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@ Problem statement and overview of the results.

© The case K fixed.
© K may scale with M, N.

Q@ Some numerical results..
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The random matrix model.

The observation.
M x N matrix Yy = AySy + Vi, M < N. J

@ Sy non observable deterministic K x N matrix, K < M,
rank(Sn) = K. Rows of Sy represent K source signals.

@ Ay deterministic N x K matrix Ay = [an(¢1) -+ an(pk)] with
1
1 e
a = —
n(p) i :
ez(M—l)q)

@ Vy M x N complex Gaussian random matrix with i.i.d. entries, zero

mean, variance o2.

Estimation of (¢k)k=1,..k from Yy. J
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The subspace method

Let My be the orthogonal projection matrix on the range of AA*, or
equivalently, on the K—dimensional eigenspace associated with the K
greastest eigenvalues (> 02) of matrix

YY* SS* .
IE( N ):ANA + 2y

Let I'Iﬁ = lpy — My be the orthogonal projector on the kernel of AA*, or
equivalently on the eigenspace of E (Y—)\?*) associated to ¢

Subspace estimation algorithm principle J

nn(e) = an(e) Myan(p) =0 & ¢ e{p1,..., 0k}

© — nn(p) is called the localization function.
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Subspace estimation algorithm

Traditional subspace estimation

Angles are estimated as the argmin of the K smallest local minima
(Pt.k)k=1,....k of

~ *AJ-
o — fe.n(p) = an(p) Myan ()

adl . . . .
where I, is the orthogonal projection matrix on the eigenspace associated
with the M — K smallest eigenvalues of Y—,T,*

© — fe,n(p) is the traditional estimated localization function.
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Properties of the estimates when M is fixed and N — oco.

HY—,\\;* — (AS—,‘TA* +U2|M) | —0
~ 1
My — Nyl — 0

©

(]

~ 1
sup,, ‘aN(go)*I'INaN(go) —an(p)*MNyan(p)| — 0 almost surely
Ptk — Pk — 0

N1/2 { (aN( )*I/'\IJA—IaN(cp))} as a zero mean Gaussian
P=0k

©

(]

behaviour

Nl/z(gﬁt,k — ¢k) has a zero mean Gaussian behaviour

©
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When M and N are of the same order of magnitude ?

We consider the asymptotic regime:

M — +oo, N — +o0o, % — ¢, ¢ > 0. It is assumed that ¢ < 1.

1
My — My does not converge towards 0.

o1
For each ¢, ;. n(v) = an(p)*Myan(p) is not a consistent estimate of
() = an() Myan().

@ Derivation of uniformly consistent estimates of 7y () of nn(p):

sup [n(p) — nn(e)l — 0
)

@ Properties of “improved” estimates of the angles defined as the

argmin of the K smallest local minima of ¢ — 7jn(p): consistency
and central limit theorems.
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The various relevant regimes.

@ K does not scale with M and N : In practice, % << 1.

@ K scales with M and N : In practice % is not “very small”.

@ The angles (k)k=1,.. k are fixed parameters that do not depend on
M, N : vectors (an(¢k))k=1,..k are nearly orthogonal:

1 |sin (M(gok — (p/))
<a ,a >|=—
| <an(ex),an(er) > | = -

Easy to estimate the (yx)k=1,.. k. Regime representing practical
situations in which the angles are significantly different.

@ For certain values of k, ox11 — px = (’)(ﬁ): more difficult estimation
problem. Regime representating practical situations in which certain
angles are close one from each others.
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Overview of the results I.

If K does not scale with M and N: the spiked model case.

@ If the noise variance is less than a certain threshold, the derivation of

a uniformly consistent estimate 7js () of nn(p) is easy.

@ If the angles are fixed: the traditional subspace angle estimates are

consistent, and behave as the improved estimates (@s x)k=1,.. k

(same speed of convergence N3/2)

o If po — 1 = (’)(%):

(¢r,i)i=1,2 not necessarily defined (unexistence of 2 local minima); if
well defined, N(@¢,; — ;) for i = 1,2 do not converge towards O.

N(@s,i — ;) for i = 1,2 converge to 0
1

) Pp=pi
behaviour.

N3/2(ps.; — ;) have a zero mean Gaussian behaviour for i = 1,2.

vl [% (f/s,,\,(tp))} for i = 1,2 has a zero mean Gaussian
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Overview of the results Il.

