Multiple Orthogonal Polynomials and the Normal Matrix Model

Arno Kuijlaars

Department of Mathematics
KU Leuven, Belgium
Joint work with Pavel Bleher Adv. Math. 2012

Random Matrices and their Applications
Télécom ParisTech, Paris, 8 October 2012

- Orthogonal polynomial $P_{n}(x)=x^{n}+\cdots$ satisfies

$$
\int_{-\infty}^{\infty} P_{n}(x) x^{k} w(x) d x=0, \quad k=0,1, \ldots, n-1
$$

- OPs have many nice properties including a three term recurrence relation

$$
x P_{n}(x)=P_{n+1}(x)+b_{n} P_{n}(x)+a_{n} P_{n-1}(x)
$$

- Orthogonal polynomial $P_{n}(x)=x^{n}+\cdots$ satisfies

$$
\int_{-\infty}^{\infty} P_{n}(x) x^{k} w(x) d x=0, \quad k=0,1, \ldots, n-1
$$

- OPs have many nice properties including a three term recurrence relation

$$
x P_{n}(x)=P_{n+1}(x)+b_{n} P_{n}(x)+a_{n} P_{n-1}(x)
$$

and a Riemann-Hilbert problem

- Fokas-Its-Kitaev (1992) characterized OPs by means of 2×2 matrix valued Riemann-Hilbert problem
(1) $Y: \mathbb{C} \backslash \mathbb{R} \rightarrow \mathbb{C}^{2 \times 2}$ is analytic,
(2) $Y_{+}=Y_{-}\left(\begin{array}{cc}1 & w \\ 0 & 1\end{array}\right)$ on \mathbb{R},
(3) $Y(z)=\left(I_{2}+O(1 / z)\right)\left(\begin{array}{cc}z^{n} & 0 \\ 0 & z^{-n}\end{array}\right)$ as $z \rightarrow \infty$.
- Fokas-Its-Kitaev (1992) characterized OPs by means of 2×2 matrix valued Riemann-Hilbert problem
(1) $Y: \mathbb{C} \backslash \mathbb{R} \rightarrow \mathbb{C}^{2 \times 2}$ is analytic,
(2) $Y_{+}=Y_{-}\left(\begin{array}{cc}1 & w \\ 0 & 1\end{array}\right)$ on \mathbb{R},
(3) $Y(z)=\left(I_{2}+O(1 / z)\right)\left(\begin{array}{cc}z^{n} & 0 \\ 0 & z^{-n}\end{array}\right)$ as $z \rightarrow \infty$.
- Unique solution

$$
Y(z)=\left(\begin{array}{cc}
P_{n}(z) & \frac{1}{2 \pi i} \int_{-\infty}^{\infty} \frac{P_{n}(s) w(s)}{s-z} d s \\
-2 \pi i \gamma_{n-1}^{-1} P_{n-1}(z) & -\gamma_{n-1}^{-1} \int_{-\infty}^{\infty} \frac{P_{n-1}(s) w(s)}{s-z} d s
\end{array}\right)
$$

where $\gamma_{n-1}=\int_{-\infty}^{\infty} P_{n-1}(x) x^{n-1} w(x) d x>0$.

- Multiple orthogonal polynomial (MOP) is a monic polynomial of degree $n_{1}+n_{2}$

$$
P_{n_{1}, n_{2}}(x)=x^{n_{1}+n_{2}}+\cdots
$$

characterized by

$$
\begin{array}{ll}
\int_{-\infty}^{\infty} P_{n_{1}, n_{2}}(x) x^{k} w_{1}(x) d x=0, & k=0,1, \ldots, n_{1}-1, \\
\int_{-\infty}^{\infty} P_{n_{1}, n_{2}}(x) x^{k} w_{2}(x) d x=0, & k=0,1, \ldots, n_{2}-1 .
\end{array}
$$

- Immediate extension to r weights w_{1}, \ldots, w_{r} and $\left(n_{1}, \ldots, n_{r}\right) \in \mathbb{N}^{r}$.

