The strong asymptotic freeness of large random and deterministic matrices

Camille Male
Université Paris Diderot (Paris 7)

Workshop random matrices and their applications, Telecom Paristech, October 8-10

Statement of results

No eigenvalues outside a neighborhood of the lim. support
Consider the N by N^{\prime} so called "separable covariance matrix"

$$
H_{N, N^{\prime}}=A_{N} X_{N, N^{\prime}} B_{N^{\prime}} X_{N, N^{\prime}}^{*} A_{N}, \text { where }
$$

- $\sqrt{N^{\prime}} X_{N, N^{\prime}}$: size $N \times N^{\prime}$ with i.i.d. standard entries $\sim \mu$,
- $A_{N}, B_{N} \geq 0$: size $N \times N$ and $N^{\prime} \times N^{\prime}$ resp., s.t. $\mathcal{L}_{A_{N}} \rightarrow \mathcal{L}_{a}, \mathcal{L}_{B_{N^{\prime}}} \rightarrow \mathcal{L}_{b}$.

No eigenvalues outside a neighborhood of the lim. support
Consider the N by N^{\prime} so called "separable covariance matrix"

$$
H_{N, N^{\prime}}=A_{N} X_{N, N^{\prime}} B_{N^{\prime}} X_{N, N^{\prime}}^{*} A_{N} \text {, where }
$$

- $\sqrt{N^{\prime}} X_{N, N^{\prime}}:$ size $N \times N^{\prime}$ with i.i.d. standard entries $\sim \mu$,
- $A_{N}, B_{N} \geq 0$: size $N \times N$ and $N^{\prime} \times N^{\prime}$ resp., s.t. $\mathcal{L}_{A_{N}} \rightarrow \mathcal{L}_{a}, \mathcal{L}_{B_{N^{\prime}}} \rightarrow \mathcal{L}_{b}$.

Theorem: Boutet de Mondvel, Khorunzhy and Vasilchuck (96)
As $N, N^{\prime} \rightarrow \infty$ with $c_{N, N^{\prime}}=\frac{N}{N^{\prime}} \rightarrow c>0, \mathcal{L}_{H_{N, N^{\prime}}} \rightarrow \mu_{\mathcal{L}_{a}, \mathcal{L}_{b}}^{(c)}$ a.s.

Theorem: Bai and Silverstein (98), Paul and Silverstein (09)
If moreover μ has a finite fourth moment and for N large enough, Supp $\mu_{\mathcal{L}_{A_{N}}, \mathcal{L}_{\mathcal{B}_{N}}}^{\left(c_{N, N^{\prime}}\right.} \subset \operatorname{Supp} \mu_{\mathcal{L}_{\mathfrak{a}}, \mathcal{L}_{b}}^{(c)}$, then, a.s. $\forall \varepsilon$ and for N large enough,

$$
\operatorname{Sp} H_{N, N^{\prime}} \subset \operatorname{Supp} \mu_{\mathcal{L}_{a}, \mathcal{L}_{b}}^{(c)}+(-\varepsilon, \varepsilon)
$$

Soft version

Theorem: M. (11), Collins, M. (11)

- $X_{N} N \times N$ GUE matrix,
- $U_{N} N \times N$ Haar matrix on \mathcal{U}_{N},
- $\mathbf{Y}_{N}=\left(Y_{1}^{(N)}, \ldots, Y_{p}^{(N)}\right)$ arbitrary random $N \times N$ matrices,
- X_{N}, U_{N} and \mathbf{Y}_{N} being independent.

Soft version

Theorem: M. (11), Collins, M. (11)

- $X_{N} N \times N$ GUE matrix,
- $U_{N} N \times N$ Haar matrix on \mathcal{U}_{N},
- $\mathbf{Y}_{N}=\left(Y_{1}^{(N)}, \ldots, Y_{p}^{(N)}\right)$ arbitrary random $N \times N$ matrices,
- X_{N}, U_{N} and \mathbf{Y}_{N} being independent.

