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1. Orthogonal and multiple orthogonal polynomials

Orthogonal polynomial Pn(x) = xn + · · · satisfies

∫ ∞

−∞
Pn(x)x

kw(x) dx = 0, k = 0, 1, . . . , n − 1,

OPs have many nice properties including a three term
recurrence relation

xPn(x) = Pn+1(x) + bnPn(x) + anPn−1(x)
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Orthogonal polynomial Pn(x) = xn + · · · satisfies

∫ ∞

−∞
Pn(x)x

kw(x) dx = 0, k = 0, 1, . . . , n − 1,

OPs have many nice properties including a three term
recurrence relation

xPn(x) = Pn+1(x) + bnPn(x) + anPn−1(x)

and a Riemann-Hilbert problem



Riemann Hilbert problem

Fokas-Its-Kitaev (1992) characterized OPs by means of
2× 2 matrix valued Riemann-Hilbert problem

(1) Y : C \ R → C
2×2 is analytic,

(2) Y+ = Y−

(
1 w

0 1

)
on R,

(3) Y (z) = (I2 + O(1/z))

(
zn 0
0 z−n

)
as z → ∞.



Riemann Hilbert problem

Fokas-Its-Kitaev (1992) characterized OPs by means of
2× 2 matrix valued Riemann-Hilbert problem

(1) Y : C \ R → C
2×2 is analytic,

(2) Y+ = Y−

(
1 w

0 1

)
on R,

(3) Y (z) = (I2 + O(1/z))

(
zn 0
0 z−n

)
as z → ∞.

Unique solution

Y (z) =




Pn(z)
1

2πi

∫ ∞

−∞

Pn(s)w(s)

s − z
ds

−2πiγ−1
n−1Pn−1(z) −γ−1

n−1

∫ ∞

−∞

Pn−1(s)w(s)

s − z
ds




where γn−1 =

∫ ∞

−∞
Pn−1(x)x

n−1w(x)dx > 0.



Multiple orthogonal polynomials

Multiple orthogonal polynomial (MOP) is a monic
polynomial of degree n1 + n2

Pn1,n2(x) = xn1+n2 + · · ·

characterized by

∫ ∞

−∞
Pn1,n2(x)x

kw1(x) dx = 0, k = 0, 1, . . . , n1 − 1,

∫ ∞

−∞
Pn1,n2(x)x

kw2(x) dx = 0, k = 0, 1, . . . , n2 − 1.

Immediate extension to r weights w1, . . . ,wr and
(n1, . . . , nr ) ∈ N

r .



MOP in random matrix theory

MOPs appear in random matrix theory and related
stochastic processes

(a) Random matrices with external source

(b) Non-intersecting Brownian motions

(c) Non-intersecting squared Bessel paths

(d) Coupled random matrices

- two matrix model
- Cauchy matrix model



Properties of MOPS 1: short recurrence

MOPs Pn1,n2 with two weight functions

The polynomials Qn defined by

Q2k = Pk,k , Q2k+1 = Pk+1,k

have a four term recurrence

xQn(x) = Qn+1(x) + anQn(x) + bnQn−1(x) + cnQn−2(x)



Properties of MOPS 1: short recurrence

MOPs Pn1,n2 with two weight functions

The polynomials Qn defined by

Q2k = Pk,k , Q2k+1 = Pk+1,k

have a four term recurrence

xQn(x) = Qn+1(x) + anQn(x) + bnQn−1(x) + cnQn−2(x)

MOPs with r weight functions and near-diagonal
multi-indices satisfy an r + 2-term recurrence.



Properties of MOPS 2: RH problem

MOPs with two weight functions have a
Riemann-Hilbert problem of size 3× 3

(1) Y : C \ R → C
3×3 is analytic,

(2) Y+ = Y−



1 w1 w2

0 1 0
0 0 1


 on R,

(3) Y (z) = (I3 + O(1/z))



zn1+n2 0 0

0 z−n1 0
0 0 z−n2


 as z → ∞.

