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We study the spectral norm (maximal eigenvalue λmax)
of n× n random real symmetric matrices H(n,ρ) whose

elements H
(n,ρ)
ij , i ≤ j are given by jointly independent

random variables, similarly to the well-known ensemble
of Wigner real symmetric matrices.

The difference between H(n,ρ) and the Wigner ensemble

is that H
(n,ρ)
ij is equal to 0 with probability 1 − ρ/n

(dilute version). The concentration parameter ρ = ρn
represents the average number of non-zero elements per
row in H(n,ρ).

Our results show that in the asymptotic regime when
ρn = nα, n→∞, the value α = 2/3 is the critical one
with respect to the asymptotic behavior of λmax.
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I.1. Dilute Wigner random matrices

H
(n,ρ)
ij =

1
√
ρ
aij b

(n,ρ)
ij , 1 ≤ i ≤ j ≤ n,

where {aij, i ≤ j} are jointly independent r.v.
with symmetric probability distribution and

b
(n,ρ)
ij =


1, with probability ρ/n
0, with probability 1− ρ/n

independent r.v. also independent from aij.

i) If ρ = n, then the matrix

H
(n)
ij =

1√
n
aij

represents the Wigner ensemble of real symmetric
random matrices;

ii) 1� ρn� n, dilute version of Wigner RM;

iii) ρn = O(1), n→∞, sparse RM.
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I.2. Semi-circle law (Wigner law)

a) Normalized eigenvalue counting function (NCF)

σn(λ) =
1

n
#

j : λ
(n)
j ≤ λ



converges as n→∞ to σW (λ) with the density

d

dλ
σW (λ) =

1

2πv2

√
4v2 − λ2, |λ| ≤ 2v,

where v2 = Ea2
ij [E. Wigner, 1955].

b) Spectral norm λ
(n)
max = maxk{|λ

(n)
k |} con-

verges to 2v [S. Geman, 1980; Z. Füredi and J. Komlós,

1981, V. Girko, 1988; Z.-D. Bai and Y. Q. Yin, 1988];

λ(n)
max→ 2v as n→∞;

in particular,

P
λ(n)

max ≥ 2v(1 + x)
→ 0, x > 0.
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I.3 Dilution of random matrices

• Random graphs: symmetric random matrix

Bij =


1, with probability ρ/n
0, with probability 1− ρ/n

is the adjacency matrix of random graphGn(Pn)
with n vertices and with the edge probability

Pn = ρ/n

(P. Edős and A. Rényi, 1959; E. Gilbert, 1959)

• Theoretical physics: dilute and sparse disor-
dered systems

- [Rodgers-Bray, 1988]

- [Mirlin-Fyodorov, 1991]

• Neural networks theory

• etcetera, ...
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I.4 Semicircle law in dilute RM

In H(n,ρ) a number of bonds (connections)
between cites i and j destroyed, the structure
of random matrix is changed.

However, if ρn → ∞ as n → ∞, the Wigner
(or semicircle) law is still valid,

σn,ρn(λ)→ σW (λ)

with supp(σ′W ) = [−2v, 2v]

- [Rodgers-Bray, 1988]

- [K., Khoruzhenko, Pastur, Shcherbina, 1992]

- [Cazati-Girko, 1992]

- ...

What about λ
(n,ρ)
max → ? and

P
λ(n,ρ)

max > 2v(1 + xn)
 ?
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II. Critical value for the spectral norm

Theorem [K., Adv. Probab. 2001]

If ρn = (log n)1+β, β > 0, then

P
λ(n,ρ)

max > 2v(1 + x)
→ 0, x > 0.

If ρn = (log n)1−β′ with β′ > 0, then

lim sup
n→∞

λ(n,ρ)
max = +∞.

Conclusion: the value ρ∗n = log n is critical for

the asymptotic behavior of λ
(n,ρn)
max .

Relation with the properties of large random
graphs: the edge probability

P ∗n =
log n

n
is the critical one (a sharp threshold) with
respect to the connectedness of the random
graph Gn(Pn).
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III.1 Moments of random matrices

Since the works of E. Wigner, the moments

M
(n)
2k = E

1

n
Tr

H(n)
2k

, k = 0, 1, 2, . . .

have been used to study the moments of σn(λ),

M
(n)
2k = E

1

n

n∑
j=1

λ(n)
j

2k
= E

∫
λ2k dσn(λ).

