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We study the spectral norm (maximal eigenvalue Apax)
of n x n random real symmetric matrices H™?) whose
elements HZ-(}””O ), 1 < g are given by jointly independent
random variables, similarly to the well-known ensemble

of Wigner real symmetric matrices.

The difference between H ™) and the Wigner ensemble
is that Hz-(f’p ) is equal to 0 with probability 1 — p/n
(dilute version). The concentration parameter p = p,

represents the average number of non-zero elements per
row in H).

Our results show that in the asymptotic regime when
pn =n% n — oo, the value a = 2/3 is the critical one
with respect to the asymptotic behavior of A ax.



I.1. Dilute Wigner random matrices
(np) 1 (n,p) e
HZ-]- :\/ﬁaijbij 1 <1< <n,
where {a;;,7 < j} are jointly independent r.v.
with symmetric probability distribution and
b(n,p) ~ {1, with probability p/n
7|0, with probability 1 — p/n

independent r.v. also independent from a;;.

i) If p = n, then the matrix

gl L

1 \/ﬁ aij
represents the Wigner ensemble of real symmetric
random matrices;

i) 1 < pp, < n, dilute version of Wigner RM;

iii) pp, = O(1),n — oo, sparse RM.



[.2. Semi-circle law (Wigner law)

a) Normalized eigenvalue counting function (NCF)

on(A) = 711 it {j : A§-”> < A}

converges as n. — 00 to oy (A) with the density

d
d)\UW()\)

5 142 — N2 |A] < 20,

22

where v = Ea?; [E. Wigner, 1955).

L]
b) Spectral norm M, = maxk{\)\]im\} con-
verges to 2v [S. Geman, 1980; Z. Fiiredi and J. Komlds,
1981, V. Girko, 1988; Z.-D. Bai and Y. Q. Yin, 1988];

)\ggx% 2V as N — o0;

in particular,

P {A%@X > 20(1 + w)} — 0, > 0.



1.3 Dilution of random matrices

e Random graphs: symmetric random matrix

1, with probability p/n

Bij = 0, with probability 1 — p/n

is the adjacency matrix of random graph G, (Pp)
with n vertices and with the edge probability

P, =p/n

(P. Edés and A. Rényi, 1959; E. Gilbert, 1959)

e Theoretical physics: dilute and sparse disor-
dered systems

- [Rodgers-Bray, 1988]
- [Mirlin-Fyodorov, 1991]

e Necural networks theory

e ctcetera, ...



I.4 Semicircle law in dilute RM

In H"P) a number of bonds (connections)
between cites ¢ and j destroyed, the structure
of random matrix is changed.

However, if p,, — oo as n — oo, the Wigner
(or semicircle) law is still valid,

Tnon(A) = o (A)
with supp(ofy) = [—2v, 20]
- [Rodgers-Bray, 1988]
- [K., Khoruzhenko, Pastur, Shcherbina, 1992]
- |Cazati-Girko, 1992]

What about Aﬁ;’%) — 7 and

PN > 20(1 + xp)] 2



II. Critical value for the spectral norm

Theorem [K., Adv. Probab. 2001]
If pp, = (log n)Hﬁ; 8 >0, then
PN > 20(1+ )} — 0, 2> 0.

If pp, = (log n)l_ﬁl with 3’ > 0, then

I Amp) g
i M = oo

Conclusion: the value p;, = logn is critical for

(12,0n)

the asymptotic behavior of Amax .

Relation with the properties of large random
oraphs: the edge probability
P _ logn

n

n
is the critical one (a sharp threshold) with

respect to the connectedness of the random
graph G (FPp).



II1.1 Moments of random matrices
Since the works of E. Wigner, the moments
1 2k
My =B T (HW)", k=0,1,2,...
n

have been used to study the moments of oy, (),

In particular, . Wigner has shown that

(n) ok (K)o
Mo =0 e =0

k>

where t;. are the Catalan numbers.

The key idea of S. Geman | Ann. Probab., 1980
inspired by U. Grenander is that the limiting

behavior of A%X can be studied by means of
the high moments

nMéZi, n, kn, — 0.
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II1.2 High moments of Wigner RM

1) ky, = O(log n) [Geman, 1980; Bai-Yin, 198§
kn
MQ(ZZ < (U2(1 + 5)) tr,, kn=0O(logn)

implies that
P{)\I(ng > 20(1 +a:)} — 0 as n — oo;

2) ky, = O(nY/%) [Fiiredi-Komlés, 1981]
kp = O(n'/2), kp = o(n?/?)
'Ya. G. Sinai and A. Soshnikov, 1998]

3) kp = yn?/3, v > 0 [A. Soshnikov, 1999]:

My = L) = LGOBM)
where L£(x) does not depend on the details of
the probability distribution of a;;; as a corol-
lary, one gets

P {A&QX > 20 (1 + nzy/s)} < Gy (y), y > 0.