Van Assche-Geronimo-K (2001)
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MOPs with two weight functions have a
Riemann-Hilbert problem of size 3× 3

(1) Y : C \ R → C
3×3 is analytic,

(2) Y+ = Y−



1 w1 w2

0 1 0
0 0 1


 on R,

(3) Y (z) = (I3 + O(1/z))



zn1+n2 0 0

0 z−n1 0
0 0 z−n2


 as z → ∞.

Van Assche-Geronimo-K (2001)

RH problem has a unique solution if and only if the
MOP Pn1,n2 uniquely exists and in that case

Y11(z) = Pn1,n2(z)

MOPs with r weight functions have a RH problem of
size (r + 1)× (r + 1).



2. Normal matrix model

Probability measure on n × n complex matrices

1

Zn

e
− n

t0
Tr(MM∗−V (M)−V (M∗))

dM, t0 > 0,

with

V (M) =
∞∑

k=1

tk

k
Mk



2. Normal matrix model

Probability measure on n × n complex matrices

1

Zn

e
− n

t0
Tr(MM∗−V (M)−V (M∗))

dM, t0 > 0,

with

V (M) =
∞∑

k=1

tk

k
Mk

Model depends on parameters

t0 > 0, t1, t2, . . . , tk , . . . .

For t1 = t2 = · · · = 0 this is the Ginibre ensemble.
Ginibre (1965)



Ginibre ensemble

Eigenvalues in the Ginibre ensemble have a limiting
distribution as n → ∞ that is uniform in a disk around 0
with radius

√
t0.
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Laplacian growth

For general t1, t2, . . ., and t0 sufficiently small, the
eigenvalues of M fill out a two-dimensional domain

Ω = Ω(t0, t1, . . .)

Ω is characterized by

t0 =
1

π
area(Ω), tk = − 1

π

∫∫

C\Ω

dA(z)

zk
, k ≥ 1



Laplacian growth

For general t1, t2, . . ., and t0 sufficiently small, the
eigenvalues of M fill out a two-dimensional domain

Ω = Ω(t0, t1, . . .)

Ω is characterized by

t0 =
1

π
area(Ω), tk = − 1

π

∫∫

C\Ω

dA(z)

zk
, k ≥ 1

As a function of t0, the boundary of Ω evolves according
to the model of Laplacian growth.

Laplacian growth is unstable. Singularities develop in
finite time.

Wiegmann-Zabrodin (2000)

Teoderescu-Bettelheim-Agam-Zabrodin-Wiegmann (2005)



Cubic case V (z) = t3
3 z
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3. Mathematical problem

Normal matrix model

1

Zn

e
− n

t0
Tr(MM∗−V (M)−V (M∗))

dM, t0 > 0,

is not well-defined if V is a polynomial of degree ≥ 3



3. Mathematical problem

Normal matrix model

1

Zn

e
− n

t0
Tr(MM∗−V (M)−V (M∗))

dM, t0 > 0,

is not well-defined if V is a polynomial of degree ≥ 3

The normalization constant (partition function)

Zn =

∫
e
− n

t0
Tr(MM∗−V (M)−V (M∗))

dM = +∞.

is divergent.



Elbau-Felder approach

Elbau and Felder use a cut-off.

They restrict to matrices with eigenvalues in a
well-chosen bounded domain D.



Elbau-Felder approach

Elbau and Felder use a cut-off.

They restrict to matrices with eigenvalues in a
well-chosen bounded domain D.

Then the induced probability measure on eigenvalues is
a determinantal point process on D.

Eigenvalues fill out a domain Ω that evolves according to
Laplacian growth provided t0 is small enough.