In particular, E. Wigner has shown that

M
(n)
2k → v2k (2k)!

k!(k + 1)!
= v2k tk,

where tk are the Catalan numbers.

The key idea of S. Geman [Ann.Probab., 1980]
inspired by U. Grenander is that the limiting

behavior of λ
(n)
max can be studied by means of

the high moments

nM
(n)
2kn
, n, kn→∞.
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III.2 High moments of Wigner RM

1) kn = O(log n) [Geman, 1980; Bai-Yin, 1988]

M
(n)
2kn
≤

v2(1 + ε)
kn tkn, kn = O(log n)

implies that

P
λ(n)

max > 2v(1 + x)
→ 0 as n→∞;

2) kn = O(n1/6) [Füredi-Komlós, 1981]

kn = O(n1/2), kn = o(n2/3)
[Ya. G. Sinai and A. Soshnikov, 1998]

3) kn = χn2/3, χ > 0 [A. Soshnikov, 1999]:

nM
(n)
2kn
→ L(χ) = LGOE(χ),

where L(χ) does not depend on the details of
the probability distribution of aij; as a corol-
lary, one gets

P
λ

(n)
max > 2v

1 +
y

n2/3


 ≤ Gχ(y), y > 0.

The border spectral scale is n−2/3.
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IV.1 Dilute Wigner RM

Theorem [K., arXiv-2011, in preparation]
Let the probability law of aij has a finite
support. Then

P
λ

(n,ρn)
max > 2v

1 +
y

n2/3


 ≤ Gχ(y), y > 0

for ρn = n2/3(1+γ) with any given γ > 0.

Main technical results:

A) If ρn = n2/3(1+γ), γ > 0, then

lim sup
n→∞

nM
(n,ρn)
2kn

≤ L(χ), kn = χn2/3.

The upper bound L is universal in the sense
that it does not depend on higher moments
V4, V6, . . ., where V2l = E|aij|2l, l ≥ 2.

B) If ρn = n2/3 and kn = χn2/3, then

nM
(n,ρn)
2kn

≥ `(χ) (1 + χV4) , n→∞.
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IV.2 Critical value for border scale

Our results show that the value ρn = n2/3

represents a critical value for the spectral prop-
erties at the border of the spectrum 2v:

- if the dilution is weak, ρn � n2/3, then one
can expect that the local spectral properties
of Dilute RM are the same as for the Wigner
RM ensembles; these properties should be in-
dependent on the details of the probability dis-
tribution of aij.

To prove: correlation function of the moments,
Moment version of IPR (K. arXiv, 2010)

- if the dilution is moderate, ρn = O(n2/3),

then the asymptotic behavior of λ
(n)
max will de-

pend on V4 = E|aij|4. The same can be true
for other local spectral characteristics.

- in the case of strong dilution, ρn � n2/3,
the spectral scale at the border 2v changes

from 1
n2/3 to φ(n)

ρ , with φ(n) = log n (?)
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V. Relations with the Wigner RM

The value of γ in ρn = n2/3(1+γ) depends on
the moments V2l = E|aij|2l:

if V12+2φ <∞, then γ > ε =
3

6 + φ
.

Inversely, if ρn = n2/3(1+γ), then the universal

upper bound of nM
(n,ρn)
2kn

exists provided

φ >
3

γ
− 6.

For the Wigner ensemble, we have ρn = n,
γ = 1/2 and then φ > 0, in accordance with
the following generalization of earlier results
[A. Soshnikov, 1999];

Theorem [K. 2012] If V12+2δ exists for any
δ > 0, then for the Wigner RM,

lim
n→∞ nM

(n)
2kn

= LGOE(χ), kn = χn2/3,

where LGOE (or LGUE) does not depend on the
moments of V2l, l = 2, ..., 6 and on V12+2δ.
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VI.1 Proof of the upper bound

The proof is based on the method of paper
[K., Rand. Oper. Stoch. Eqs. 2012], where a
modified and improved version of the approach
by Ya.G.Sinai and A. Soshnikov completed in
[K. and Vengerovsky, arXiv, 2008] is presented.