MOP in random matrix theory

- MOPs appear in random matrix theory and related stochastic processes
(a) Random matrices with external source
(b) Non-intersecting Brownian motions
(c) Non-intersecting squared Bessel paths
(d) Coupled random matrices
- two matrix model
- Cauchy matrix model
- MOPs $P_{n_{1}, n_{2}}$ with two weight functions
- The polynomials Q_{n} defined by

$$
Q_{2 k}=P_{k, k}, \quad Q_{2 k+1}=P_{k+1, k}
$$

have a four term recurrence

$$
x Q_{n}(x)=Q_{n+1}(x)+a_{n} Q_{n}(x)+b_{n} Q_{n-1}(x)+c_{n} Q_{n-2}(x)
$$

- MOPs $P_{n_{1}, n_{2}}$ with two weight functions
- The polynomials Q_{n} defined by

$$
Q_{2 k}=P_{k, k}, \quad Q_{2 k+1}=P_{k+1, k}
$$

have a four term recurrence

$$
x Q_{n}(x)=Q_{n+1}(x)+a_{n} Q_{n}(x)+b_{n} Q_{n-1}(x)+c_{n} Q_{n-2}(x)
$$

- MOPs with r weight functions and near-diagonal multi-indices satisfy an $r+2$-term recurrence.
- MOPs with two weight functions have a Riemann-Hilbert problem of size 3×3
(1) $Y: \mathbb{C} \backslash \mathbb{R} \rightarrow \mathbb{C}^{3 \times 3}$ is analytic,
(2) $Y_{+}=Y_{-}\left(\begin{array}{ccc}1 & w_{1} & w_{2} \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$ on \mathbb{R},
(3) $Y(z)=\left(I_{3}+O(1 / z)\right)\left(\begin{array}{ccc}z^{n_{1}+n_{2}} & 0 & 0 \\ 0 & z^{-n_{1}} & 0 \\ 0 & 0 & z^{-n_{2}}\end{array}\right)$ as $z \rightarrow \infty$.

Van Assche-Geronimo-K (2001)

- MOPs with two weight functions have a Riemann-Hilbert problem of size 3×3
(1) $Y: \mathbb{C} \backslash \mathbb{R} \rightarrow \mathbb{C}^{3 \times 3}$ is analytic,
(2) $Y_{+}=Y_{-}\left(\begin{array}{ccc}1 & w_{1} & w_{2} \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$ on \mathbb{R},
(3) $Y(z)=\left(I_{3}+O(1 / z)\right)\left(\begin{array}{ccc}z^{n_{1}+n_{2}} & 0 & 0 \\ 0 & z^{-n_{1}} & 0 \\ 0 & 0 & z^{-n_{2}}\end{array}\right)$ as $z \rightarrow \infty$.

Van Assche-Geronimo-K (2001)

- RH problem has a unique solution if and only if the MOP $P_{n_{1}, n_{2}}$ uniquely exists and in that case

$$
Y_{11}(z)=P_{n_{1}, n_{2}}(z)
$$

- MOPs with r weight functions have a RH problem of size $(r+1) \times(r+1)$.

2. Normal matrix model

- Probability measure on $n \times n$ complex matrices

$$
\frac{1}{Z_{n}} e^{-\frac{n}{t_{0}} \operatorname{Tr}\left(M M^{*}-V(M)-\bar{V}\left(M^{*}\right)\right)} d M, \quad t_{0}>0
$$

with

$$
V(M)=\sum_{k=1}^{\infty} \frac{t_{k}}{k} M^{k}
$$

2. Normal matrix model

- Probability measure on $n \times n$ complex matrices

$$
\frac{1}{Z_{n}} e^{-\frac{n}{t_{0}} \operatorname{Tr}\left(M M^{*}-V(M)-\bar{V}\left(M^{*}\right)\right)} d M, \quad t_{0}>0
$$

with

$$
V(M)=\sum_{k=1}^{\infty} \frac{t_{k}}{k} M^{k}
$$

- Model depends on parameters

$$
t_{0}>0, \quad t_{1}, t_{2}, \ldots, t_{k}, \ldots
$$

- For $t_{1}=t_{2}=\cdots=0$ this is the Ginibre ensemble. Ginibre (1965)
- Eigenvalues in the Ginibre ensemble have a limiting distribution as $n \rightarrow \infty$ that is uniform in a disk around 0 with radius $\sqrt{t_{0}}$.

