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Introduction

Motivation: Large-scale Matrix Completion

Goal: Estimate a matrix L0 ∈ Rm×n given a subset of its entries ? ? 1 . . . 4
3 ? ? . . . ?
? 5 ? . . . 5

→
 2 3 1 . . . 4

3 4 5 . . . 1
2 5 3 . . . 5


Examples

Collaborative filtering: How will user i rate movie j?

Netflix: 10 million users, 100K DVD titles

Ranking on the web: Is URL j relevant to user i?

Google News: millions of articles, millions of users

Link prediction: Is user i friends with user j?

Facebook: 500 million users
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Introduction

Motivation: Large-scale Matrix Completion

Goal: Estimate a matrix L0 ∈ Rm×n given a subset of its entries ? ? 1 . . . 4
3 ? ? . . . ?
? 5 ? . . . 5

→
 2 3 1 . . . 4

3 4 5 . . . 1
2 5 3 . . . 5


State of the art MC algorithms

Strong estimation guarantees

Plagued by expensive subroutines (e.g., truncated SVD)

This talk

Present divide and conquer approaches for scaling up any MC
algorithm while maintaining strong estimation guarantees
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Matrix Completion Background

Exact Matrix Completion

Goal: Estimate a matrix L0 ∈ Rm×n given a subset of its entries
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Matrix Completion Background

Noisy Matrix Completion

Goal: Given entries from a matrix M = L0 + Z ∈ Rm×n where Z is
entrywise noise and L0 has rank r� m,n, estimate L0

Good news: L0 has ∼ (m+ n)r � mn degrees of freedom

L0 = A

B>

Factored form: AB> for A ∈ Rm×r and B ∈ Rn×r

Bad news: Not all low-rank matrices can be recovered

Question: What can go wrong?
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Matrix Completion Background

What can go wrong?

Entire column missing 1 2 ? 3 . . . 4
3 5 ? 4 . . . 1
2 5 ? 2 . . . 5


No hope of recovery!

Solution: Uniform observation model

Assume that the set of s observed entries Ω is drawn uniformly at
random:

Ω ∼ Unif(m,n, s)
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Matrix Completion Background

What can go wrong?

Bad spread of information

L =

1
0
0

[1][1 0 0
]

=

1 0 0
0 0 0
0 0 0


Can only recover L if L11 is observed

Solution: Incoherence with standard basis (Candès and Recht, 2009)

A matrix L = UΣV> ∈ Rm×n with rank(L) = r is (µ, r)-coherent if

Singular vectors are not too sparse:

{
maxi ‖UU>ei‖

2 ≤ µr/m

maxi ‖VV>ei‖
2 ≤ µr/n

and not too cross-correlated:‖UV>‖∞ ≤
√

µr

mn
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Matrix Completion Background

How do we estimate L0?

First attempt:

minimizeA rank(A)

subject to
∑

(i,j)∈Ω(Aij −Mij)
2 ≤ ∆2.

Problem: Intractable to solve!

Solution: Solve convex relaxation (Fazel, Hindi, and Boyd, 2001; Candès and

Plan, 2010)

minimizeA ‖A‖∗
subject to

∑
(i,j)∈Ω(Aij −Mij)

2 ≤ ∆2

where ‖A‖∗ =
∑

k σk(A) is the trace/nuclear norm of A.

Questions:

Will the nuclear norm heuristic successfully recover L0?

Can nuclear norm minimization scale to large MC problems?
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Matrix Completion Background

Noisy Nuclear Norm Heuristic: Does it work?

Yes, with high probability.

Typical Theorem

If L0 is (µ, r)-coherent, s = O(µrn log2(n)) entries of M ∈ Rm×n

are observed uniformly at random, and L̂ solves the noisy nuclear
norm heuristic, then

‖L̂− L0‖F ≤ f(m,n)∆

with high probability when ‖M− L0‖F ≤ ∆.

See Candès and Plan (2010); Mackey, Talwalkar, and Jordan
(2011); Keshavan, Montanari, and Oh (2010); Negahban and
Wainwright (2010)

Implies exact recovery in the noiseless setting (∆ = 0)
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Matrix Completion Background

Noisy Nuclear Norm Heuristic: Does it scale?

Not quite...

