→∞

1
K E

J
log

∑
x∈X

e−β tr(Jxx†) = lim
K→∞

lim
n→0

1
nK log E

J

(∑
x∈X

e−β tr(Jxx†)

)n

= lim
K→∞

lim
n→0

1
nK log E

J

n∏
a=1

∑
xa∈X

e−β tr(Jxax†a )

= lim
K→∞

lim
n→0

1
nK log E

J

∑
x1∈X

· · ·
∑

xn∈X
e
− tr

(
Jβ

n∑
a=1

xax†a

)

= lim
K→∞

lim
n→0

1
nK log E

Q
exp

−K n∑
a=1

βλa(Q)∫
0

RJ(−w)dw


with

Qab ≡
1
K x†axb.
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The Main Course for Physicists
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The Main Course for Physicists

Laplace Integration

We find

lim
K→∞

1
K E

J
log

∑
x∈X

e−β tr(Jxx†) = lim
K→∞

lim
n→0

1
nK log E

Q
exp

−K n∑
a=1

βλa(Q)∫
0

RJ(−w)dw



= lim
n→0

1
n min

Q

− n∑
a=1

βλa(Q)∫
0

RJ(−w)dw


 lim

n→0

1
n min

Q
tr [QRJ(−βQ)] .

How to optimize over the n × n matrix Q for n→ 0?
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The Main Course for Physicists

Replica Symmetry (RS)

We try the following ansatz

Q ≡



q + χ
β q · · · q q

q q + χ
β

. . . q q
...

. . . . . . . . .
...

q q
. . . q + χ

β q
q q · · · q q + χ

β


with some macroscopic parameters q and χ.

This is a critical step. In some cases, the structure of Q is more complicated.
We try this structure first.
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The Main Course for Physicists

RS Solution

Let q and χ be the simultaneous solutions to

q = E
s,z

argmin
x∈Bs

2
∣∣∣∣z√2qR ′J(−χ)− 2xRJ(−χ)

∣∣∣∣
χ =

1√
2qR ′J(−χ)

E
s,z
<
{
z∗argmin

x∈Bs

∣∣∣∣z√2qR ′J(−χ)− 2xRJ(−χ)
∣∣∣∣}

where z is a unit variance zero-mean Gaussian random variable.

Then, replica symmetry (RS) implies

E =
1
K min

x∈X
x†Jx → q ∂

∂χ
χRJ(−χ)

as K →∞.
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The Main Course for Engineers

Complex Lattice Precoding

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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E 

[d
B]

 

 

RS Solution
Lower Bound
Simulation Results: K=8
Simulation Results: K=16
Simulation Results: K=32

16
π (1−α)

1
α−1
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The Main Course for Physicists

1-Step Replica Symmetry Breaking

Q ≡

ai

µ
β
columns︷ ︸︸ ︷

aaaaaaaaaaaaaaaaaa

q+p+ χ
β

q+p q q · · · q q
q+p q+p+ χ

β
q q · · · q q

q q q+p+ χ
β

q+p
. . . q q

q q q+p q+p+ χ
β

...
...

...
...

. . . . . . q q
q q q · · · q q+p+ χ

β
q+p

q q q · · · q q+p q+p+ χ
β



with the macroscopic parameters q, p and χ and the blocksize µ
β .
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The Main Course for Physicists

1-Step Replica Symmetry Breaking

E =
1
K min

x∈X
x†Jx

→
(
q + p +

χ

µ

)
RJ(−χ− µp)−

χ

µ
RJ(−χ)− q(µp + χ)R ′J(−χ− µp)

The macroscopic parameters q, p, χ and µ are given by 4 coupled non-linear
equations (omited here).
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The Main Course for Engineers

Complex Lattice Precoding

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

8
E 

[d
B]

 

 

RS Solution
Lower Bound
1RSB Solution
Simulation Results: K=8
Simulation Results: K=16
Simulation Results: K=32

16
π (1−α)

1
α−1
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The Main Course for Engineers

The Meaning of Replica Symmetry Breaking

Replica symmetry means that all vectors close to the optimum have the same
inner products, i.e. they differ only in few components.

I If there are multiple local extrema, many of those are quite close to each other.
I The problem can often be well approximated by iterative algorithms like belief

propagation.
Replica symmetry breaking means that even vectors arbitrarily close to the
optimum, may differ in a large portion of its components.

I There are local extrema at very different positions.
I Belief propagation is often significantly suboptimum.

RS (breaking) ranks the difficulty of approximating an NP-hard problem, in practice.
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Belief Propagation vs. Exhaustive Search
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RS Solution
1RSB Solution
Exhaustive search: K=32
Belief propagation: K=32
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Convex Relaxation

 

. . . allows for convex programming.
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Outer Single User Coding

I(sk , yk) = h(yk)− h(yk |sk)

Spectral efficiency (per transmit antenna) is given by C =
1
N

K∑
k=1

I(sk , yk)
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Conditional Channel Output Distribution P(y |s)

We characterize the joint distribution of all relevant variables in the channel.

p(s, x , y) = p(s)p(x |s)p(y |x , s)

The precoded signal x is a deterministic function of data s. Thus, we have a
Markov chain s → x → y .
The channel p(y |x) is an additive Gaussian noise channel.
The channel p(x |s) is found by the replica method via

P(x , s) = lim
h→0

∂

∂h lim
K→∞

lim
β→∞

E
J

1
βK log

∑
x∈X

e
−βx†Jx+βh

K∑
k=1

1{(xk ,sk )=(x ,s)}
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DPC

Linear Precoding − QPSK Input

Lattice Precoding − QPSK Input

Convex Precoding − QPSK Input

GTHP − QPSK
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Inverting Singular Channels

What happens if the channel is rank-deficient, e.g. K > N?

Can we precode without interference?

The precoder produces

lim
ε→0

argmin
x∈X

x†(HH† + εI)−1x
K

The received signal becomes

y = lim
ε→0

HH†(HH† + εI)−1x + n.

If the energy is finite, there is no interference.
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Overloaded Convex Precoding
su

b
sp

a
ce

1. quadrant

The probability that a random N dimensional
subspace in K real dimensions intersects
the 1. K -tant is (Wendel ’62)

P(K ,N) = 21−K
N−1∑
`=0

(
K − 1
`

)

As K ,N to infinity, we get

P(K ,N) =


1 K < 2N
1/2 K = 2N
0 K > 2N
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Overloaded Convex Precoding
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N=128
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Open Problems

Wanted

More general versions of the Harish-Chandra integral, e.g.
no unitary invariance, only freeness required

lim
K→∞

1
K log E

A,B
e−KtrAPBP = f {RA(·),RB(·), . . . }

or other more complicated exponents
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The Dessert for Physicists

Negative Entropy

S = χRJ(−χ)−
χ∫

0

RJ(−w)dw
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S
RS

1RSB

The closer the entropy is to zero, the better the RSB approximation.
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