Laplacian growth

- For general t_{1}, t_{2}, \ldots, and t_{0} sufficiently small, the eigenvalues of M fill out a two-dimensional domain

$$
\Omega=\Omega\left(t_{0}, t_{1}, \ldots\right)
$$

- Ω is characterized by

$$
t_{0}=\frac{1}{\pi} \operatorname{area}(\Omega), \quad t_{k}=-\frac{1}{\pi} \iint_{\mathbb{C} \backslash \Omega} \frac{d A(z)}{z^{k}}, \quad k \geq 1
$$

Laplacian growth

- For general t_{1}, t_{2}, \ldots, and t_{0} sufficiently small, the eigenvalues of M fill out a two-dimensional domain

$$
\Omega=\Omega\left(t_{0}, t_{1}, \ldots\right)
$$

- Ω is characterized by

$$
t_{0}=\frac{1}{\pi} \operatorname{area}(\Omega), \quad t_{k}=-\frac{1}{\pi} \iint_{\mathbb{C} \backslash \Omega} \frac{d A(z)}{z^{k}}, \quad k \geq 1
$$

- As a function of t_{0}, the boundary of Ω evolves according to the model of Laplacian growth.
- Laplacian growth is unstable. Singularities develop in finite time.

Wiegmann-Zabrodin (2000)
Teoderescu-Bettelheim-Agam-Zabrodin-Wiegmann (2005)

Cubic case $V(z)=\frac{t_{2}}{3} z^{3}$

Cubic case

- Normal matrix model

$$
\frac{1}{Z_{n}} e^{-\frac{n}{t_{0}} \operatorname{Tr}\left(M M^{*}-V(M)-\bar{V}\left(M^{*}\right)\right)} d M, \quad t_{0}>0
$$

is not well-defined if V is a polynomial of degree ≥ 3

- Normal matrix model

$$
\frac{1}{Z_{n}} e^{-\frac{n}{t_{0}} \operatorname{Tr}\left(M M^{*}-V(M)-\bar{V}\left(M^{*}\right)\right)} d M, \quad t_{0}>0
$$

is not well-defined if V is a polynomial of degree ≥ 3

- The normalization constant (partition function)

$$
Z_{n}=\int e^{-\frac{n}{t_{0}} \operatorname{Tr}\left(M M^{*}-V(M)-\bar{V}\left(M^{*}\right)\right)} d M=+\infty
$$

is divergent.

- Elbau and Felder use a cut-off.
- They restrict to matrices with eigenvalues in a well-chosen bounded domain D.
- Elbau and Felder use a cut-off.
- They restrict to matrices with eigenvalues in a well-chosen bounded domain D.
- Then the induced probability measure on eigenvalues is a determinantal point process on D.
- Eigenvalues fill out a domain Ω that evolves according to Laplacian growth provided t_{0} is small enough.

Elbau-Felder (2005)

Orthogonal polynomials

- Average characteristic polynomial

$$
P_{n}(z)=\mathbb{E}\left[z I_{n}-M\right]
$$

in the cut-off model is an orthogonal polynomial for scalar product

$$
\langle f, g\rangle=\iint_{D} f(z) \overline{g(z)} e^{-\frac{n}{t_{0}}\left(|z|^{2}-V(z)-\overline{V(z)}\right)} d A(z)
$$

Elbau (ETH thesis, arXiv 2007)

- Orthogonality does not make sense if $D=\mathbb{C}$, since integrals would diverge if f and g are polynomials

Recurrence relation

- OPs in the cut-off model satisfy a recurrence relation

$$
z P_{n}(z)=P_{n+1}(z)+a_{n}^{(1)} P_{n}(z)+\cdots+a_{n}^{(r)} P_{n-r}(z)
$$

+ "remainder term"
- OPs in the cut-off model satisfy a recurrence relation

$$
z P_{n}(z)=P_{n+1}(z)+a_{n}^{(1)} P_{n}(z)+\cdots+a_{n}^{(r)} P_{n-r}(z)
$$

+ "remainder term"
- Remainder term comes from boundary integrals that are due to the cut-off.
- Remainder term is exponentially small for $t_{0}>0$ sufficiently small.