Start point: E. Wigner’s representation of traces

nM2k =
∑

i0,...,i2k−1

E
Hi0,i1 · · ·Hi2k−1,i0



as a sum over 2k-step trajectories

I2k = (i0, i1, i2, . . . , i2k−2, i2k−1, i0).

The family {I2k} can be separated into the
classes of equivalence determined by the num-
ber K of self-intersections of the trajectories.

When K = 0, the classes are described by the
family D2k of the Dyck paths: discrete simple
walks of 2k steps in the upper half-plane that
start and end at 0. These are equivalent to the
rooted half-plane trees. The cardinality |D2k|
is given by the Catalan number tk.
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VI.2 Technical questions
- Wigner RM, Sinai-Soshnikov approach: the
study of simple self-intersections (open ones;
V4-direct); vertex of maximal exit degree β;

- K., Vengerovsky: proper and imported cells
at β; Brocken-Tree-Structure instants;

- K. Rand.Oper.Stoch.Eqs.: V4-direct and in-
verse edges; generalization to the case of V2k

- Dilute RM, K. 2012: detailed study of the
vertex β of maximal exit degree D;

D = d1 + . . .+ dL, d̄L = (d1, . . . , dL). (A)

The following statement improves the tools
used by Ya. G. Sinai and A. Soshnikov.

D-lemma. Denote by T (u)
k (d̄L) the fam-

ily of Catalan trees of height u that have L
vertices of exit degrees d̄L (A). Then

k∑
u=1

eχu/
√
k |T (u)

k (d̄L)| ≤ Le−ηD B(χ) tk,

where η = ln(4/3) and B(χ) is related with
the Brownian bridge.
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VII.1 Tree-type walks with multiple
edges

Each plane tree generates, by the chronological
run over it, a walk of 2k steps such that each
edge is passed exactly two times (there and
back). The number of these Catalan walks is

tk =
(2k)!

k! (k + 1)!
, k ≥ 0.

Lemma [K.,arXiv, 2012] Consider the fam-
ily of Catalan-type walks of 2k steps such that
there exists exactly one special edge passed
four times. Then its cardinality is given by

t
(2)
k =

(2k)!

(k − 2)! (k + 2)!
, k ≥ 2,

with obvious equalities t
(2)
0 = t

(2)
1 = 0.

Remark. The cardinality of Catalan walks
with one colored edge is obviously equal to

t
(1)
k =

(2k)!

(k − 1)! (k + 1)!
, k ≥ 1.
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VII.2 Bound from below

Relation

t
(2)
k =

(2k)!

(k − 2)! (k + 2)!
=

k −
3k

k + 2

 tk

shows that t
(2)
k ≥ k tk/2, k ≥ 4. This implies

the lower bound for the moments of H(n,ρn).

Indeed,

E
H(n,ρn)

2k
≥ ntk V

2
2 + nV k−2

2 · V4

ρ
· t(2)
k

≥ ntk V
2

2

1 +
k V4

2ρ V 2
2

 .

Therefore, if k = χn2/3 and ρ = n2/3, then
the estimate from below explicitly contains a
non-vanishing term χV4/2V 2

2 .

This means that the estimate from above of
the moments of the dilute random matrices in
the asymptotic regime ρ = n2/3 is crucially
different from that in the regime ρ = o(n2/3).
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VI.3 Recurrent relations for t
(2)
k

The Catalan numbers tk are determined by
recurrence

tk =
∑

u+v=k−1
tu tv, k ≥ 1,

t0 = 1; it can be obtained with the help of the
reduction of the ground step procedure.

A simple reasoning shows that

t
(2)
k =

∑
u+v+r+s=k−2

(2u + 1) tu tv tr ts ,

for k ≥ 2. The use of the generating function

of tk leads to the explicit expression for t
(2)
k .

Several first values of t
(2)
k =

(2k)!

(k − 2)! (k + 2)!
are as follows,

1, 6 , 28, 120, 495, . . .