Assume that for any Hermitian matrix $H_{N}=P\left(\mathbf{Y}_{N}, \mathbf{Y}_{N}^{*}\right)$,
(1) Convergence of the empirical eigenvalues distribution a.s. $\mathcal{L}_{H_{N}} \underset{N \rightarrow \infty}{\longrightarrow} \mathcal{L}_{h}$ with compact support,
(2) Convergence of the support
a.s. for N large enough, $\operatorname{Sp} H_{N} \subset \operatorname{Supp} \mathcal{L}_{h}+(-\varepsilon, \varepsilon)$

Then, almost surely, the same properties hold for any Hermitian matrix

$$
H_{N}=P\left(X_{N}, U_{N}, U_{N}^{*}, \mathbf{Y}_{N}, \mathbf{Y}_{N}^{*}\right)
$$

Non commutative probability space

Definition: \mathcal{C}^{*}-probability space $\left(\mathcal{A}, \cdot^{*}, \tau,\|\cdot\|\right)$
$\mathcal{A}: \mathcal{C}^{*}$-algebra,
.* : antilinear involution such that $(a b)^{*}=b^{*} a^{*} \forall a, b \in \mathcal{A}$,
τ : linear form such that

- $\tau[\mathbf{1}]=1$,
- τ is tracial: $\tau[a b]=\tau[b a] \forall a, b \in \mathcal{A}$,
- τ is a faithful state: $\tau\left[a^{*} a\right] \geq 0, \forall a \in \mathcal{A}$ and vanishes iff $a=0$.

Examples

- Commutative space: Given a probability space $(\Omega, \mathcal{F}, \mathbb{P})$, consider $\left(L^{\infty}(\Omega, \mu),{ }^{-}, \mathbb{E},\|\cdot\|_{\infty}\right)$,
- Matrix spaces: $\left(\mathrm{M}_{N}(\mathbb{C}), \cdot^{*}, \tau_{N}:=\frac{1}{N} \operatorname{Tr},\|\cdot\|\right)$.

Non commutative random variables

Proposition

If $a a^{*}=a^{*} a$ then there exists a compactly supported probability measure μ_{a} on \mathbb{C} such that $\forall P$ polynomial $\tau\left[P\left(a, a^{*}\right)\right]=\int P(z, \bar{z}) d \mu_{a}(z)$. Moreover $\|a\|=\sup \left\{|t| \mid t \in \operatorname{Supp} \mu_{\mathrm{a}}\right.$. If A_{N} is an N by N normal matrix, then $\mu_{A_{N}}=\mathcal{L}_{A_{N}}$.

Non commutative random variables

Proposition

If $a a^{*}=a^{*} a$ then there exists a compactly supported probability measure μ_{a} on \mathbb{C} such that $\forall P$ polynomial $\tau\left[P\left(a, a^{*}\right)\right]=\int P(z, \bar{z}) d \mu_{a}(z)$. Moreover $\|a\|=\sup \left\{|t| \mid t \in \operatorname{Supp} \mu_{\mathrm{a}}\right.$. If A_{N} is an N by N normal matrix, then $\mu_{A_{N}}=\mathcal{L}_{A_{N}}$.

Definition

- The map $\tau_{\mathbf{a}}: P \mapsto \tau\left[P\left(\mathbf{a}, \mathbf{a}^{*}\right)\right]$: law of $\mathbf{a}=\left(a_{1}, \ldots, a_{p}\right)$.
- Convergence in n.c. law $\mathbf{a}_{N} \rightarrow \mathbf{a}$:

$$
\tau\left[P\left(\mathbf{a}_{N}, \mathbf{a}_{N}^{*}\right)\right] \underset{N \rightarrow \infty}{\longrightarrow} \tau\left[P\left(\mathbf{a}, \mathbf{a}^{*}\right)\right], \forall P
$$

- Strong convergence in n.c. law $\mathbf{a}_{N} \rightarrow \mathbf{a}$: CV in n.c. law and

$$
\left\|P\left(\mathbf{a}_{N}, \mathbf{a}_{N}^{*}\right)\right\| \underset{N \rightarrow \infty}{\longrightarrow}\left\|P\left(\mathbf{a}, \mathbf{a}^{*}\right)\right\|, \forall P
$$

Interest of this notion for large matrices

Let $\mathbf{A}_{N}=\left(A_{1}^{(N)}, \ldots, A_{p}^{(N)}\right)$ be a family of N by N matrices, and $\mathbf{a}=\left(a_{1}, \ldots, a_{p}\right)$ in $\left(\mathcal{A}, .^{*}, \tau\right)$.