Zeros of OPs

- Conjecture: The zeros of P_{n} do not fill out the twodimensional domain Ω as $n \rightarrow \infty$, but instead accumulate along a contour Σ_{1} inside Ω.
- Singularities appear when Σ_{1} meets the boundary of Ω.
- Conjecture: The zeros of P_{n} do not fill out the twodimensional domain Ω as $n \rightarrow \infty$, but instead accumulate along a contour Σ_{1} inside Ω.
- Singularities appear when Σ_{1} meets the boundary of Ω.
- In the cubic case

$$
V(z)=\frac{t_{3}}{3} z^{3}, \quad t_{3}>0
$$

the contour is a three-star

$$
\Sigma_{1}=\left[0, x^{*}\right] \cup\left[0, e^{2 \pi i / 3} x^{*}\right] \cup\left[0, e^{-2 \pi i / 3} x^{*}\right]
$$

Elbau (ETH thesis, arXiv 2007)

Cubic case

Cubic case

4. Different approach

- Scalar product in the cut-off model

$$
\langle f, g\rangle=\iint_{D} f(z) \overline{g(z)} e^{-\frac{n}{t_{0}\left(|z|^{2}-V(z)-\overline{V(z))}\right.} d A(z) .}
$$

satisfies (due to Green's theorem)

$$
\left.\left.\begin{array}{rl}
n\langle z f, g\rangle=t_{0}\langle f, & \left.g^{\prime}\right\rangle
\end{array}\right)+n\left\langle f, V^{\prime} g\right\rangle\right)
$$

- Our idea: drop the boundary term
- Consider an a priori abstract sesquilinear form on the space of polynomials satisfying

$$
n\langle z f, g\rangle=t_{0}\left\langle f, g^{\prime}\right\rangle+n\left\langle f, V^{\prime} g\right\rangle
$$

- Consider an a priori abstract sesquilinear form on the space of polynomials satisfying

$$
n\langle z f, g\rangle=t_{0}\left\langle f, g^{\prime}\right\rangle+n\left\langle f, V^{\prime} g\right\rangle
$$

- We also want to keep the Hermitian form condition

$$
\langle g, f\rangle=\overline{\langle f, g\rangle}
$$

Theorem (Bertola 2003, Bleher-K 2012)
(a) The real vector space of Hermitian forms satisfying

$$
n\langle z f, g\rangle=t_{0}\left\langle f, g^{\prime}\right\rangle+n\left\langle f, V^{\prime} g\right\rangle
$$

is r^{2} dimensional, where $r=\operatorname{deg} V-1$.

Theorem (Bertola 2003, Bleher-K 2012)

(a) The real vector space of Hermitian forms satisfying

$$
n\langle z f, g\rangle=t_{0}\left\langle f, g^{\prime}\right\rangle+n\left\langle f, V^{\prime} g\right\rangle
$$

is r^{2} dimensional, where $r=\operatorname{deg} V-1$.
(b) Any such Hermitian form can be written as

$$
\langle f, g\rangle=\sum_{j, k=0}^{r} C_{j, k} \int_{\Gamma_{j}} d z \int_{\bar{\Gamma}_{k}} d s f(z) \bar{g}(s) e^{-\frac{n}{t_{0}}(z s-V(z)-\bar{V}(s))}
$$

- $\left(C_{j, k}\right)_{j, k=0, \ldots . r}$ is a Hermitian matrix with zero row and column sums
- $\Gamma_{0}, \ldots, \Gamma_{r}$ is a system of unbounded contours along which the integrals converge

Contours Γ_{j} for cubic potential $V(z)=\frac{t_{5}}{3} z^{3}$

- Contours $\Gamma_{0}, \Gamma_{1}, \Gamma_{2}$ for $V(z)=\frac{t_{3}}{3} z^{3}$ with $t_{3}>0$
- The contours extend to infinity at asymptotic angles $\pm \pi / 3$ and π

Orthogonal polynomials

- Orthogonal polynomial $P_{n}(z)=z^{n}+\cdots$ for the Hermitian form

$$
\left\langle P_{n}, z^{k}\right\rangle=0, \quad \text { for } k=0,1, \ldots, n-1
$$

Orthogonal polynomials

- Orthogonal polynomial $P_{n}(z)=z^{n}+\cdots$ for the Hermitian form

$$
\left\langle P_{n}, z^{k}\right\rangle=0, \quad \text { for } k=0,1, \ldots, n-1
$$

can also be seen as a multiple orthogonal polynomial with r weights

- due to double integral representation, and integration by parts...