If K may scale with M and N.

@ If the noise variance is small enough, it is possible to derive a
uniformly consistent estimate 7y () of nn(p).

o Estimating all the angles consistently by minimizing /() when K
scales with M, N seems difficult.
o e |k ()] _

o If §i is a local minimum of 7n(¢) and if N(Px — pk) — 0, then,
N3/2(@) — k) has a zero mean Gaussian behaviour.

has a zero mean Gaussian behaviour.
k

@ In practice, for finite values of M, N, K for which % is not very small:

The angles (@k)k=1,... k minimizing fjn(¢) provide better results than
the estimators (Ps k)k=1,... k

The above mentioned Gaussian behaviour of N3/2(3x — ) is in
practice a good prediction of the performance of the estimator Q.
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© K may scale with M, N.

@ Some numerical results..
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Notations.

Spectral factorizations:

5.5 ALN
NN .
Ay N Ay = [uiny - ukpn . Uy o UKN
AKN
where A\ y > -+ > Ak n.
Assuming N > M
A *
YnYy R R ’ N R
T: un - Uyn un - Uyn
AM,N

where 3\17/\/ > 2> S\M,N-
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: : YyY;
Behaviour of the largest eigenvalues of —

Assumption

Foreach k=1,...,K, Aikv — pr, and p1 > po > ... > p > 0.

Theorem (Benaych-Rao)
If px > 02+\/C, then, for k=1,...,K,

2 2
2 o°c+ o° +
AkN = Vi = ( pill 2 > 0%(1 + v/c)?
Pk
and
Aksin = o%(1+/e)? |
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Behaviour of the largest eigenvectors of Y”—J’"

Theorem (Benaych-Rao)
If p > 02\/3, then, for k =1, ..., K, for each deterministic unit norm
vectors dy, ey, it holds that

dT\/ﬁk,Nﬁ;NeN — h()\k,N)dTVuk,Nu;NeN — 0

where h is a function depending on the Stieltjes transform of the limit
*

eigenvalue distribution (Marcenko-Pastur) of V’V—,\\/’V , and which satisfies

h(pk) > 0 for each k.
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Consistent estimator of ny () = an(¢) Myan(y).

Assume that px > o2y/c. Then

M s~ 1
My =5, “k,N”}z,N — Ny

Modification of the traditional estimator of ny(p) for K fixed

s n() = an(e) Ayan(y +Z< h(AkN)) n () O vl yan(p)

s,n(¢) is a (uniformly) consistent estimator of nn(¢y).
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Consistency of the improved angular estimates for fixed
angles.

(I)k=1....k disjoint intervals containing the (pk)k=1,. k-

Fork=1,....K, 4,55(53\, = Argmin‘pelk\ﬁs’,\,(gpﬂ

It holds that N(${), — ¢i) — 0.

A(s)

Proof: s, (@4 n)| < IAs,n(0i)| = Inn(@k)l =0 As
sup¢ ’ﬁs N(SO) 77N( )’ — 0, it holds that 7’]N(Q5$( 3\/) — 0. As AT\IAN v IK!

we get that HaN(<p N AN|2 — L.
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Consistency of the traditional angular estimates for fixed
angles |.

Behaviour of 7j: n(¢).

an(p)” (lele Qe vl y — Yk h(Pk)“k,N"iﬂ) an(p) — 0 uniformly
ﬁt,N(@) —7n(¢) — 0 uniformly

Tn(p) = an(e)* ('—

=
IIMX
—

h(ﬂk)“k,N"?Z,:v) an(p)

M =

= 1—ap()* ( h(pk)uk,Nuz’N> an(p)

b
||
-
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Consistency of the traditional angular estimates for fixed
angles Il.

For k=1,...,K, ‘PHV = Argminve,k|ﬁt,,\/(cp)|

It holds that N(gpk y — ¥k) — 0.

Unformal proof:

Tn(BeN) = Aen(@h < Aen(or) = Tn(ok) = 1 — h(px)

If N(gﬁff),v — k) does not converge towards 0, there exist subsequences

extracted from ﬁ,\,(cﬁff),v) which converge towards values strictly greater
than 1 — h(pk). Contradiction.
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Asymptotic distribution of N3/2(

Classical approach.