Elbau-Felder (2005)



Orthogonal polynomials

Average characteristic polynomial

Pn(z) = E [zIn −M]

in the cut-off model is an orthogonal polynomial for
scalar product

〈f , g〉 =
∫∫

D

f (z)g(z)e
− n

t0
(|z|2−V (z)−V (z))

dA(z)

Elbau (ETH thesis, arXiv 2007)

Orthogonality does not make sense if D = C, since
integrals would diverge if f and g are polynomials



Recurrence relation

OPs in the cut-off model satisfy a recurrence relation

zPn(z) = Pn+1(z) + a
(1)
n Pn(z) + · · ·+ a

(r)
n Pn−r (z)

+ “remainder term”



Recurrence relation

OPs in the cut-off model satisfy a recurrence relation

zPn(z) = Pn+1(z) + a
(1)
n Pn(z) + · · ·+ a

(r)
n Pn−r (z)

+ “remainder term”

Remainder term comes from boundary integrals that are
due to the cut-off.

Remainder term is exponentially small for t0 > 0
sufficiently small.



Zeros of OPs

Conjecture: The zeros of Pn do not fill out the
twodimensional domain Ω as n → ∞, but instead
accumulate along a contour Σ1 inside Ω.

Singularities appear when Σ1 meets the boundary of Ω.



Zeros of OPs

Conjecture: The zeros of Pn do not fill out the
twodimensional domain Ω as n → ∞, but instead
accumulate along a contour Σ1 inside Ω.

Singularities appear when Σ1 meets the boundary of Ω.

In the cubic case

V (z) =
t3

3
z3, t3 > 0,

the contour is a three-star

Σ1 = [0, x∗] ∪ [0, e2πi/3x∗] ∪ [0, e−2πi/3x∗].

Elbau (ETH thesis, arXiv 2007)
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4. Different approach

Scalar product in the cut-off model

〈f , g〉 =
∫∫

D

f (z)g(z)e
− n

t0
(|z|2−V (z)−V (z))

dA(z)

satisfies (due to Green’s theorem)

n〈zf , g〉 = t0〈f , g ′〉+ n〈f ,V ′g〉

− t0

2i

∮

∂D
f (z)g(z)e

− n
t0
(|z|2−V (z)−V (z))

dz

Our idea: drop the boundary term



Hermitian form

Consider an a priori abstract sesquilinear form on the
space of polynomials satisfying

n〈zf , g〉 = t0〈f , g ′〉+ n〈f ,V ′g〉



Hermitian form

Consider an a priori abstract sesquilinear form on the
space of polynomials satisfying

n〈zf , g〉 = t0〈f , g ′〉+ n〈f ,V ′g〉

We also want to keep the Hermitian form condition

〈g , f 〉 = 〈f , g〉



Double integral representations

Theorem (Bertola 2003, Bleher-K 2012)

(a) The real vector space of Hermitian forms satisfying

n〈zf , g〉 = t0〈f , g ′〉+ n〈f ,V ′g〉

is r2 dimensional, where r = degV − 1.



Double integral representations

Theorem (Bertola 2003, Bleher-K 2012)

(a) The real vector space of Hermitian forms satisfying

n〈zf , g〉 = t0〈f , g ′〉+ n〈f ,V ′g〉

is r2 dimensional, where r = degV − 1.

(b) Any such Hermitian form can be written as

〈f , g〉 =
r∑

j ,k=0

Cj ,k

∫

Γj

dz

∫

Γk

ds f (z)g(s)e
− n

t0
(zs−V (z)−V (s))

(Cj ,k)j ,k=0,...r is a Hermitian matrix with zero row and
column sums

Γ0, . . . , Γr is a system of unbounded contours along
which the integrals converge



Contours Γj for cubic potential V (z) = t3
3 z

3

Re z

Im z

Γ0
Γ1

Γ2

Contours Γ0, Γ1, Γ2 for V (z) = t3
3 z

3 with t3 > 0

The contours extend to infinity at asymptotic angles
±π/3 and π



Orthogonal polynomials

Orthogonal polynomial Pn(z) = zn + · · · for the
Hermitian form

〈Pn, z
k〉 = 0, for k = 0, 1, . . . , n − 1,
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Orthogonal polynomial Pn(z) = zn + · · · for the
Hermitian form

〈Pn, z
k〉 = 0, for k = 0, 1, . . . , n − 1,

can also be seen as a multiple orthogonal polynomial
with r weights

- due to double integral representation, and integration by
parts...