Orthogonal polynomials

- Orthogonal polynomial $P_{n}(z)=z^{n}+\cdots$ for the Hermitian form

$$
\left\langle P_{n}, z^{k}\right\rangle=0, \quad \text { for } k=0,1, \ldots, n-1
$$

can also be seen as a multiple orthogonal polynomial with r weights

- due to double integral representation, and integration by parts...
- Weights are on

$$
\Gamma=\bigcup_{j=0}^{r} \Gamma_{j}
$$

instead of on the real line.

MOP in cubic case

- For $V(z)=\frac{t_{3}}{3} z^{3}$ the two weights are
- For $V(z)=\frac{t_{3}}{3} z^{3}$ the two weights are

$$
\left\{\begin{array}{l}
w_{0}(z)=e^{\frac{n t_{3}}{3 t_{0}} z^{3}} \sum_{k=0}^{2} C_{j, k} \int_{\bar{\Gamma}_{k}} e^{-\frac{n}{t_{0}}\left(z s-\frac{t_{3}}{3} s^{3}\right)} d s \\
w_{1}(z)=e^{\frac{n t_{3}}{3 t_{0}} z^{3}} \sum_{k=0}^{2} C_{j, k} \int_{\bar{\Gamma}_{k}} s e^{-\frac{n}{t_{0}}\left(z s-\frac{t_{3}}{3} s^{3}\right)} d s
\end{array} \quad z \in \Gamma_{j},\right.
$$

- Multiple orthogonality on $\Gamma=\Gamma_{0} \cup \Gamma_{1} \cup \Gamma_{2}$

$$
\begin{aligned}
\int_{\Gamma} P_{n}(z) z^{k} w_{0}(z) d z & =0, \quad k=0, \ldots,\left\lceil\frac{n}{2}\right\rceil-1 \\
\int_{\Gamma} P_{n}(z) z^{k} w_{1}(z) d z & =0, \quad k=0, \ldots,\left\lfloor\frac{n}{2}\right\rfloor-1
\end{aligned}
$$

Airy functions

- Weight w_{0} is expressed in terms of the Airy function

$$
\operatorname{Ai}(z)=\frac{1}{2 \pi i} \int_{\Gamma_{0}} e^{\frac{1}{3} s^{3}-z s} d s
$$

and weight w_{1} in terms of the derivative

$$
A i^{\prime}(z)=-\frac{1}{2 \pi i} \int_{\Gamma_{0}} s e^{\frac{1}{3} s^{3}-z s} d s
$$

Riemann-Hilbert problem

- RH problem of size 3×3 with jumps on「 that characterizes the orthogonal polynomials
- RH problem of size 3×3 with jumps on「 that characterizes the orthogonal polynomials
(1) $Y: \mathbb{C} \backslash \Gamma \rightarrow \mathbb{C}^{3 \times 3}$ is analytic,
(2) $Y_{+}=Y_{-}\left(\begin{array}{ccc}1 & w_{0} & w_{1} \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$ on Γ,
(3) $Y(z)=\left(I_{3}+O(1 / z)\right)\left(\begin{array}{ccc}z^{n} & 0 & 0 \\ 0 & z^{-n / 2} & 0 \\ 0 & 0 & z^{-n / 2}\end{array}\right)$ as $z \rightarrow \infty$.
(assume n is even)

- RH problem of size 3×3 with jumps on 「 that characterizes the orthogonal polynomials
(1) $Y: \mathbb{C} \backslash \Gamma \rightarrow \mathbb{C}^{3 \times 3}$ is analytic,
(2) $Y_{+}=Y_{-}\left(\begin{array}{ccc}1 & w_{0} & w_{1} \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$ on Γ,
(3) $Y(z)=\left(I_{3}+O(1 / z)\right)\left(\begin{array}{ccc}z^{n} & 0 & 0 \\ 0 & z^{-n / 2} & 0 \\ 0 & 0 & z^{-n / 2}\end{array}\right)$ as $z \rightarrow \infty$.
(assume n is even)

- RH problem is ideal tool for asymptotic analysis...