(s

=, n(@h) = 0
1 A
—=1)s n(©k)
N2 (o8N — o)) = —
( o ) Nl"‘ﬁs,/v((f’k)

k,3V — k).
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@ Problem statement and overview of the results.
© The case K fixed.

9 K may scale with M, N.
@ Background on the empirical eigenvalue distribution of Y—,\\(f
@ Consistent estimation of 77N(<,0)
. . 1 d A
@ Gaussian behaviour of TN [@ (77N(<P))] .

@ Some numerical results..
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More convenient notations.

Definitions
Sy
By =Ay—
NTENUN

It is assumed that supy [|Bn|| < +oo.
Vi
Wy = —
N \/N
Yy
Iy=—
N \/N

2y =By+Wy
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© K may scale with M, N.

@ Background on the empirical eigenvalue distribution of Y—R{f
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Characterization of the limit eigenvalue distribution puy

Dozier-Silverstein 2007: It exists a deterministic probability measure
iy carried by R™ such that

° % Z,’f’:l (A — j\k,N) — un — 0 weakly almost surely
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Characterization of the limit eigenvalue distribution puy

Dozier-Silverstein 2007: It exists a deterministic probability measure
iy carried by R™ such that

° ﬁ 2/,:1 6(A — S\k,N) — pun — 0 weakly almost surely

How to characterize

o Stieltjes transform my(z) = 5+ ”X(_dz)‘) defined on C — R™

o my(z) := HTrTy(z) with

* -1
o Tn(z) = (#‘ZNN() — [2(1 + o2eymn(2)) — 02(1 — cn)] |M) .

v

wn(z) = z(1 + o?ecymp(2))? — 0?(1 — en)(1 + o?cymp(2)) is an
important function.
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Convergence results.

QN(Z) = (ZNZ;kV — Zl/\//)_l

° ﬁTrQN(z) = mpn(z) = my(2) + (’)p(%) = %TrTN(z) + (’)p(%).
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Convergence results.

Qu(z) = (ZnvZy — zlu) ™
o 4 TrQu(z) = Mn(z) = my(2) + Op(3) = 4 TrTa(z) + Op(4)-
@ Hachem et al.(2010), for ||dn| =1,

dTVQN(Z)dN = >';VTN(Z)(ZIN I OP( )

L
VN
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Characterization of the support Sy of up.

Reformulation of Dozier-Silverstein 2007 in
Vallet-Loubaton-Mestre-2010

N N N N
o Sy =Y MU xS, XG0,

@ The number of intervals Q@ < K + 1.

o The (XI((N_),XlEN))k:]_’m’Q are defined as the positive extrema of a
certain rational function.

o x{M >0 (M/N < 1)

° sup,\,xgjl}r < t;r < 400
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The support when K is finite.

pk > 02\/c
@ Q = K + 1 intervals

o [xno iyl = [0%(1 = v/€)? = o(1),0%(1 + v/c)* + o(1)]
° [Xk_’N,X::N] = [vk —o(1),v + o(1)] for k =2,... ., K+1
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© K may scale with M, N.

@ Consistent estimation of ny(y)
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Separation of the "noise” and "signal” eigenvalues.

Generalization of the condition px > o2y/c in the case K finite.

o limsupy x;Hy < liminfy x,

L xi N

T 7]

+ +
LN Y

Ly

for all N large enough , t;,t;7, t; independent of N

® Akn > wn(x; ) for all N large enough.
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Consequences of the separation condition.

Consequences of the assumptions

@ almost surely for N large enough

3\K+1,N7 e S\M,N € (tl_, tf_) and 3\1,,\/, ey S\K,N € (tz_, t;_)
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Consequences of the separation condition.

Consequences of the assumptions
@ almost surely for N large enough

3\K+1,N7 .. .,3\/\//7/\/ € (tl_, tf_) and 3\1,/\/, e, S\K,N € (tz_, t;)

@ almost surely for N large enough,
B omn € (t,t) and & kN € (5, 8)
wK-‘,—l,N)"'awM,N 101 an wl,Na"'awK,N 2 5D

with &1 v > ... > @m N the solutions of the equation
1+ o2cympn(z) = 0 with Ay (z) = 4 TrQu(2)
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Contour integral representation of ny(¢).

The contour.

@ For y > 0, we define the domain

Ryz{u+iv:ue[tl_—é,tf+5],ve[—y7)’]}~

where t;7 +6 < t; .