Standard interior point methods (Candès and Recht, 2009):
O(|Ω|(m+ n)3 + |Ω|2(m+ n)2 + |Ω|3)

More efficient, tailored algorithms:

Singular Value Thresholding (SVT) (Cai, Candès, and Shen, 2010)

Augmented Lagrange Multiplier (ALM) (Lin, Chen, Wu, and Ma, 2009)

Accelerated Proximal Gradient (APG) (Toh and Yun, 2010)

All require rank-k truncated SVD on every iteration

Take away: Provably accurate MC algorithms are still too expensive
for large-scale or real-time matrix completion

Question: How can we scale up a given matrix completion algorithm
and still retain estimation guarantees?
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Matrix Completion DFC

Divide-Factor-Combine (DFC)

Our Solution: Divide and conquer

1 Divide M into submatrices.

2 Factor each submatrix in parallel.

3 Combine submatrix estimates to estimate L0.

Advantages

Factoring a submatrix is often much cheaper than factoring M

Multiple submatrix factorizations can be carried out in parallel

DFC works with any base MC algorithm

With the right choice of division and recombination, yields
estimation guarantees comparable to those of the base algorithm
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Matrix Completion DFC

DFC-Proj: Partition and Project

1 Randomly partition M into n/l column submatrices
M =

[
C1 C2 · · · Cn/l

]
where each Ci ∈ Rm×l

2 Complete the submatrices in parallel to obtain[
Ĉ1 Ĉ2 · · · Ĉn/l

]
Reduced cost: Expect min(n/l,m/d) speed-up per iteration
Parallel computation: Pay cost of one cheaper MC

3 Recover a single factorization for M by projecting each
submatrix onto the column space of Ĉ1

L̂proj = Ĉ1Ĉ
+
1

[
Ĉ1 Ĉ2 · · · Ĉn/l

]
Minimal cost: O(mk2 + lk2) where k = rank(L̂proj)

4 Ensemble: Project onto column space of each Ĉj and average
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Matrix Completion DFC

DFC: Does it work?

Yes, with high probability.

Theorem (Mackey, Talwalkar, and Jordan, 2011)

If L0 is (µ, r)-coherent and s entries of M ∈ Rm×n are observed
uniformly at random, then

l = O

(
µ2r2n2 log2(n)

sε2

)
random columns suffice to have

‖L̂proj − L0‖F ≤ (2 + ε)f(m,n)∆

with high probability when ‖M− L0‖F ≤ ∆ and the noisy nuclear
norm heuristic is used as a base algorithm.

Can sample vanishingly small fraction of columns (l/n→ 0)
whenever s = ω(n log2(n))
Implies exact recovery for noiseless (∆ = 0) setting
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Matrix Completion DFC

DFC: Does it work?

Yes, with high probability.

Proof Ideas:

1 Uniform column/row sampling yields submatrices with low
coherence (high spread of information) w.h.p.

2 Each submatrix has sufficiently many observed entries w.h.p.

⇒ Submatrix completion succeeds
3 Uniform sampling of columns/rows captures the full column/row

space of L0 w.h.p.

Noisy analysis builds on randomized `2 regression work of
Drineas, Mahoney, and Muthukrishnan (2008)

⇒ Column projection succeeds
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Matrix Completion Simulations

DFC Noisy Recovery Error
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Figure: Recovery error of DFC relative to base algorithms with
(m = 10K, r = 10).
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Matrix Completion Simulations

DFC Speed-up
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Figure: Speed-up over APG for random matrices with r = 0.001m and
4% of entries revealed.
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Matrix Completion CF

Application: Collaborative filtering

Task: Given a sparsely observed matrix of user-item ratings, predict
the unobserved ratings

Issues

Full-rank rating matrix

Noisy, non-uniform observations

The Data

Netflix Prize Dataset1

100 million ratings in {1, . . . , 5}
17,770 movies, 480,189 users

1http://www.netflixprize.com/
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Matrix Completion CF

Application: Collaborative filtering

Method
Netflix

RMSE Time

APG 0.8433 2653.1s

DFC-Proj-25% 0.8436 689.5s
DFC-Proj-10% 0.8484 289.7s
DFC-Proj-Ens-25% 0.8411 689.5s
DFC-Proj-Ens-10% 0.8433 289.7s
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Part II

Stein’s Method for Matrix
Concentration Inequalities
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Motivation

Concentration Inequalities

Matrix concentration

P{‖X − EX‖ ≥ t} ≤ δ

P{λmax(X − EX) ≥ t} ≤ δ

Non-asymptotic control of random matrices with complex
distributions

Applications

Matrix estimation from sparse random measurements
(Gross, 2011; Recht, 2009; Mackey, Talwalkar, and Jordan, 2011)

Randomized matrix multiplication and factorization
(Drineas, Mahoney, and Muthukrishnan, 2008; Hsu, Kakade, and Zhang, 2011b)

Convex relaxation of robust or chance-constrained optimization
(Nemirovski, 2007; So, 2011; Cheung, So, and Wang, 2011)

Random graph analysis (Christofides and Markström, 2008; Oliveira, 2009)
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Motivation