Bleher-Its (1999)
Deift-Kriecherbauer-McLaughlin-Venakides-Zhou (1999)

Q0: Can we choose Hermitian matrix $\left(C_{j, k}\right)$ in such a way that we can do large n asymptotics on the RH problem with n-dependent weights

Q1: Can we find the limiting behavior of zeros of P_{n} as $n \rightarrow \infty$?
Q2: Can we find the connection with Laplacian growth ?
Q3: What happens in the critical case ?

Existence of OP

Theorem (Bleher-K, 2012)
With the choice

$$
C=\left(C_{j, k}\right)=\frac{1}{2 \pi i}\left(\begin{array}{ccc}
0 & -1 & 1 \\
1 & 0 & -1 \\
-1 & 1 & 0
\end{array}\right)
$$

the following hold. Assume $0<t_{0}<t_{0, c r i t}=\frac{1}{8 t_{3}^{2}}$

Theorem (Bleher-K, 2012)

With the choice

$$
C=\left(C_{j, k}\right)=\frac{1}{2 \pi i}\left(\begin{array}{ccc}
0 & -1 & 1 \\
1 & 0 & -1 \\
-1 & 1 & 0
\end{array}\right)
$$

the following hold. Assume $0<t_{0}<t_{0, c r i t}=\frac{1}{8 t_{3}^{2}}$
(a) The orthogonal polynomials P_{n} for the Hermitian form exist if n is sufficiently large.
(b) The zeros of P_{n} accumulate as $n \rightarrow \infty$ on the set

$$
\begin{aligned}
& \Sigma_{1}=\left[0, x^{*}\right] \cup\left[0, \omega x^{*}\right] \cup\left[0, \omega^{2} x^{*}\right], \quad \omega=e^{2 \pi i / 3}, \\
& x^{*}=\frac{3}{4 t_{3}}\left(1-\sqrt{1-8 t_{0} t_{3}^{2}}\right)^{2 / 3}
\end{aligned}
$$

Theorem to be continued...

- We want to deform contours in such a way that they cover Σ_{1}

Deformation of contours

Deformation of contours

Deformation of contours

Choice for C

Choice for C

- We choose C such that the combined weight on $\left[0, x^{*}\right]$ is

Multiple orthogonality with Airy weights

- After deformation of contours the MOP conditions are

$$
\begin{aligned}
\int_{\Gamma} P_{n}(z) z^{k} w_{0, n}(z) d z=0, & k=0, \ldots, \frac{n}{2}-1 \\
\int_{\Gamma} P_{n}(z) z^{k} w_{1, n}(z) d z=0, & k=0, \ldots, \frac{n}{2}-1
\end{aligned}
$$

- On Σ_{1} the new combined weights are

$$
\begin{array}{ll}
w_{0, n}(z)=\omega^{2 j} \operatorname{Ai}\left(c_{n}|z|\right) e^{\frac{n t_{3}}{3 t_{0}} z^{3}}, & z \in\left[0, \omega^{j} x^{*}\right], \\
w_{1, n}(z)=\omega^{j} \mathrm{Ai}^{\prime}\left(c_{n}|z|\right) e^{\frac{n t_{3}}{3 t_{0}} z^{3}}, & c_{n}=\frac{n^{2 / 3}}{t_{0}^{2 / 3} t_{3}^{1 / 3}}
\end{array}
$$

Multiple orthogonality with Airy weights

- After deformation of contours the MOP conditions are

$$
\begin{aligned}
\int_{\Gamma} P_{n}(z) z^{k} w_{0, n}(z) d z=0, & k=0, \ldots, \frac{n}{2}-1 \\
\int_{\Gamma} P_{n}(z) z^{k} w_{1, n}(z) d z=0, & k=0, \ldots, \frac{n}{2}-1
\end{aligned}
$$