At present time, the N. Sloan’s encyclopedia of
integer sequences (OEIS) says nothing about
this sequence.
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VI.4 More about the sequences t
(m)
k

Let us denote by t
(m)
k , m ≥ 1 the set of even

closed tree-type walks of 2k steps such that all
edges are passed two times (there and back)
and there exists one special edge passed 2m
times.

Question: what is the explicit form of t
(3)
k ?

t
(m)
k =

∑
u+v1+...+v2m−1=k−m

(2u+1)tutv1 · · · tv2m−1.

Answer: it is not hard to show that

t
(3)
k =

(2k)!

(k − 3)! (k + 3)!
, k ≥ m ≥ 3.

It is natural to assume that for any m ≥ 1,

t
(m)
k =

(2k)!

(k −m)! (k + m)!
, k ≥ m.
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VII.5 Why to study t
(m)
k ?

In the regime ρ = n2/3, the estimate from
below of the moments involves the terms

nM
(n,ρ)
2k ≥ ntk V

2
2

1 +
k V4

2ρ V 2
2

+
k V6

6ρ2 V 3
2

+ . . .


(B)

for sufficiently large values of k because

t
(3)
k =

(2k)!

(k − 3)! (k + 3)!
= tk

k − 8− 36k + 48

k2 + 5k + 6

 .

Expression of the form k V6
ρ2 V 3

2
means that the

terms with V6 should disappear from the lim-

iting expression for nM
(n,ρ)
2k . The same could

be true for the terms with V8, V10, . . ..

Conjecture. The limiting expression for nM
(n,ρ)
2k

with ρn = n2/3 contains the Wigner-GOE
part (Wigner-GUE part for the case of Her-
mitian matrices) and the terms that involve
V4, but not V2k, k ≥ 3.
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VIII.1 Beyond the threshold n2/3

Let us try to imagine the picture for the strong
dilution regime ρn � n2/3. One can expect
the following phenomena in the walks:

• the walks that have self-intersections of de-
gree κ = 3 disappear from the limiting nM

(n,ρ)
2k ;

• the walks that have simple self-intersections
with broken tree structure disappear from the

limiting nM
(n,ρ)
2k ;

Consequence: the difference between
real symmetric and hermitian cases
vanishes;

• if our V4-conjecture is true, then the walks
that have multiple edges V2l with l ≥ 3 disap-

pear from the limiting expression for nM
(n,ρ)
2k .

One could assume that the leading contribu-

tion to nM
(n,ρ)
2k is given by the tree-type walks

with simple self-intersections only (κ = 2) that
have 2- and 4-multiple edges.
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VIII.2 Basic walks for moments

Instead of the Catalan walks of 2k steps, where
each edge is passed two times (there and back),
the walks with 2- and 4-multiple edges could
play the role of the basic walks. So, the num-
ber of such basic walks is given by the number

Tk =T
(2,4)
k of these (2, 4)-Catalan walks.

We can write that Tk = R
(0)
k (ρ), where

R
(0)
k = a

k−1∑
u=0

R
(0)
k−1−uR

(0)
u +

b

k

k−2∑
u=0

R
(1)
k−2−uR

(1)
u

with a = V2 = v2 and b = χV4.

This recurrent relation resembles the one for
the semicircle moments v2k tk, but is in fact
(much) more complicated.

Finally, to find the limiting expression forLDRM,
one could try with

lim
n,k→∞

nR
(0)
k (ρ), ρ = χk.
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VIII.3 Equations for R
(m)
k

For k ≥ 1 and m ≥ 1, we have

R
(m)
k = R

(m−1)
k + a

k−1∑
u=0

R
(0)
k−1−uR

(m)
u

+
b

k

k−2∑
u=0

R
(1)
k−2−uR

(m+1)
u ,

where a = v2 = V2 and b = χV4.

In other terms,

R
(m)
k =

k∑
r=0

(r+ 1)(r+ 2) · · · (r+m)S(k, r);

the numbers S(k, r), 1 ≤ r ≤ k are uniquely
determined by recurrence

S(k, r) = a
k−r∑
u=0

u∑
v=0

S(u, v)S(k−u−1, r−1)

+
b

k

k−r∑
u=0

(r−1)
u∑
v=0

(v+1) S(u, v)S(k−u−2, r−2).
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