Concentration Inequalities

Matrix concentration

P{λmax(X − EX) ≥ t} ≤ δ

Difficulty: Matrix multiplication is not commutative

Past approaches (Oliveira, 2009; Tropp, 2011; Hsu, Kakade, and Zhang, 2011a)

Deep results from matrix analysis

Sums of independent matrices and matrix martingales

This work

Stein’s method of exchangeable pairs (1972), as advanced by
Chatterjee (2007) for scalar concentration

⇒ Improved exponential tail inequalities (Hoeffding, Bernstein)
⇒ Polynomial moment inequalities (Khintchine, Rosenthal)
⇒ Dependent sums and more general matrix functionals
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Motivation

Roadmap

3 Motivation

4 Stein’s Method Background and Notation

5 Exponential Tail Inequalities

6 Polynomial Moment Inequalities

7 Extensions
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Background

Notation

Hermitian matrices: Hd = {A ∈ Cd×d : A = A∗}
All matrices in this talk are Hermitian.

Maximum eigenvalue: λmax(·)

Trace: trB, the sum of the diagonal entries of B

Spectral norm: ‖B‖, the maximum singular value of B

Schatten p-norm: ‖B‖p :=
(

tr|B|p
)1/p

for p ≥ 1
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Background

Matrix Stein Pair

Definition (Exchangeable Pair)

(Z,Z ′) is an exchangeable pair if (Z,Z ′)
d
= (Z ′, Z).

Definition (Matrix Stein Pair)

Let (Z,Z ′) be an auxiliary exchangeable pair, and let Ψ : Z → Hd

be a measurable function. Define the random matrices

X := Ψ(Z) and X ′ := Ψ(Z ′).

(X,X ′) is a matrix Stein pair with scale factor α ∈ (0, 1] if

E[X ′ |Z] = (1− α)X.

Matrix Stein pairs are exchangeable pairs

Matrix Stein pairs always have zero mean
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Background

The Conditional Variance

Definition (Conditional Variance)

Suppose that (X,X ′) is a matrix Stein pair with scale factor α,
constructed from the exchangeable pair (Z,Z ′). The conditional
variance is the random matrix

∆X := ∆X(Z) :=
1

2α
E
[
(X −X ′)2 |Z

]
.

∆X is a stochastic estimate for the variance, EX2

Control over ∆X yields control over λmax(X)
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Exponential Tail Inequalities

Exponential Concentration for Random Matrices

Theorem (Mackey, Jordan, Chen, Farrell, and Tropp, 2012)

Let (X,X ′) be a matrix Stein pair with X ∈ Hd. Suppose that

∆X 4 cX + v I almost surely for c, v ≥ 0.

Then, for all t ≥ 0,

P{λmax(X) ≥ t} ≤ d · exp

{
−t2

2v + 2ct

}
.

Control over the conditional variance ∆X yields

Gaussian tail for λmax(X) for small t, Poisson tail for large t

When d = 1, reduces to scalar result of Chatterjee (2007)

The dimensional factor d cannot be removed
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Exponential Tail Inequalities

Application: Matrix Hoeffding Inequality

Corollary (Mackey, Jordan, Chen, Farrell, and Tropp, 2012)

Let (Yk)k≥1 be independent matrices in Hd satisfying

EYk = 0 and Y 2
k 4 A2

k

for deterministic matrices (Ak)k≥1. Define the variance parameter

σ2 :=
1

2

∥∥∥∑
k

(
A2
k + EY 2

k

)∥∥∥.
Then, for all t ≥ 0,

P
{
λmax

(∑
k
Yk

)
≥ t
}
≤ d · e−t2/2σ2

.

Improves upon the matrix Hoeffding inequality of Tropp (2011)
Optimal constant 1/2 in the exponent
Variance parameter σ2 smaller than the bound

∥∥∑
kA

2
k

∥∥
Tighter than classical Hoeffding inequality (1963) when d = 1
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Exponential Tail Inequalities

Exponential Concentration: Proof Sketch

1. Matrix Laplace transform method (Ahlswede & Winter, 2002)

Relate tail probability to the trace of the mgf of X

P{λmax(X) ≥ t} ≤ inf
θ>0

e−θt ·m(θ)

where m(θ) := E tr eθX

How to bound the trace mgf?

Past approaches: Golden-Thompson, Lieb’s concavity theorem

Chatterjee’s strategy for scalar concentration

Control mgf growth by bounding derivative

m′(θ) = E trXeθX for θ ∈ R.