- On Σ_{1} the new combined weights are

$$
\begin{array}{ll}
w_{0, n}(z)=\omega^{2 j} \operatorname{Ai}\left(c_{n}|z|\right) e^{\frac{n t_{3}}{3 t_{0}} z^{3}}, & z \in\left[0, \omega^{j} x^{*}\right], \\
w_{1, n}(z)=\omega^{j} \mathrm{Ai}^{\prime}\left(c_{n}|z|\right) e^{\frac{n t_{3}}{3 t_{0}} z^{3}}, & c_{n}=\frac{n^{2 / 3}}{t_{0}^{2 / 3} t_{3}^{1 / 3}}
\end{array}
$$

- Large n behavior of the two weights for $z \in \Sigma_{1} \backslash\{0\}$,

$$
w_{k, n}(z) \sim \exp (-n Q(z)), \quad Q(z)=\frac{1}{t_{0}}\left(\frac{2}{3 \sqrt{t_{3}}}|z|^{3 / 2}-\frac{t_{3}}{3} z^{3}\right) .
$$

Limiting zero distribution

Theorem (continued)
(c) The OPs $\left(P_{n}\right)$ have a limiting zero distribution μ_{1}^{*} on Σ_{1}.

Theorem (continued)

(c) The OPs $\left(P_{n}\right)$ have a limiting zero distribution μ_{1}^{*} on Σ_{1}.
(d) μ_{1}^{*} is part of the minimizer $\left(\mu_{1}^{*}, \mu_{2}^{*}\right)$ of a vector equilibrium problem that asks to minimize

$$
I\left(\mu_{1}\right)-I\left(\mu_{1}, \mu_{2}\right)+I\left(\mu_{2}\right)+\int Q d \mu_{1}
$$

over $\left(\mu_{1}, \mu_{2}\right)$ such that

- μ_{1} is a measure on Σ_{1} with $\mu_{1}\left(\Sigma_{1}\right)=1$
- μ_{2} is a measure on Σ_{2} with $\mu_{2}\left(\Sigma_{2}\right)=\frac{1}{2}$
- Logarithmic energy

$$
I(\mu, \nu)=\iint \log \frac{1}{|x-y|} d \mu(x) d \nu(y), \quad I(\mu)=I(\mu, \mu)
$$

- Minimize

$$
\begin{aligned}
& I\left(\mu_{1}\right)-I\left(\mu_{1}, \mu_{2}\right)+I\left(\mu_{2}\right)+\int Q d \mu_{1} \\
& \qquad Q(z)=\frac{1}{t_{0}}\left(\frac{2}{3 \sqrt{t_{3}}}|z|^{3 / 2}-\frac{t_{3}}{3} z^{3}\right)
\end{aligned}
$$

over $\left(\mu_{1}, \mu_{2}\right)$ such that

$$
\begin{aligned}
\operatorname{supp}\left(\mu_{1}\right) & \subset \Sigma_{1} \\
\operatorname{supp}\left(\mu_{2}\right) & \subset \Sigma_{2} \\
\mu_{1}\left(\Sigma_{1}\right) & =1 \\
\mu_{2}\left(\Sigma_{2}\right) & =1 / 2
\end{aligned}
$$

- Nikishin-type of interaction of measures on two plates.

- There is a unique minimizer $\left(\mu_{1}^{*}, \mu_{2}^{*}\right)$ of the vector equilibrium problem.
- The minimizers induce an algebraic-geometric structure.
- There is a unique minimizer $\left(\mu_{1}^{*}, \mu_{2}^{*}\right)$ of the vector equilibrium problem.
- The minimizers induce an algebraic-geometric structure.

