On spectral properties of large dilute Wigner random matrices

O. Khorunzhiy

University of Versailles - Saint-Quentin, France

We study the spectral norm (maximal eigenvalue $\lambda_{\max }$) of $n \times n$ random real symmetric matrices $H^{(n, \rho)}$ whose elements $H_{i j}^{(n, \rho)}, i \leq j$ are given by jointly independent random variables, similarly to the well-known ensemble of Wigner real symmetric matrices.

The difference between $H^{(n, \rho)}$ and the Wigner ensemble is that $H_{i j}^{(n, \rho)}$ is equal to 0 with probability $1-\rho / n$ (dilute version). The concentration parameter $\rho=\rho_{n}$ represents the average number of non-zero elements per row in $H^{(n, \rho)}$.

Our results show that in the asymptotic regime when $\rho_{n}=n^{\alpha}, n \rightarrow \infty$, the value $\alpha=2 / 3$ is the critical one with respect to the asymptotic behavior of $\lambda_{\max }$.

I.1. Dilute Wigner random matrices

$$
H_{i j}^{(n, \rho)}=\frac{1}{\sqrt{\rho}} a_{i j} b_{i j}^{(n, \rho)}, 1 \leq i \leq j \leq n
$$

where $\left\{a_{i j}, i \leq j\right\}$ are jointly independent r.v. with symmetric probability distribution and

$$
b_{i j}^{(n, \rho)}= \begin{cases}1, & \text { with probability } \rho / n \\ 0, & \text { with probability } 1-\rho / n\end{cases}
$$

independent r.v. also independent from $a_{i j}$.
i) If $\rho=n$, then the matrix

$$
H_{i j}^{(n)}=\frac{1}{\sqrt{n}} a_{i j}
$$

represents the Wigner ensemble of real symmetric random matrices;
ii) $1 \ll \rho_{n} \ll n$, dilute version of Wigner RM;
iii) $\rho_{n}=O(1), n \rightarrow \infty$, sparse RM .

I.2. Semi-circle law (Wigner law)

a) Normalized eigenvalue counting function (NCF)

$$
\sigma_{n}(\lambda)=\frac{1}{n} \#\left\{j: \lambda_{j}^{(n)} \leq \lambda\right\}
$$

converges as $n \rightarrow \infty$ to $\sigma_{W}(\lambda)$ with the density

$$
\frac{d}{d \lambda} \sigma_{W}(\lambda)=\frac{1}{2 \pi v^{2}} \sqrt{4 v^{2}-\lambda^{2}}, \quad|\lambda| \leq 2 v
$$

where $v^{2}=\mathbf{E} a_{i j}^{2} \quad$ [E. Wigner, 1955].
b) Spectral norm $\lambda_{\max }^{(n)}=\max _{k}\left\{\left|\lambda_{k}^{(n)}\right|\right\}$ converges to $2 v$ [S. Geman, 1980; Z. Füredi and J. Komlós, 1981, V. Girko, 1988; Z.-D. Bai and Y. Q. Yin, 1988];

$$
\lambda_{\max }^{(n)} \rightarrow 2 v \text { as } n \rightarrow \infty ;
$$

in particular,

$$
\mathbf{P}\left\{\lambda_{\max }^{(n)} \geq 2 v(1+x)\right\} \rightarrow 0, x>0
$$

I. 3 Dilution of random matrices

- Random graphs: symmetric random matrix

$$
B_{i j}= \begin{cases}1, & \text { with probability } \rho / n \\ 0, & \text { with probability } 1-\rho / n\end{cases}
$$

is the adjacency matrix of random graph $G_{n}\left(P_{n}\right)$ with n vertices and with the edge probability

$$
P_{n}=\rho / n
$$

(P. Edős and A. Rényi, 1959; E. Gilbert, 1959)

- Theoretical physics: dilute and sparse disordered systems
- [Rodgers-Bray, 1988]
- [Mirlin-Fyodorov, 1991]
- Neural networks theory
- etcetera, ...

I. 4 Semicircle law in dilute RM

In $H^{(n, \rho)}$ a number of bonds (connections) between cites i and j destroyed, the structure of random matrix is changed.