Then $\mathbf{A}_{N} \xrightarrow[N \rightarrow \infty]{\stackrel{\mathcal{L}^{\text {n.c. }}}{ }} \mathbf{a}_{N} \Leftrightarrow \forall H_{N}=P\left(\mathbf{A}_{N}, \mathbf{A}_{N}^{*}\right)$ Hermitian

$$
\mathcal{L}_{H_{N}} \underset{N \rightarrow \infty}{\longrightarrow} \mu_{h}, \text { where } h=P\left(\mathbf{a}_{N}, \mathbf{a}_{N}^{*}\right)
$$

Moreover $\mathbf{A}_{N} \xrightarrow[N \rightarrow \infty]{\stackrel{\mathcal{L}^{\text {n.c. }}}{\rightarrow}} \mathbf{a}_{N}$ strongly $\Leftrightarrow \forall H_{N}=P\left(\mathbf{A}_{N}, \mathbf{A}_{N}^{*}\right)$ Hermitian

$$
\left\{\begin{array}{c}
\mathcal{L}_{H_{N}} \underset{N \rightarrow \infty}{\longrightarrow} \mu_{h}, \text { where } h=P\left(\mathbf{a}_{N}, \mathbf{a}_{N}^{*}\right) \\
\forall \varepsilon>0, \forall N \text { large, } \operatorname{Sp} H_{N} \subset \operatorname{Supp} \mu_{h}+(-\varepsilon, \varepsilon)
\end{array}\right.
$$

The relation of freeness

Definition of freeness
The sub-algebras $\mathcal{A}_{1}, \ldots, \mathcal{A}_{p}$ are free iff
$\left(a_{j} \in \mathcal{A}_{i_{j}}, i_{j} \neq i_{j+1}\right.$, and $\left.\tau\left(a_{j}\right)=0, \forall j \geq 1\right) \Rightarrow \tau\left(a_{1} a_{2} \ldots a_{n}\right)=0 \forall n \geq 1$.
Theorem: Voiculescu

- $X_{N} N \times N$ GUE matrix,
- $U_{N} N \times N$ Haar matrix on \mathcal{U}_{N},
- $\mathbf{Y}_{N}=\left(Y_{1}^{(N)}, \ldots, Y_{r}^{(N)}\right)$ arbitrary random $N \times N$ matrices, uniformly bounded,
- X_{N}, U_{N} and \mathbf{Y}_{N} being independent.

If $\mathbf{Y}_{N} \xrightarrow[N \rightarrow \infty]{\stackrel{\mathcal{L}^{\text {n.c. }}}{\rightarrow}} \mathbf{y}$, then $\left(X_{N}, U_{N}, \mathbf{Y}_{N}\right) \xrightarrow[N \rightarrow \infty]{\mathcal{L}^{\text {n.c. }}}(x, u, \mathbf{y})$, where x, u and \mathbf{y} are free.

The asymptotic freeness of large random matrices

Definition: Freeness

The sub-algebras $\mathcal{A}_{1}, \ldots, \mathcal{A}_{p}$ are free iff
$\left(a_{j} \in \mathcal{A}_{i_{j}}, i_{j} \neq i_{j+1}\right.$, and $\left.\tau\left(a_{j}\right)=0, \forall j \geq 1\right) \Rightarrow \tau\left(a_{1} a_{2} \ldots a_{n}\right)=0 \forall n \geq 1$.

Theorem : Voiculescu

- $X_{N} N \times N$ GUE matrix,
- $U_{N} N \times N$ Haar matrix on \mathcal{U}_{N},
- $\mathbf{Y}_{N}=\left(Y_{1}^{(N)}, \ldots, Y_{p}^{(N)}\right)$ arbitrary random $N \times N$ matrices, uniformly bounded,
- X_{N}, U_{N} and \mathbf{Y}_{N} being independent.

If $\mathbf{Y}_{N} \xrightarrow[N \rightarrow \infty]{\stackrel{\mathcal{L}^{\text {n.c. }}}{\rightarrow}} \mathbf{y}$, then $\left(X_{N}, U_{N}, \mathbf{Y}_{N}\right) \xrightarrow[N \rightarrow \infty]{\mathcal{L}^{\text {n.c. }}}(x, u, \mathbf{y})$, where x, u and \mathbf{y} are free.

The strong asymptotic freeness of large random matrices

Theorem: Haagerup and Thorbjørnsen, 05
Let $\mathbf{X}_{N}=\left(X_{1}^{(N)}, \ldots, X_{p}^{(N)}\right)$ be independent GUE matrices. Then
$\mathbf{X}_{N} \xrightarrow[N \rightarrow \infty]{\mathcal{L}^{\text {n.c. }}} \mathbf{x}$ strongly, where $\mathbf{x}=\left(x_{1}, \ldots, x_{p}\right)$ family of free semi-circular n.c.r.v.