The border spectral scale is n=2/3
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IV.1 Dilute Wigner RM

Theorem (K., arXiv-2011, in preparation]
Let the probability law of a;; has a finite
support. Then

P {Ag@agw > % (1 4 Qy/g)} < G(y), y>0

for py, = n2/30+7) with any given v > 0.

Main technical results:

A) If pp, = n2/31+7) v > 0, then

lim sup nMQ(k’p”> < L(x), kp= Xn2/3.

n—)oo o

The upper bound L is universal in the sense

that it does not depend on higher moments
Vi, Vi, ..., where Vo = E|ai]~]2l, [ > 2

B) If pn = n2/3 and ky, = Xn2/3, then

nMéZ;Lp”) >l(x) (1+xVy), n— oo.
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IV.2 Critical value for border scale

Our results show that the value p, = n2/3

represents a critical value for the spectral prop-
erties at the border of the spectrum 2uv:

- if the dilution is weak, py > n2/ 3 then one
can expect that the local spectral properties
of Dilute RM are the same as for the Wigner
RM ensembles; these properties should be in-
dependent on the details of the probability dis-
tribution of a;;.

To prove: correlation function of the moments,
Moment version of IPR (K. arXiv, 2010)

- if the dilution is moderate, p, = O(n2/3),

then the asymptotic behavior of A@X will de-
pend on Vj = E]aij\ﬁf. The same can be true
for other local spectral characteristics.

- in the case of strong dilution, p, <K n2/ 3,
the spectral scale at the border 2v changes

from nzl/s to qbi)), with ¢(n) = logn (7)
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V. Relations with the Wigner RM

The value of v in p,, = n2/301+7) depends on

the moments Vo; = E\a,z-j|2l:
3
it V; < oo, then vy >e=——.
12+4-2¢ 8 6+ &

Inversely, if p,, = n2/ 3<1+7>, then the universal
<n7/072>

upper bound of nM; K, exists provided
3
o >— —0.
Y

For the Wigner ensemble, we have p, = n,
v = 1/2 and then ¢ > 0, in accordance with

the following generalization of earlier results
|A. Soshnikov, 1999

Theorem (K. 2012] If V995 exists for any
0 > 0, then for the Wigner RM,

n@loo n MSZZ — LGOE(X)? n — Xn2/37

where Lgop (07 Lays) does not depend on the
moments of Voi, | = 2,...,6 and on Viy 9.
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V1.1 Proof of the upper bound

The proot is based on the method of paper
K., Rand. Oper. Stoch. Egs. 2012], where a
modified and improved version of the approach
by Ya.G.Sinai and A. Soshnikov completed in
K. and Vengerovsky, arXiv, 2008] is presented.

Start point: E. Wigner’s representation of traces

nMyr. = % E {HZ - H

: 0501 19k —1 io}
7’07"'722]{7—1 ’ k ’

as a sum over 2k-step trajectories

Log = (40511, %9, - - -, T2k —2: log—1, i0)-
The family {Zs:.} can be separated into the

classes of equivalence determined by the num-
ber K of self-intersections of the trajectories.

When IC = 0, the classes are described by the
family Dy;. of the Dyck paths: discrete simple
walks of 2k steps in the upper half-plane that
start and end at 0. These are equivalent to the
rooted half-plane trees. The cardinality |Doyy|
is given by the Catalan number ty.
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V1.2 Technical questions

- Wigner RM, Sinai-Soshnikov approach: the
study of simple self-intersections (open ones;
Vi-direct); vertex of maximal exit degree ;

- K., Vengerovsky: proper and imported cells
at ; Brocken-Tree-Structure instants;

- K. Rand.Oper.Stoch.Eqs.: V -direct and in-
verse edges; generalization to the case of Vo,

- Dilute RM, K. 2012: detailed study of the
vertex 3 of maximal exit degree D:

D=di+...+dg, C{L:<dla---adl,)- (A)

The following statement improves the tools
used by Ya. G. Sinai and A. Soshnikov.

D-lemma. Denote by 77€(u>(cZL) the fam-
ily of Catalan trees of height u that have L
vertices of exit degrees dy, (A). Then

k

2 VB R < e Bl b,

1

where 1 = In(4/3) and B(y) is related with
the Brownian bridge.
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VII.1 Tree-type walks with multiple
edges

Each plane tree generates, by the chronological
run over it, a walk of 2k steps such that each
edge is passed exactly two times (there and
back). The number of these Catalan walks is

(2k)!
t) = k> 0.
TR+ TS

Lemma K. arXiv, 2012] Consider the fam-
ily of Catalan-type walks of 2k steps such that
there exists exactly one special edge passed
four times. Then its cardinality is given by

2) (2k)!

t;. = k> 2
BT k=2 (k+2)" T

with obvious equalities téz) = tgz) =

Remark. The cardinality of Catalan walks
with one colored edge is obviously equal to

(1) _ (2F)!
tk‘wk—mmk+nvk2L
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VII.2 Bound from below

Relation
(2) (2k)! ( B 3k )
T okt N ) b

shows that 1:/({2> > ktr./2, k > 4. This implies
the lower bound for the moments of H ).