However, if $\rho_{n} \rightarrow \infty$ as $n \rightarrow \infty$, the Wigner (or semicircle) law is still valid,

$$
\sigma_{n, \rho_{n}}(\lambda) \rightarrow \sigma_{W}(\lambda)
$$

with $\operatorname{supp}\left(\sigma_{W}^{\prime}\right)=[-2 v, 2 v]$

- [Rodgers-Bray, 1988]
- [K., Khoruzhenko, Pastur, Shcherbina, 1992]
- [Cazati-Girko, 1992]
- ...

What about $\lambda_{\text {max }}^{(n, \rho)} \rightarrow$? and

$$
\mathbf{P}\left\{\lambda_{\max }^{(n, \rho)}>2 v\left(1+x_{n}\right)\right\} ?
$$

II. Critical value for the spectral norm

Theorem [K., Adv. Probab. 2001]

$$
\begin{aligned}
& \text { If } \rho_{n}=(\log n)^{1+\beta}, \beta>0 \text {, then } \\
& \qquad \mathbf{P}\left\{\lambda_{\max }^{(n, \rho)}>2 v(1+x)\right\} \rightarrow 0, x>0
\end{aligned}
$$

$$
\text { If } \rho_{n}=(\log n)^{1-\beta^{\prime}} \text { with } \beta^{\prime}>0 \text {, then }
$$

$$
\limsup _{n \rightarrow \infty} \lambda_{\max }^{(n, \rho)}=+\infty
$$

Conclusion: the value $\rho_{n}^{*}=\log n$ is critical for the asymptotic behavior of $\lambda_{\max }^{\left(n, \rho_{n}\right)}$.

Relation with the properties of large random graphs: the edge probability

$$
P_{n}^{*}=\frac{\log n}{n}
$$

is the critical one (a sharp threshold) with respect to the connectedness of the random graph $G_{n}\left(P_{n}\right)$.

III. 1 Moments of random matrices

Since the works of E . Wigner, the moments

$$
M_{2 k}^{(n)}=\mathbf{E} \frac{1}{n} \operatorname{Tr}\left(H^{(n)}\right)^{2 k}, k=0,1,2, \ldots
$$

have been used to study the moments of $\sigma_{n}(\lambda)$,

$$
M_{2 k}^{(n)}=\mathbf{E} \frac{1}{n} \sum_{j=1}^{n}\left(\lambda_{j}^{(n)}\right)^{2 k}=\mathbf{E} \int \lambda^{2 k} d \sigma_{n}(\lambda) .
$$

In particular, E. Wigner has shown that

$$
M_{2 k}^{(n)} \rightarrow v^{2 k} \frac{(2 k)!}{k!(k+1)!}=v^{2 k} \mathrm{t}_{k}
$$

where t_{k} are the Catalan numbers.

The key idea of S. Geman [Ann.Probab., 1980] inspired by U . Grenander is that the limiting behavior of $\lambda_{\max }^{(n)}$ can be studied by means of the high moments

$$
n M_{2 k_{n}}^{(n)}, \quad n, k_{n} \rightarrow \infty
$$

III. 2 High moments of Wigner RM

1) $k_{n}=O(\log n)$ [Geman, 1980; Bai-Yin, 1988]

$$
M_{2 k_{n}}^{(n)} \leq\left(v^{2}(1+\varepsilon)\right)^{k_{n}} \mathrm{t}_{k_{n}}, \quad k_{n}=O(\log n)
$$

implies that

$$
\mathbf{P}\left\{\lambda_{\max }^{(n)}>2 v(1+x)\right\} \rightarrow 0 \text { as } n \rightarrow \infty
$$

2) $k_{n}=O\left(n^{1 / 6}\right)$ [Füredi-Komlós, 1981]

$$
k_{n}=O\left(n^{1 / 2}\right), k_{n}=o\left(n^{2 / 3}\right)
$$

[Ya. G. Sinai and A. Soshnikov, 1998]
3) $k_{n}=\chi n^{2 / 3}, \chi>0$ [A. Soshnikov, 1999]:

$$
n M_{2 k_{n}}^{(n)} \rightarrow \mathcal{L}(\chi)=\mathcal{L}_{\mathrm{GOE}}(\chi)
$$

where $\mathcal{L}(\chi)$ does not depend on the details of the probability distribution of $a_{i j}$; as a corollary, one gets

$$
\mathbf{P}\left\{\lambda_{\max }^{(n)}>2 v\left(1+\frac{y}{n^{2 / 3}}\right)\right\} \leq \mathcal{G}_{\chi}(y), y>0 .
$$

The border spectral scale is $n^{-2 / 3}$.