Let $\mathbf{Y}_{N}=\left(Y_{1}^{(N)}, \ldots, Y_{p}^{(N)}\right)$ arbitrary random $N \times N$ matrices, such that $\mathbf{Y}_{N} \xrightarrow[N \rightarrow \infty]{\mathcal{L}^{\text {n.c. }}} \mathbf{y}$ strongly

Theorem: M., 11, Collins, M., 11
Let X_{N} be a GUE matrix, U_{N} be a Haar matrix on \mathcal{U}_{N}, such that X_{N}, U_{N} and \mathbf{Y}_{N} are independent. Then $\left(X_{N}, U_{N}, \mathbf{Y}_{N}\right) \xrightarrow[N \rightarrow \infty]{\stackrel{\mathcal{L}^{\text {n.c. }}}{N}}(x, u, \mathbf{y})$ strongly, where x semi-circular n.c.r.v., u Haar unitary n.c.r.v. and x, u, y are free.

(Non direct) consequence

Proposition: the sum of two Hermitian random matrices, Collins, M. (11)
Let A_{N}, B_{N} be two $N \times N$ independent Hermitian random matrices.
Assume that:
(1) the law of one of the matrices is invariant under unitary conjugacy,
(2) a.s. $\mathcal{L}_{A_{N}} \underset{N \rightarrow \infty}{\longrightarrow} \mathcal{L}_{a}$ and $\mathcal{L}_{B_{N}} \underset{N \rightarrow \infty}{\longrightarrow} \mathcal{L}_{b}$ compactly supported
(3) a.s. the spectra of the matrices converges to the support of the limiting distribution.
Then, a.s. the spectrum of $A_{N}+B_{N}$ converges to the support of $\mu \boxplus \nu$, where \boxplus denotes the free additive convolution.

Remark: We do not assume that $\left(A_{N}, B_{N}\right)$ converges strongly !

(Non direct) consequence

Consider the N by N^{\prime} separable covariance matrix

$$
H_{N, N^{\prime}}=A_{N} X_{N, N^{\prime}} B_{N^{\prime}} X_{N, N^{\prime}}^{*} A_{N},
$$

where

- the common distribution μ of the entries of $\sqrt{N^{\prime}} X_{N, N^{\prime}}$ is Gaussian,
- $N=\alpha n, N^{\prime}=\beta n$ so that $c_{N, N^{\prime}}=\frac{N}{N^{\prime}}=\frac{\alpha}{\beta}=c$.
- A_{N} and B_{N} converges strongly in n.c. law.

Then, a.s. for n large enough, no eigenvalues of $H_{N, N^{\prime}}$ are outside a small neighborhood of the support of the limiting distribution

Idea of the proof

From $\left(X_{N}, \mathbf{Y}_{N}\right)$ to $\left(U_{N}, \mathbf{Y}_{N}\right)$

Based on a coupling $\left(X_{N}, U_{N}\right)$ between a GUE and a Haar matrix:

- Let Z_{N} be a Hermitian matrix. If $\left(Z_{N}, \mathbf{Y}_{N}\right) \xrightarrow[N \rightarrow \infty]{\stackrel{\mathcal{L}^{\text {n.c. }}}{ }}(z, \mathbf{y})$ strongly and $f_{N}: \mathbb{R} \rightarrow \mathbb{C} C V$ uniformly to f, then $\left(f_{N}\left(Z_{N}\right), \mathbf{Y}_{N}\right) \underset{N \rightarrow \infty}{\stackrel{\mathcal{L}^{\text {n.c. }}}{\rightarrow}}(f(z), \mathbf{y})$ strongly.
- Let $X_{N}=V_{N} \Delta_{N} V_{N}^{*}$ GUE matrix, F_{N} the cumulative function of its eigenvalues. Then, $F_{N} \underset{N \rightarrow \infty}{\longrightarrow} F$ uniformly and

$$
H_{N}:=F_{N}\left(X_{N}\right)=V_{N} F_{N}\left(\Delta_{N}\right) V_{N}^{*}=V_{N} \operatorname{Diag}\left(\frac{1}{N}, \ldots, \frac{N}{N}\right) V_{N}^{*}
$$

- Let G_{N}^{-1} be the inverse cumulative function of the eigenvalues of a Haar matrix, independent of X_{N}, \mathbf{Y}_{N}. Then $G_{N}^{-1} \underset{N \rightarrow \infty}{\longrightarrow} G^{-1}$ uniformly and

$$
U_{N}:=G_{N}^{-1}\left(H_{N}\right)
$$

is a Haar matrix.