Indeed,
ok
E(H")™ > nty VI + Vg2 LR

Z ntk V22 1+

kVy
2p V22 .

Therefore, if k£ = an/ 3 and p = n2/ 3 then
the estimate from below explicitly contains a

non-vanishing term yVy/2Vi.

This means that the estimate from above of
the moments of the dilute random matrices in
the asymptotic regime p = n2/3 is crucially

different from that in the regime p = o(n?/ 3).
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(2)

V1.3 Recurrent relations for t;.

The Catalan numbers t; are determined by
recurrence

= X tyte, k>1,

g utv=k—1 " o
to = 1; it can be obtained with the help of the
reduction of the ground step procedure.

A simple reasoning shows that

(2)
t. = > 2u 4+ 1) ty ty ty ts,
g u+v+r+s=k—2 ( ) s

for k > 2. The use of the generating function
(2)

of t; leads to the explicit expression for t;.”.

2k)!
Several first values of tg) - k — 2(>, ()k +2)

are as follows,
1, 6,28, 120, 495, ...

At present time, the N. Sloan’s encyclopedia of
integer sequences (OEIS) says nothing about
this sequence.
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V1.4 More about the sequences t]im>
Let us denote by t](fm), m > 1 the set of even
closed tree-type walks of 2k steps such that all
edges are passed two times (there and back)
and there exists one special edge passed 2m
times.

(QQuestion: what is the explicit form of t](;))?

u+vi+...4+v9,_1=k—m

Answer: it is not hard to show that

(3) _ (2k)
R Y ey

It is natural to assume that for any m > 1,

(m) _ (2F)!
tk"w—myw+mﬂ’k2m‘
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VIL5 Why to study t\" ?

In the regime p = n?/ 3. the estimate from
below of the moments involves the terms

+ + ...
20V5  6p? V5

(B)

kEV. kE Vi
nMQCZ’p) > nty. V22 (1 + ! b )

for sufficiently large values of k£ because

(3) _ (2F)! _
BT k=3 ka3

36k + 48
k@—g— - )

k2 4+ 5k +6)

Expression of the form % means that the
3

terms with Vi should disappear from the lim-

iting expression for n MZ(Z’[) ). The same could

be true for the terms with Vg, Vip, .. ..

Conjecture. The limiting expression for nMéZ’p )
with p, = n2/3 contains the Wigner-GOE
part (Wigner-GUE part for the case of Her-

mitian matrices) and the terms that involve
Vy, but not Vo, k > 3.
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VIII.1 Beyond the threshold n?/3

Let us try to imagine the picture for the strong
dilution regime p, < n2/3. One can expect
the following phenomena in the walks:

e the walks that have self-intersections of de-

gree Kk = 3 disappear from the limiting n MQ(Z’p ).

e the walks that have simple self-intersections
with broken tree structure disappear from the
limiting n M2<Z"0>;
Consequence: the difference between
real symmetric and hermitian cases
vanishes:

e if our Vj-conjecture is true, then the walks
that have multiple edges Vo; with [ > 3 disap-

pear from the limiting expression for n MéZ’p >.

One could assume that the leading contribu-

tion to n MQ(Z’p ) 1s given by the tree-type walks
with simple self-intersections only (k = 2) that
have 2- and 4-multiple edges.

19
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VI1II.2 Basic walks for moments

Instead of the Catalan walks of 2k steps, where
each edge is passed two times (there and back),
the walks with 2- and 4-multiple edges could
play the role of the basic walks. So, the num-
ber of such basic walks is given by the number

T} :T]EZQ’ ) of these (2, 4)-Catalan walks.

We can write that T = 113;{0)@)7 where

b k=2 _(1)

RO+ Z " R

1
U L u=0 k2uR<>

k—1
Ry —a's R

with @ = Vo = v? and b = YV},

This recurrent relation resembles the one for
the semicircle moments v2* tz., but is in fact
(much) more complicated.

Finally, to find the limiting expression for Ly,
one could try with

lim nR,({())(p), p = xk.

n,k—00
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VIII.3 Equations for R]im

For kK > 1 and m > 1, we have

_ k—1
RV =R o s R RO
U=
b k-2 (1
i k uEO R/(€—>2—u R&m+1>v

where a = v? = Vh and b = YV

In other terms,

R =

r

| M=
-

(r+1)(r+2)---(r+m)S(k,r);

the numbers S(k,r), 1 < r < k are uniquely
determined by recurrence

k—
S(k,r)=a S S(u,v)S(k—u—1,r—1)
u=0 v=0

b k-
+- " (r=1) % (v+1) S(u, v) S(k—u—2,7—2).
k u=0 v=0
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