Orthogonal polynomials

Orthogonal polynomial Pn(z) = zn + · · · for the
Hermitian form

〈Pn, z
k〉 = 0, for k = 0, 1, . . . , n − 1,

can also be seen as a multiple orthogonal polynomial
with r weights

- due to double integral representation, and integration by
parts...

Weights are on

Γ =
r⋃

j=0

Γj

instead of on the real line.



MOP in cubic case

For V (z) = t3
3 z

3 the two weights are





w0(z) = e
nt3
3t0

z3
2∑

k=0

Cj ,k

∫

Γk

e
− n

t0
(zs− t3

3
s3)

ds

w1(z) = e
nt3
3t0

z3
2∑

k=0

Cj ,k

∫

Γk

se
− n

t0
(zs− t3

3
s3)

ds

z ∈ Γj ,



MOP in cubic case

For V (z) = t3
3 z

3 the two weights are





w0(z) = e
nt3
3t0

z3
2∑

k=0

Cj ,k

∫

Γk

e
− n

t0
(zs− t3

3
s3)

ds

w1(z) = e
nt3
3t0

z3
2∑

k=0

Cj ,k

∫

Γk

se
− n

t0
(zs− t3

3
s3)

ds

z ∈ Γj ,

Multiple orthogonality on Γ = Γ0 ∪ Γ1 ∪ Γ2
∫

Γ
Pn(z)z

kw0(z)dz = 0, k = 0, . . . , ⌈n2⌉ − 1,

∫

Γ
Pn(z)z

kw1(z)dz = 0, k = 0, . . . , ⌊n2⌋ − 1,



Airy functions

Weight w0 is expressed in terms of the Airy function

Ai(z) =
1

2πi

∫

Γ0

e
1
3
s3−zsds

and weight w1 in terms of the derivative

Ai′(z) = − 1

2πi

∫

Γ0

se
1
3
s3−zsds

x
K10 K5 0 5

K0.8

K0.6

K0.4

K0.2

0.2

0.4

0.6

0.8



Riemann-Hilbert problem

RH problem of size 3× 3 with jumps on Γ that
characterizes the orthogonal polynomials
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RH problem of size 3× 3 with jumps on Γ that
characterizes the orthogonal polynomials

(1) Y : C \ Γ → C
3×3 is analytic,

(2) Y+ = Y−



1 w0 w1

0 1 0
0 0 1


 on Γ,

(3) Y (z) = (I3 + O(1/z))



zn 0 0

0 z−n/2 0

0 0 z−n/2


 as z → ∞.

(assume n is even)

Γ0Γ1

Γ2



Riemann-Hilbert problem

RH problem of size 3× 3 with jumps on Γ that
characterizes the orthogonal polynomials

(1) Y : C \ Γ → C
3×3 is analytic,

(2) Y+ = Y−



1 w0 w1

0 1 0
0 0 1


 on Γ,

(3) Y (z) = (I3 + O(1/z))



zn 0 0

0 z−n/2 0

0 0 z−n/2


 as z → ∞.

(assume n is even)

Γ0Γ1

Γ2

RH problem is ideal tool for
asymptotic analysis...

Bleher-Its (1999)

Deift-Kriecherbauer-McLaughlin-

Venakides-Zhou (1999)



5. Asymptotic questions

Q0: Can we choose Hermitian matrix (Cj ,k) in such a way
that we can do large n asymptotics on the RH problem
with n-dependent weights





w0(z) = e
nt3
3t0

z3
2∑

k=0

Cj ,k

∫

Γk

e
− n

t0
(zs− t3

3
s3)

ds

w1(z) = e
nt3
3t0

z3
2∑

k=0

Cj ,k

∫

Γk

se
− n

t0
(zs− t3

3
s3)

ds

z ∈ Γj ,

Q1: Can we find the limiting behavior of zeros of Pn as
n → ∞ ?

Q2: Can we find the connection with Laplacian growth ?