The main steps for the convergence of $\left(X_{N}, \mathbf{Y}_{N}\right)$

Haagerup and Thorbjørnsen's method:
(1) A linearization trick,
(2) Uniform control of matrix-valued Stieltjes transforms,
(3) Concentration argument.

The main steps for the convergence of $\left(X_{N}, \mathbf{Y}_{N}\right)$

Haagerup and Thorbjørnsen's method:
(1) A linearization trick,
(2) Uniform control of matrix-valued Stieltjes transforms,
(3) Concentration argument.

In this proof, we use an idea of Bai and Silverstein
(1) A linearization trick, unchanged,
(2) Uniform control of matrix-valued Stieltjes transforms, based on an "asymptotic subordination property",
(3) An intermediate inclusion of spectrum, by Shlyakhtenko,
(9) Concentration argument, no significant changes.

An equivalent formulation

A linearization trick
The convergence of spectrum: a.s. for every self adjoint polynomial P, $\forall \varepsilon>0$ and N large

$$
\operatorname{Sp}\left(P\left(X_{N}, \mathbf{Y}_{N}, \mathbf{Y}_{N}^{*}\right)\right) \subset \operatorname{Sp}\left(P\left(\mathbf{x}, \mathbf{y}, \mathbf{y}^{*}\right)\right)+(-\varepsilon, \varepsilon)
$$

is equivalent to the convergence: a.s. $\forall k \geq 1$, for every self adjoint degree one polynomial L with coefficient in $\mathrm{M}_{k}(\mathbb{C}), \forall \varepsilon>0$ and N large

$$
\operatorname{Sp}\left(L\left(X_{N}, \mathbf{Y}_{N}, \mathbf{Y}_{N}^{*}\right)\right) \subset \operatorname{Sp}\left(L\left(\mathbf{x}, \mathbf{y}, \mathbf{y}^{*}\right)\right)+(-\varepsilon, \varepsilon)
$$

Sum of block matrices $H_{N}=a \otimes X_{N}+\sum_{j}\left(b_{j} \otimes Y_{j}^{(N)}+b_{j}^{*} \otimes Y_{j}^{(N) *}\right)$! Based on operator spaces techniques (Arveson's theorem and dilation of operators).

Matricial Stieltjes transforms and \mathcal{R}-transforms

Let $\left(\mathcal{A}, .^{*}, \tau,\|\cdot\|\right)$ be a \mathcal{C}^{*}-probability space. Consider z in $\mathrm{M}_{k}(\mathbb{C}) \otimes \mathcal{A}$.
Definitions

- The $\mathrm{M}_{k}(\mathbb{C})$-valued Stieltjes transform of z is

$$
\begin{array}{ccc}
G_{z}: \quad \mathrm{M}_{k}(\mathbb{C})^{+} & \rightarrow & \mathrm{M}_{k}(\mathbb{C}) \\
\Lambda & \mapsto & \left(\mathrm{id}_{k} \otimes \tau_{N}\right)\left[(\Lambda \otimes \mathbf{1}-z)^{-1}\right] .
\end{array}
$$

- The amalgamated \mathcal{R}-transform over $\mathrm{M}_{k}(\mathbb{C})$ of z is

$$
\begin{array}{rlcc}
\mathcal{R}_{z}: U & \rightarrow & M_{k}(\mathbb{C}) \\
& \Lambda & \mapsto & G_{z}^{(-1)}(\Lambda)-\Lambda^{-1}
\end{array}
$$

The subordination property

Let x selfadjoint and $\mathbf{y}=\left(y_{1}, \ldots, y_{q}\right)$ be elements of \mathcal{A} and let a and $\mathbf{b}=\left(b_{1}, \ldots, b_{q}\right)$ be $k \times k$ matrices, a Hermitian. Define

$$
s=a \otimes x, \quad t=\sum_{j=1}^{q} b_{j} \otimes y_{j}+b_{j}^{*} \otimes y_{j}^{*}
$$

Proposition
If x is free from y, then one has

$$
G_{s+t}(\Lambda)=G_{t}\left(\Lambda-\mathcal{R}_{s}\left(G_{s+t}(\Lambda)\right)\right) .
$$

From x a semicircular n.c.r.v.

$$
\mathcal{R}_{s}: \Lambda \mapsto a \wedge a .
$$

Stability under analytic perturbations

Recall the subordination property:

$$
G_{s+t}(\Lambda)=G_{t}\left(\Lambda-\mathcal{R}_{s}\left(G_{s+t}(\Lambda)\right)\right)
$$