Rewrite using exchangeable pairs
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Exponential Tail Inequalities

Method of Exchangeable Pairs

Lemma

Suppose that (X,X ′) is a matrix Stein pair with scale factor α. Let
F : Hd → Hd be a measurable function satisfying

E‖(X −X ′)F (X)‖ <∞.
Then

E[X F (X)] =
1

2α
E[(X −X ′)(F (X)− F (X ′))]. (1)

Intuition

Can characterize the distribution of a random matrix by
integrating it against a class of test functions F

Eq. 1 allows us to estimate this integral using the smoothness
properties of F and the discrepancy X −X ′
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Exponential Tail Inequalities

Exponential Concentration: Proof Sketch

2. Method of Exchangeable Pairs

Rewrite the derivative of the trace mgf

m′(θ) = E trXeθX =
1

2α
E tr

[
(X −X ′)

(
eθX − eθX

′)]
.

Goal: Use the smoothness of F (X) = eθX to bound the derivative
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Exponential Tail Inequalities

Mean Value Trace Inequality

Lemma (Mackey, Jordan, Chen, Farrell, and Tropp, 2012)

Suppose that g : R→ R is a weakly increasing function and that
h : R→ R is a function whose derivative h′ is convex. For all
matrices A,B ∈ Hd, it holds that

tr[(g(A)− g(B)) · (h(A)− h(B))] ≤
1

2
tr[(g(A)− g(B)) · (A−B) · (h′(A) + h′(B))].

Standard matrix functions: If g : R→ R, then

g(A) := Q

g(λ1) . . .

g(λd)

Q∗ when A := Q

λ1 . . .

λd

Q∗

Inequality does not hold without the trace

For exponential concentration we let g(A) = A and h(B) = eθB
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Exponential Tail Inequalities

Exponential Concentration: Proof Sketch

3. Mean Value Trace Inequality

Bound the derivative of the trace mgf

m′(θ) =
1

2α
E tr

[
(X −X ′)

(
eθX − eθX

′)]
≤ θ

4α
E tr

[
(X −X ′)2 ·

(
eθX + eθX

′)]
= θ · E tr

[
∆X eθX

]
.

4. Conditional Variance Bound: ∆X 4 cX + v I

Yields differential inequality

m′(θ) ≤ cθ ·m′(θ) + vθ ·m(θ).

Solve to bound m(θ) and thereby bound P{λmax(X) ≥ t}
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Polynomial Moment Inequalities

Polynomial Moments for Random Matrices

Theorem (Mackey, Jordan, Chen, Farrell, and Tropp, 2012)

Let p = 1 or p ≥ 1.5. Suppose that (X,X ′) is a matrix Stein pair
where E‖X‖2p

2p <∞. Then(
E‖X‖2p

2p

)1/2p ≤
√

2p− 1 ·
(
E‖∆X‖pp

)1/2p
.

Moral: The conditional variance controls the moments of X

Generalizes Chatterjee’s version (2007) of the scalar
Burkholder-Davis-Gundy inequality (Burkholder, 1973)

See also Pisier & Xu (1997); Junge & Xu (2003, 2008)

Proof techniques mirror those for exponential concentration

Also holds for infinite dimensional Schatten-class operators

Jordan (UC Berkeley) Matrix Completion and Concentration February 21, 2012 34 / 39



Polynomial Moment Inequalities

Application: Matrix Khintchine Inequality

Corollary (Mackey, Jordan, Chen, Farrell, and Tropp, 2012)

Let (εk)k≥1 be an independent sequence of Rademacher random
variables and (Ak)k≥1 be a deterministic sequence of Hermitian
matrices. Then if p = 1 or p ≥ 1.5,(

E
∥∥∥∑

k
εkAk

∥∥∥2p

2p

)1/2p

≤
√

2p− 1 ·
∥∥∥∥(∑k

A2
k

)1/2
∥∥∥∥

2p

.

Noncommutative Khintchine inequality (Lust-Piquard, 1986; Lust-Piquard

and Pisier, 1991) is a dominant tool in applied matrix analysis

e.g., Used in analysis of column sampling and projection for
approximate SVD (Rudelson and Vershynin, 2007)

Stein’s method offers an unusually concise proof

The constant
√

2p− 1 is within
√

e of optimal
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Extensions

Extensions

Refined Exponential Concentration
Relate trace mgf of conditional variance to trace mgf of X
Yields matrix generalization of classical Bernstein inequality
Offers tool for unbounded random matrices

General Complex Matrices
Map any matrix B ∈ Cd1×d2 to a Hermitian matrix via dilation

D(B) :=

[
0 B
B∗ 0

]
∈ Hd1+d2 .

Preserves spectral information: λmax(D(B)) = ‖B‖
Dependent Sequences

Sums of conditionally zero-mean random matrices
Combinatorial matrix statistics (e.g., sampling w/o replacement)
Matrix-valued functions satisfying a self-reproducing property

Yields a dependent bounded differences inequality for matrices
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