Q3: What happens in the critical case ?



Existence of OP

Theorem (Bleher-K, 2012)

With the choice

C = (Cj ,k) =
1

2πi

( 0 −1 1
1 0 −1
−1 1 0

)

the following hold. Assume 0 < t0 < t0,crit =
1
8t23



Existence of OP

Theorem (Bleher-K, 2012)

With the choice

C = (Cj ,k) =
1

2πi

( 0 −1 1
1 0 −1
−1 1 0

)

the following hold. Assume 0 < t0 < t0,crit =
1
8t23

(a) The orthogonal polynomials Pn for the Hermitian form
exist if n is sufficiently large.

(b) The zeros of Pn accumulate as n → ∞ on the set

Σ1 = [0, x∗] ∪ [0, ωx∗] ∪ [0, ω2x∗], ω = e2πi/3,

x∗ =
3

4t3

(
1−

√
1− 8t0t23

)2/3

Theorem to be continued...



Why this choice for C ?

We want to deform contours
in such a way that
they cover Σ1

Γ0
Γ1

Γ2

Σ1



Deformation of contours

Γ0
Γ1

Γ2

Σ1



Deformation of contours
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Γ2

Σ1

Γ0



Deformation of contours

Γ1

Γ2

Σ1

Γ0



Choice for C

Σ1

Γ2

Γ0

Γ1



Choice for C

Σ1

Γ2

Γ0

Γ1

We choose C such that the
combined weight on [0, x∗] is

Ai(cnx) e
nt3
3t0

x3



Multiple orthogonality with Airy weights

After deformation of contours the MOP conditions are
∫

Γ
Pn(z)z

kw0,n(z)dz = 0, k = 0, . . . , n2 − 1,

∫

Γ
Pn(z)z

kw1,n(z)dz = 0, k = 0, . . . , n2 − 1,

On Σ1 the new combined weights are

w0,n(z) = ω2j Ai(cn|z |) e
nt3
3t0

z3

, z ∈ [0, ωjx∗],

w1,n(z) = ωj Ai′(cn|z |) e
nt3
3t0

z3

, cn = n2/3

t
2/3
0 t

1/3
3

.



Multiple orthogonality with Airy weights

After deformation of contours the MOP conditions are
∫

Γ
Pn(z)z

kw0,n(z)dz = 0, k = 0, . . . , n2 − 1,

∫

Γ
Pn(z)z

kw1,n(z)dz = 0, k = 0, . . . , n2 − 1,

On Σ1 the new combined weights are

w0,n(z) = ω2j Ai(cn|z |) e
nt3
3t0

z3

, z ∈ [0, ωjx∗],

w1,n(z) = ωj Ai′(cn|z |) e
nt3
3t0

z3

, cn = n2/3

t
2/3
0 t

1/3
3

.

Large n behavior of the two weights for z ∈ Σ1 \ {0},

wk,n(z) ∼ exp(−nQ(z)), Q(z) = 1
t0

(
2

3
√
t3
|z |3/2 − t3

3 z
3
)
.



Limiting zero distribution

Theorem (continued)

(c) The OPs (Pn) have a limiting zero distribution µ∗
1 on Σ1.



Limiting zero distribution

Theorem (continued)

(c) The OPs (Pn) have a limiting zero distribution µ∗
1 on Σ1.

(d) µ∗
1 is part of the minimizer (µ∗

1, µ
∗
2) of a vector

equilibrium problem that asks to minimize

I (µ1)− I (µ1, µ2) + I (µ2) +

∫
Qdµ1

over (µ1, µ2) such that

µ1 is a measure on Σ1 with µ1(Σ1) = 1

µ2 is a measure on Σ2 with µ2(Σ2) =
1
2

Logarithmic energy

I (µ, ν) =

∫∫
log

1

|x − y |dµ(x)dν(y), I (µ) = I (µ, µ),



Vector equilibrium problem

Minimize

I (µ1)− I (µ1, µ2) + I (µ2) +

∫
Qdµ1,

Q(z) =
1

t0

(
2

3
√
t3
|z |3/2 − t3

3
z3
)

over (µ1, µ2) such that

supp(µ1) ⊂ Σ1,

supp(µ2) ⊂ Σ2,

µ1(Σ1) = 1,

µ2(Σ2) = 1/2.