If G satisfies

$$
G(\Lambda)=G_{t}\left(\Lambda-\mathcal{R}_{s}(G(\Lambda))\right)+\Theta(\Lambda)
$$

where Θ is an analytic perturbation, then we get

$$
\left\|G(\Lambda)-G_{s+t}(\Lambda)\right\| \leqslant\left(1+c\left\|(\operatorname{Im} \Lambda)^{-1}\right\|^{2}\right)\|\Theta(\Lambda)\|
$$

An asymptotic subordination property

Let X_{N} be a GUE matrix, let $\mathbf{Y}_{N}=\left(Y_{1}^{(N)}, \ldots, Y_{q}^{(N)}\right)$ be deterministic matrices and let a and $\mathbf{b}=\left(b_{1}, \ldots, b_{q}\right)$ be $k \times k$ matrices, with a Hermitian. Define

$$
S_{N}=a \otimes X_{N}, \quad T_{N}=\sum_{j=1}^{q}\left(b_{j} \otimes Y_{j}^{(N)}+b_{j}^{*} \otimes Y_{j}^{(N) *}\right) .
$$

Proposition
One has

$$
G_{S_{N}+T_{N}}(\Lambda)=G_{T_{N}}\left(\Lambda-\mathcal{R}_{s}\left(G_{S_{N}+T_{N}}(\Lambda)\right)\right)+\Theta_{N}(\Lambda)
$$

with Θ_{N} an analytic perturbation.

A first try

Hence, with \mathbf{y} the limit in law of \mathbf{Y}_{N}

$$
\left\{\begin{array}{ccc}
G_{s+t}(\Lambda) & = & G_{t}\left(\Lambda-\mathcal{R}_{s}\left(G_{s+t}(\Lambda)\right)\right) \\
G_{S_{N}+T_{N}}(\Lambda) & = & G_{T_{N}}\left(\Lambda-\mathcal{R}_{s}\left(G_{S_{N}+T_{N}}(\Lambda)\right)\right)+\Theta_{N}(\Lambda)
\end{array}\right.
$$

\Rightarrow we get an estimate of $\left\|G_{S_{N}+T_{N}}(\Lambda)-G_{s+t}(\Lambda)\right\|$ only if we can control $\left\|G_{T_{N}}(\Lambda)-G_{t}(\Lambda)\right\|$.
\Rightarrow with the concentration machinery we get the Theorem, but with unsatisfactory assumptions on $\mathbf{Y}_{N} \ldots$

Bai and Silverstein idea, in the flavor of free probability

Put x and \mathbf{Y}_{N} in a same \mathcal{C}^{*}-probability space, free from each other. Same idea as discussing on the measure $\mu_{\mathcal{L}_{\mathcal{A}_{N}}, \mathcal{L}_{B_{N}}}^{\left(c_{N, N^{\prime}}\right)}$. Then

$$
\begin{aligned}
G_{s+T_{N}}(\Lambda) & =G_{T_{N}}\left(\Lambda-\mathcal{R}_{s}\left(G_{s+T_{N}}(\Lambda)\right)\right) \\
G_{S_{N}+T_{N}}(\Lambda) & =G_{T_{N}}\left(\Lambda-\mathcal{R}_{s}\left(G_{S_{N}+T_{N}}(\Lambda)\right)\right)+\Theta_{N}(\Lambda)
\end{aligned}
$$

\Rightarrow we get an estimate of $\left\|G_{S_{N}+T_{N}}(\Lambda)-G_{s+T_{N}}(\Lambda)\right\|$ without any additionnal assumption on \mathbf{Y}_{N}.

An theorem about norm convergence

Theorem: by Shlyakhtenko, in an appendix of M. (11)
Let $\mathbf{Y}_{N} \xrightarrow[N \rightarrow \infty]{\stackrel{\mathcal{L}^{\text {n.c. }}}{ }} \mathbf{y}$ strongly, x a semicircular n.c.r.v. free from $\left(\mathbf{Y}_{N}, \mathbf{y}\right)$. Then,

$$
\left(x, \mathbf{Y}_{N}\right) \xrightarrow[N \rightarrow \infty]{\stackrel{\mathcal{L}^{n . c .}}{ }}(x, \mathbf{y}) .
$$

\Rightarrow Together with this estimate of $\left\|G_{S_{N}+T_{N}}(\Lambda)-G_{s+T_{N}}(\Lambda)\right\|$, the concentration machinery applies.

Thank you!