IV. 1 Dilute Wigner RM

Theorem [K., arXiv-2011, in preparation] Let the probability law of $a_{i j}$ has a finite support. Then
$\mathbf{P}\left\{\lambda_{\max }^{\left(n, \rho_{n}\right)}>2 v\left(1+\frac{y}{n^{2 / 3}}\right)\right\} \leq \mathcal{G}_{\chi}(y), y>0$
for $\rho_{n}=n^{2 / 3(1+\gamma)}$ with any given $\gamma>0$.

Main technical results:
A) If $\rho_{n}=n^{2 / 3(1+\gamma)}, \gamma>0$, then
$\limsup _{n \rightarrow \infty} n M_{2 k_{n}}^{\left(n, \rho_{n}\right)} \leq \mathcal{L}(\chi), \quad k_{n}=\chi n^{2 / 3}$.
The upper bound \mathcal{L} is universal in the sense that it does not depend on higher moments V_{4}, V_{6}, \ldots, where $V_{2 l}=\mathbf{E}\left|a_{i j}\right|^{2 l}, l \geq 2$.
B) If $\rho_{n}=n^{2 / 3}$ and $k_{n}=\chi n^{2 / 3}$, then

$$
n M_{2 k_{n}}^{\left(n, \rho_{n}\right)} \geq \ell(\chi)\left(1+\chi V_{4}\right), n \rightarrow \infty .
$$

IV. 2 Critical value for border scale

Our results show that the value $\rho_{n}=n^{2 / 3}$ represents a critical value for the spectral properties at the border of the spectrum $2 v$:

- if the dilution is weak, $\rho_{n} \gg n^{2 / 3}$, then one can expect that the local spectral properties of Dilute RM are the same as for the Wigner RM ensembles; these properties should be independent on the details of the probability distribution of $a_{i j}$.

To prove: correlation function of the moments, Moment version of IPR (K. arXiv, 2010)

- if the dilution is moderate, $\rho_{n}=O\left(n^{2 / 3}\right)$, then the asymptotic behavior of $\lambda_{\text {max }}^{(n)}$ will depend on $V_{4}=\mathbf{E}\left|a_{i j}\right|^{4}$. The same can be true for other local spectral characteristics.
- in the case of strong dilution, $\rho_{n} \ll n^{2 / 3}$, the spectral scale at the border $2 v$ changes from $\frac{1}{n^{2 / 3}}$ to $\frac{\phi(n)}{\rho}$, with $\phi(n)=\log n(?)$

V. Relations with the Wigner RM

The value of γ in $\rho_{n}=n^{2 / 3(1+\gamma)}$ depends on the moments $V_{2 l}=\mathbf{E}\left|a_{i j}\right|^{2 l}$:
if $V_{12+2 \phi}<\infty$, then $\gamma>\varepsilon=\frac{3}{6+\phi}$.

Inversely, if $\rho_{n}=n^{2 / 3(1+\gamma)}$, then the universal upper bound of $n M_{2 k_{n}}^{\left(n, \rho_{n}\right)}$ exists provided

$$
\phi>\frac{3}{\gamma}-6 .
$$

For the Wigner ensemble, we have $\rho_{n}=n$, $\gamma=1 / 2$ and then $\phi>0$, in accordance with the following generalization of earlier results [A. Soshnikov, 1999];

Theorem [K. 2012] If $V_{12+2 \delta}$ exists for any $\delta>0$, then for the Wigner RM,

$$
\lim _{n \rightarrow \infty} n M_{2 k_{n}}^{(n)}=\mathcal{L}_{G O E}(\chi), \quad k_{n}=\chi n^{2 / 3}
$$

where $\mathcal{L}_{\text {GOE }}\left(\right.$ or $\left.\mathcal{L}_{\text {GUE }}\right)$ does not depend on the moments of $V_{2 l}, l=2, \ldots, 6$ and on $V_{12+2 \delta}$.