Nikishin-type of
interaction of measures
on two plates.

x∗

ωx∗

ω2x∗

Σ2

Σ2

Σ2



Structure of the minimizer

There is a unique minimizer (µ∗
1, µ

∗
2) of the vector

equilibrium problem.

The minimizers induce an algebraic-geometric structure.



Structure of the minimizer

There is a unique minimizer (µ∗
1, µ

∗
2) of the vector

equilibrium problem.

The minimizers induce an algebraic-geometric structure.

Definition

Define Cauchy transforms

Fk(z) =

∫
dµ∗

k(s)

z − s
, z ∈ C \ Σk , k = 1, 2,

and the ξ-function on the first sheet

ξ1(z) = t3z
2 + t0F1(z), z ∈ C \ Σ1 = R1



Riemann surface

Theorem (continued)

(e) The function ξ1 has an analytic continuation to a
three-sheeted Riemann surface

(f) ξ1 is one of the solutions of the algebraic equation
(spectral curve)

ξ3 − t3z
2ξ2 −

(
t0t3 +

1

t3

)
+ z3 + A = 0

A =
1 + 20t0t

2
3 − 8t20 t

4
3 − (1− 8t0t

2
3 )

3/2

32t33



Laplacian growth

Theorem (continued)

(g) The equation
�

�

�

�
ξ1(z) = z defines a simple closed

curve ∂Ω that is the boundary of a domain Ω containing
Σ1 in its interior.



Laplacian growth

Theorem (continued)

(g) The equation
�

�

�

�
ξ1(z) = z defines a simple closed

curve ∂Ω that is the boundary of a domain Ω containing
Σ1 in its interior.

(h) Ω has exterior harmonic moments (0, 0, t3, 0, 0, . . .) and

area(Ω) = πt0



Laplacian growth

Theorem (continued)

(g) The equation
�

�

�

�
ξ1(z) = z defines a simple closed

curve ∂Ω that is the boundary of a domain Ω containing
Σ1 in its interior.

(h) Ω has exterior harmonic moments (0, 0, t3, 0, 0, . . .) and

area(Ω) = πt0

(i) Also

∫
dµ∗

1(ζ)

z − ζ
=

1

πt0

∫∫

Ω

dA(ζ)

z − ζ
. z ∈ C \ Ω



Steepest descent analysis

The asymptotic formulas for Pn follow from a steepest
descent analysis of the RH problem of size 3× 3

Sequence of explicit transformations

Y 7→ X 7→ V 7→ U 7→ T 7→ S 7→ R

leading to a simple RH problem for R, that can be
solved by Neumann series.
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Major roles are played by the solution of the vector
equilibrium problem and by the ξ-functions coming from
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Steepest descent analysis

The asymptotic formulas for Pn follow from a steepest
descent analysis of the RH problem of size 3× 3

Sequence of explicit transformations

Y 7→ X 7→ V 7→ U 7→ T 7→ S 7→ R

leading to a simple RH problem for R, that can be
solved by Neumann series.

Major roles are played by the solution of the vector
equilibrium problem and by the ξ-functions coming from
the Riemann surface.

There is some similarity with the steepest descent
analysis of the RH problem for biorthogonal polynomials
from the two-matrix model with quartic potential.

Duits-K (2009), Duits-K-Mo (2012)



6. Outlook

For t0 < t0,crit , the spectral curve has three branch points

x∗, e2πi/3x∗, e−2πi/3x∗

and three nodes

x̂ > x∗, e2πi/3x̂ , e−2πi/3x̂

At the critical value t0,crit the nodes coalesce with the
branch points.

Local behavior can then be described by functions that
are associated with the Painlevé I equation (on to do
list).

What happens beyond the critical value ??
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