Definition

Define Cauchy transforms

$$
F_{k}(z)=\int \frac{d \mu_{k}^{*}(s)}{z-s}, \quad z \in \mathbb{C} \backslash \Sigma_{k}, k=1,2
$$

and the ξ-function on the first sheet

$$
\xi_{1}(z)=t_{3} z^{2}+t_{0} F_{1}(z), \quad z \in \mathbb{C} \backslash \Sigma_{1}=\mathcal{R}_{1}
$$

Riemann surface

Theorem (continued)
(e) The function ξ_{1} has an analytic continuation to a three-sheeted Riemann surface
(f) ξ_{1} is one of the solutions of the algebraic equation (spectral curve)

$$
\begin{aligned}
\xi^{3}-t_{3} z^{2} \xi^{2}-\left(t_{0} t_{3}+\frac{1}{t_{3}}\right)+z^{3}+A=0 \\
A=\frac{1+20 t_{0} t_{3}^{2}-8 t_{0}^{2} t_{3}^{4}-\left(1-8 t_{0} t_{3}^{2}\right)^{3 / 2}}{32 t_{3}^{3}}
\end{aligned}
$$

Laplacian growth

Theorem (continued)
(g) The equation $\xi_{1}(z)=\bar{z}$ defines a simple closed curve $\partial \Omega$ that is the boundary of a domain Ω containing Σ_{1} in its interior.

Laplacian growth

Theorem (continued)
(g) The equation $\xi_{1}(z)=\bar{z}$ defines a simple closed curve $\partial \Omega$ that is the boundary of a domain Ω containing Σ_{1} in its interior.
(h) Ω has exterior harmonic moments $\left(0,0, t_{3}, 0,0, \ldots\right)$ and

$$
\operatorname{area}(\Omega)=\pi t_{0}
$$

Laplacian growth

Theorem (continued)
(g) The equation $\xi_{1}(z)=\bar{z}$ defines a simple closed curve $\partial \Omega$ that is the boundary of a domain Ω containing Σ_{1} in its interior.
(h) Ω has exterior harmonic moments $\left(0,0, t_{3}, 0,0, \ldots\right)$ and

$$
\operatorname{area}(\Omega)=\pi t_{0}
$$

(i) Also

$$
\int \frac{d \mu_{1}^{*}(\zeta)}{z-\zeta}=\frac{1}{\pi t_{0}} \iint_{\Omega} \frac{d A(\zeta)}{z-\zeta} . \quad z \in \mathbb{C} \backslash \bar{\Omega}
$$

- The asymptotic formulas for P_{n} follow from a steepest descent analysis of the RH problem of size 3×3
- Sequence of explicit transformations

$$
Y \mapsto X \mapsto V \mapsto U \mapsto T \mapsto S \mapsto R
$$

leading to a simple RH problem for R, that can be solved by Neumann series.

- The asymptotic formulas for P_{n} follow from a steepest descent analysis of the RH problem of size 3×3
- Sequence of explicit transformations

$$
Y \mapsto X \mapsto V \mapsto U \mapsto T \mapsto S \mapsto R
$$

leading to a simple RH problem for R, that can be solved by Neumann series.

- Major roles are played by the solution of the vector equilibrium problem and by the ξ-functions coming from the Riemann surface.
- The asymptotic formulas for P_{n} follow from a steepest descent analysis of the RH problem of size 3×3
- Sequence of explicit transformations

$$
Y \mapsto X \mapsto V \mapsto U \mapsto T \mapsto S \mapsto R
$$

leading to a simple RH problem for R, that can be solved by Neumann series.

- Major roles are played by the solution of the vector equilibrium problem and by the ξ-functions coming from the Riemann surface.
- There is some similarity with the steepest descent analysis of the RH problem for biorthogonal polynomials from the two-matrix model with quartic potential. Duits-K (2009), Duits-K-Mo (2012)
- For $t_{0}<t_{0, \text { crit }}$, the spectral curve has three branch points

$$
x^{*}, \quad e^{2 \pi i / 3} x^{*}, \quad e^{-2 \pi i / 3} x^{*}
$$

and three nodes

$$
\hat{x}>x^{*}, \quad e^{2 \pi i / 3} \widehat{x}, \quad e^{-2 \pi i / 3} \widehat{x}
$$

- At the critical value $t_{0, \text { crit }}$ the nodes coalesce with the branch points.
- Local behavior can then be described by functions that are associated with the Painlevé I equation (on to do list).
- What happens beyond the critical value ??