VI. 1 Proof of the upper bound

The proof is based on the method of paper [K., Rand. Oper. Stoch. Eqs. 2012], where a modified and improved version of the approach by Ya.G.Sinai and A. Soshnikov completed in [K. and Vengerovsky, arXiv, 2008] is presented.

Start point: E. Wigner's representation of traces

$$
n M_{2 k}=\sum_{i_{0}, \ldots, i_{2 k-1}} \mathbf{E}\left\{H_{i_{0}, i_{1}} \cdots H_{i_{2 k-1}, i_{0}}\right\}
$$

as a sum over $2 k$-step trajectories

$$
\mathcal{I}_{2 k}=\left(i_{0}, i_{1}, i_{2}, \ldots, i_{2 k-2}, i_{2 k-1}, i_{0}\right)
$$

The family $\left\{\mathcal{I}_{2 k}\right\}$ can be separated into the classes of equivalence determined by the number \mathcal{K} of self-intersections of the trajectories.

When $\mathcal{K}=0$, the classes are described by the family $\mathcal{D}_{2 k}$ of the Dyck paths: discrete simple walks of $2 k$ steps in the upper half-plane that start and end at 0 . These are equivalent to the rooted half-plane trees. The cardinality $\left|\mathcal{D}_{2 k}\right|$ is given by the Catalan number t_{k}.

VI. 2 Technical questions

- Wigner RM, Sinai-Soshnikov approach: the study of simple self-intersections (open ones; V_{4}-direct); vertex of maximal exit degree β;
- K., Vengerovsky: proper and imported cells at β; Brocken-Tree-Structure instants;
- K. Rand.Oper.Stoch.Eqs.: V_{4}-direct and inverse edges; generalization to the case of $V_{2 k}$
- Dilute RM, K. 2012: detailed study of the vertex β of maximal exit degree D;

$$
D=d_{1}+\ldots+d_{L}, \quad \bar{d}_{L}=\left(d_{1}, \ldots, d_{L}\right)
$$

The following statement improves the tools used by Ya. G. Sinai and A. Soshnikov.
D-lemma. Denote by $\mathcal{T}_{k}^{(u)}\left(\bar{d}_{L}\right)$ the family of Catalan trees of height u that have L vertices of exit degrees $\bar{d}_{L}(A)$. Then
$\sum_{u=1}^{k} e^{\chi u / \sqrt{k}}\left|\mathcal{T}_{k}^{(u)}\left(\bar{d}_{L}\right)\right| \leq L e^{-\eta D} B(\chi) \mathrm{t}_{k}$, where $\eta=\ln (4 / 3)$ and $B(\chi)$ is related with the Brownian bridge.

VII. 1 Tree-type walks with multiple edges

Each plane tree generates, by the chronological run over it, a walk of $2 k$ steps such that each edge is passed exactly two times (there and back). The number of these Catalan walks is

$$
\mathrm{t}_{k}=\frac{(2 k)!}{k!(k+1)!}, \quad k \geq 0
$$

Lemma [K.,arXiv, 2012] Consider the family of Catalan-type walks of $2 k$ steps such that there exists exactly one special edge passed four times. Then its cardinality is given by

$$
\mathrm{t}_{k}^{(2)}=\frac{(2 k)!}{(k-2)!(k+2)!}, k \geq 2
$$

with obvious equalities $\mathrm{t}_{0}^{(2)}=\mathrm{t}_{1}^{(2)}=0$.
Remark. The cardinality of Catalan walks with one colored edge is obviously equal to

$$
\mathrm{t}_{k}^{(1)}=\frac{(2 k)!}{(k-1)!(k+1)!}, k \geq 1
$$

VII. 2 Bound from below

Relation

$$
\mathrm{t}_{k}^{(2)}=\frac{(2 k)!}{(k-2)!(k+2)!}=\left(k-\frac{3 k}{k+2}\right) \mathrm{t}_{k}
$$

shows that $\mathrm{t}_{k}^{(2)} \geq k \mathrm{t}_{k} / 2, k \geq 4$. This implies the lower bound for the moments of $H^{\left(n, \rho_{n}\right)}$.