Expression of di Myey.

1 wy(2)
dyMyey = — dy T N d
NUINEN = oo l{gRy— N N(Z)eNl + o2eymp(2) i

nn(p) obtained for dy = ey = an(yp).
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Consistent estimate of ny().

a o Wy (2)
M(P) = 2 $or- an() Qu(2)an () szt oz 42
@ Integral can be solved using the residue’s theorem
o iy = ay (Zk 1§k YL PR N) ay with (§k n) depending on

)\17/\/, 50 )\M N and wl Ny - - wM,N
o 7in(¢) depend on the (Uk,Nﬁz’N)k:K-i-l,...,M and on the
(O Ny k=1, K

If K is finite.

1+UZVQA52N(Z) — 1+:;"g;(;2,(2) — 0 uniformly on R, where myp(z) is the

Stieljes transform of the Marcenko-Pastur distribution associated to the
noise part of the observation.

As,N () = 5 fany— aN(@)*QN(Z)aN(W)H—;Vz%dZ

v
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© K may scale with M, N.

@ Gaussian behaviour of ﬁ [% (TA]N(W))]

o=k

Loubaton (Telecom-Paris Tech)

Source loocalization



Gaussian behaviour of the consistent estimate of the
quadratic form Re(dMyey).
Notations.
v = dyMyey
1

A
A * WN(Z)

= — e d
N = o oR; vQn(z)en 1+ o2eymn(z) “

Yy(u) =E <exp iuv/NRe(fiy — 77,\,)>

Use of Gaussian tools (integration by parts formula, Poincaré-Nash
inequality) to prove that ¥y (u) nearly satisfies a differential equation
corresponding to the characteristic function of a zero Gaussian random
variable.

As a function of (Re(W, ), Im(W;;))(i=1,..mj=1,.,n, in does not meet
the relevant regularity conditions.
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Regularization of 7.

Introduce a differentiable regularization term.

@ 7 a smooth function equal to 1 on [t] — €, t] + €] U[t; — €, t5 + €]

and 0 outside [t; — 2¢,t]” +2e] U [t; — 2¢,t5 + 2€].
o iy = MYy y(An)v(@n)
o fin = Ank3 + Op(75) for each p € N

@ As a function of (Re(W;J),Im(W,-J))(,-:17,”7,\4’]-:1,”.7,\,, ﬁ,\m%, meets

the relevant technical conditions

1 . wiy(2)
ny = — Qun(2)en N dz
N = o oR; van(2) 1+ o2cymp(2)
. 1
N =TNnyKN + OP(N)
Replace Ay by k3% into the Gaussian calculations.
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The last step.

Use the previous results when dy = %aN(gok)', ey = an(@k)-
@ 7y = 0 because I'I*,aN(gok) =

o /N (Re(fin — nv)) =

1

0
2 [ (o))

=0k
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K:2,M:20,N:40, (pz—ﬁpl:%.

; MSE on the first DoA estimate
10 T T

T T
=—@— Empirical MSE (G-MUSIC)
=—4— Empirical MSE (MUSIC)
= Empirical MSE (SPIKE-MUSIC)|
= A = Theoretical MSE (G-MUSIC)
CRB

The minimum mean square error of the various estimates of 1 w.r.t.
1
10 |0g10(?).
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K:2,/\/I:4O,N:80,g02—<p1:ﬁ.

MSE on the first DoA estimate
T T

T T T
=—@— Empirical MSE (G-MUSIC)
=== Empirical MSE (MUSIC)
= Empirical MSE (SPIKE-MUSIC)|

= A = Theoretical MSE (G-MUSIC)
CRB
107
4

s
[}
2 10

10°

10'7 I I I I I I I

18 20 22 24 26 28 30 32 34
SNR

The minimum mean square error of the various estimates of 1 w.r.t.
1
10 |Og10(?).
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K=5 M=20,N =40, pri1 — px = 5.

. MSE on the first DoA estimate
T T T

T T T
=—@— Empirical MSE (G-MUSIC)
=== Empirical MSE (MUSIC)
= Empirical MSE (SPIKE-MUSIC)|
CRB

10 L L L L L
22 24 26 28 30 32 34

36 38 40

The minimum mean square error of the various estimates of 1 w.r.t.
1
10 |0g10(?).
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