Indeed,

$$
\begin{gathered}
\mathbf{E}\left(H^{\left(n, \rho_{n}\right)}\right)^{2 k} \geq n \mathrm{t}_{k} V_{2}^{2}+n V_{2}^{k-2} \cdot \frac{V_{4}}{\rho} \cdot \mathrm{t}_{k}^{(2)} \\
\geq n \mathrm{t}_{k} V_{2}^{2}\left(1+\frac{k V_{4}}{2 \rho V_{2}^{2}}\right) .
\end{gathered}
$$

Therefore, if $k=\chi n^{2 / 3}$ and $\rho=n^{2 / 3}$, then the estimate from below explicitly contains a non-vanishing term $\chi V_{4} / 2 V_{2}^{2}$.

This means that the estimate from above of the moments of the dilute random matrices in the asymptotic regime $\rho=n^{2 / 3}$ is crucially different from that in the regime $\rho=o\left(n^{2 / 3}\right)$.

VI. 3 Recurrent relations for $\mathbf{t}_{k}^{(2)}$

The Catalan numbers t_{k} are determined by recurrence

$$
\mathrm{t}_{k}=\sum_{u+v=k-1} \mathrm{t}_{u} \mathrm{t}_{v}, \quad k \geq 1
$$

$t_{0}=1$; it can be obtained with the help of the reduction of the ground step procedure.

A simple reasoning shows that

$$
\mathrm{t}_{k}^{(2)}=\sum_{u+v+r+s=k-2}(2 u+1) \mathrm{t}_{u} \mathrm{t}_{v} \mathrm{t}_{r} \mathrm{t}_{s},
$$

for $k \geq 2$. The use of the generating function of t_{k} leads to the explicit expression for $\mathrm{t}_{k}^{(2)}$.

Several first values of $\mathrm{t}_{k}^{(2)}=\frac{(2 k)!}{(k-2)!(k+2)!}$ are as follows,

$$
1,6,28,120,495, \ldots
$$

At present time, the N. Sloan's encyclopedia of integer sequences (OEIS) says nothing about this sequence.

VI. 4 More about the sequences $\mathbf{t}_{k}^{(m)}$

Let us denote by $\mathrm{t}_{k}^{(m)}, m \geq 1$ the set of even closed tree-type walks of $2 k$ steps such that all edges are passed two times (there and back) and there exists one special edge passed $2 m$ times.

Question: what is the explicit form of $\mathrm{t}_{k}^{(3)}$?
$\mathrm{t}_{k}^{(m)}=\sum_{u+v_{1}+\ldots+v_{2 m-1}=k-m}(2 u+1) \mathrm{t}_{u} \mathrm{t}_{v_{1}} \cdots \mathrm{t}_{v_{2 m-1}}$.

Answer: it is not hard to show that

$$
\mathrm{t}_{k}^{(3)}=\frac{(2 k)!}{(k-3)!(k+3)!}, \quad k \geq m \geq 3
$$

It is natural to assume that for any $m \geq 1$,

$$
\mathrm{t}_{k}^{(m)}=\frac{(2 k)!}{(k-m)!(k+m)!}, \quad k \geq m
$$

VII. 5 Why to study $\mathbf{t}_{k}^{(m)}$?

In the regime $\rho=n^{2 / 3}$, the estimate from below of the moments involves the terms

$$
n M_{2 k}^{(n, \rho)} \geq n \mathrm{t}_{k} V_{2}^{2}\left(1+\frac{k V_{4}}{2 \rho V_{2}^{2}}+\frac{k V_{6}}{6 \rho^{2} V_{2}^{3}}+\ldots\right)
$$

for sufficiently large values of k because
$\mathrm{t}_{k}^{(3)}=\frac{(2 k)!}{(k-3)!(k+3)!}=\mathrm{t}_{k}\left(k-8-\frac{36 k+48}{k^{2}+5 k+6}\right)$.

Expression of the form $\frac{k V_{6}}{\rho^{2} V_{2}^{3}}$ means that the terms with V_{6} should disappear from the limiting expression for $n M_{2 k}^{(n, \rho)}$. The same could be true for the terms with V_{8}, V_{10}, \ldots
Conjecture. The limiting expression for $n M_{2 k}^{(n, \rho)}$ with $\rho_{n}=n^{2 / 3}$ contains the Wigner-GOE part (Wigner-GUE part for the case of Hermitian matrices) and the terms that involve V_{4}, but not $V_{2 k}, k \geq 3$.

VIII. 1 Beyond the threshold $n^{2 / 3}$

Let us try to imagine the picture for the strong dilution regime $\rho_{n} \ll n^{2 / 3}$. One can expect the following phenomena in the walks:

- the walks that have self-intersections of degree $\kappa=3$ disappear from the limiting $n M_{2 k}^{(n, \rho)}$;
- the walks that have simple self-intersections with broken tree structure disappear from the limiting $n M_{2 k}^{(n, \rho)}$;

Consequence: the difference between real symmetric and hermitian cases vanishes;

- if our V_{4}-conjecture is true, then the walks that have multiple edges $V_{2 l}$ with $l \geq 3$ disappear from the limiting expression for $n M_{2 k}^{(n, \rho)}$.

One could assume that the leading contribution to $n M_{2 k}^{(n, \rho)}$ is given by the tree-type walks with simple self-intersections only $(\kappa=2)$ that have 2- and 4-multiple edges.

VIII. 2 Basic walks for moments

Instead of the Catalan walks of $2 k$ steps, where each edge is passed two times (there and back), the walks with 2 - and 4 -multiple edges could play the role of the basic walks. So, the number of such basic walks is given by the number $\mathrm{T}_{k}=\mathrm{T}_{k}^{(2,4)}$ of these (2,4)-Catalan walks.

We can write that $T_{k}=R_{k}^{(0)}(\rho)$, where
$R_{k}^{(0)}=a \sum_{u=0}^{k-1} R_{k-1-u}^{(0)} R_{u}^{(0)}+\frac{b}{k} \sum_{u=0}^{k-2} R_{k-2-u}^{(1)} R_{u}^{(1)}$
with $a=V_{2}=v^{2}$ and $b=\chi V_{4}$.
This recurrent relation resembles the one for the semicircle moments $v^{2 k} \mathrm{t}_{k}$, but is in fact (much) more complicated.

Finally, to find the limiting expression for $\mathcal{L}_{\text {DRM }}$, one could try with

$$
\lim _{n, k \rightarrow \infty} n R_{k}^{(0)}(\rho), \quad \rho=\chi k
$$

VIII. 3 Equations for $R_{k}^{(m)}$

For $k \geq 1$ and $m \geq 1$, we have

$$
\begin{aligned}
R_{k}^{(m)} & =R_{k}^{(m-1)}+a \sum_{u=0}^{k-1} R_{k-1-u}^{(0)} R_{u}^{(m)} \\
& +\frac{b}{k} \sum_{u=0}^{k-2} R_{k-2-u}^{(1)} R_{u}^{(m+1)},
\end{aligned}
$$

where $a=v^{2}=V_{2}$ and $b=\chi V_{4}$.
In other terms,
$R_{k}^{(m)}=\sum_{r=0}^{k}(r+1)(r+2) \cdots(r+m) S(k, r) ;$
the numbers $S(k, r), 1 \leq r \leq k$ are uniquely determined by recurrence
$S(k, r)=a \underset{\sum_{u=0}^{k-r}}{\sum_{v=0}^{u} S(u, v) S(k-u-1, r-1)}$
$+\frac{b}{k} \sum_{u=0}^{k-r}(r-1) \sum_{v=0}^{u}(v+1) S(u, v) S(k-u-2, r-2)$.

