Concentration phenomena in high dimensional geometry.

Olivier Guédon

Université Paris-Est Marne-la-Vallée
Workshop "Random Matrices and their Applications".
October 2012

Plan.

First part.

- Log-concave measures : a basic concept in probability and geometry.
- Some questions still of interest :

1) Approximation of the covariance matrix
2) The spectral gap inequality : conjecture of Kannan, Lovász and Simonovits
3) The variance conjecture (a particular case of the previous one) and concentration of mass

Second part.

- Another general case : s-concave measures for $s<0$.
- New results about the concentration of mass.

Log-concave measures.

Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}+$ such that $\forall x, y \in \mathbb{R}^{n}, \forall \theta \in[0,1]$,

$$
f((1-\theta) x+\theta y) \geq f(x)^{1-\theta} f(y)^{\theta}
$$

A measure with density $f \in L_{1}^{\text {loc }}$ is said to be log-concave and satisfies $\forall A, B \subset \mathbb{R}^{n}, \forall \theta \in[0,1]$,

$$
\mu((1-\theta) A+\theta B) \geq \mu(A)^{1-\theta} \mu(B)^{\theta}
$$

Log-concave measures.

Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}+$ such that $\forall x, y \in \mathbb{R}^{n}, \forall \theta \in[0,1]$,

$$
f((1-\theta) x+\theta y) \geq f(x)^{1-\theta} f(y)^{\theta}
$$

A measure with density $f \in L_{1}^{\text {loc }}$ is said to be log-concave and satisfies $\forall A, B \subset \mathbb{R}^{n}, \forall \theta \in[0,1]$,

$$
\mu((1-\theta) A+\theta B) \geq \mu(A)^{1-\theta} \mu(B)^{\theta}
$$

60's and 70's : Henstock-Mc Beath, Borell, Prékopa-Leindler...

Log-concave measures.

Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}+$ such that $\forall x, y \in \mathbb{R}^{n}, \forall \theta \in[0,1]$,

$$
f((1-\theta) x+\theta y) \geq f(x)^{1-\theta} f(y)^{\theta}
$$

A measure with density $f \in L_{1}^{\text {loc }}$ is said to be log-concave and satisfies $\forall A, B \subset \mathbb{R}^{n}, \forall \theta \in[0,1]$,

$$
\mu((1-\theta) A+\theta B) \geq \mu(A)^{1-\theta} \mu(B)^{\theta}
$$

60's and 70's : Henstock-Mc Beath, Borell, Prékopa-Leindler...

Classical examples :

1) Probabilistic: $f(x)=\exp \left(-|x|_{2}^{2}\right), f(x)=\exp \left(-|x|_{1}\right)$
2) Geometric : $f(x)=1_{K}(x)$ where K is a convex body.

Convex geometry - Log-concave measures.

K. Ball

Logarithmically concave functions and sections of convex sets in \mathbb{R}^{n}. Studia Math. 88 (1988), no. 1, 69-84

Convex geometry - Log-concave measures.

K. Ball

Logarithmically concave functions and sections of convex sets in \mathbb{R}^{n}. Studia Math. 88 (1988), no. 1, 69-84
L. Lovász, M. Simonovits

Random walks in a convex body and an improved volume algorithm. Random Structures Algorithms 4 (1993), no. 4, 359-412.

Convex geometry - Log-concave measures.

K. Ball

Logarithmically concave functions and sections of convex sets in \mathbb{R}^{n}. Studia Math. 88 (1988), no. 1, 69-84
L. Lovász, M. Simonovits

Random walks in a convex body and an improved volume algorithm. Random Structures Algorithms 4 (1993), no. 4, 359-412.
R. Kannan, L. Lovász, M. Simonovits

Isoperimetric problems for convex bodies and a localization lemma. Discrete Comput. Geom. 13 (1995), no. 3-4, 541-559.
Random walks and an $O^{*}\left(n^{5}\right)$ volume algorithm for convex bodies. Random Structures Algorithms 11 (1997), no. 1, 1-50.

Computing the volume of a convex body

$K \subset \mathbb{R}^{n}$ is given by a separation oracle

Computing the volume of a convex body

$K \subset \mathbb{R}^{n}$ is given by a separation oracle
Elekes ('86), Bárány-Füredi ('86) : it is not possible to compute with a deterministic algorithm in polynomial time the volume of a convex body (even approximately)

Computing the volume of a convex body

$K \subset \mathbb{R}^{n}$ is given by a separation oracle
Elekes ('86), Bárány-Füredi ('86) : it is not possible to compute with a deterministic algorithm in polynomial time the volume of a convex body (even approximately)
Randomization - Given ε and η, Dyer-Frieze-Kannan('89) established randomized algorithms returning a non-negative number ζ such that

$$
(1-\varepsilon) \zeta<\operatorname{Vol} K<(1+\varepsilon) \zeta
$$

with probability at least $1-\eta$. The running time of the algorithm is polynomial in $n, 1 / \varepsilon$ and $\log (1 / \eta)$.

Computing the volume of a convex body

$K \subset \mathbb{R}^{n}$ is given by a separation oracle
Elekes ('86), Bárány-Füredi ('86) : it is not possible to compute with a deterministic algorithm in polynomial time the volume of a convex body (even approximately)
Randomization - Given ε and η, Dyer-Frieze-Kannan('89) established randomized algorithms returning a non-negative number ζ such that

$$
(1-\varepsilon) \zeta<\operatorname{Vol} K<(1+\varepsilon) \zeta
$$

with probability at least $1-\eta$. The running time of the algorithm is polynomial in $n, 1 / \varepsilon$ and $\log (1 / \eta)$.
The number of oracle calls is a random variable and the bound is for example on its expected value.

Computing the volume of a convex body

The randomized algorithm proposed by Kannan, Lovász and Simonovits improves significantly the polynomial dependence.

Computing the volume of a convex body

The randomized algorithm proposed by Kannan, Lovász and Simonovits improves significantly the polynomial dependence.
Rounding - Put the convex body in a position where
where $d \leq n^{\text {const }}$.

$$
B_{2}^{n} \subset K \subset d B_{2}^{n}
$$

Computing the volume of a convex body

The randomized algorithm proposed by Kannan, Lovász and Simonovits improves significantly the polynomial dependence.
Rounding - Put the convex body in a position where
where $d \leq n^{\text {const. }} \quad \quad B_{2}^{n} \subset K \subset d B_{2}^{n}$

- John ('48) : $d \leq n$ (or $d \leq \sqrt{n}$ in the symmetric case). How to find an algorithm to do so ?

Computing the volume of a convex body

The randomized algorithm proposed by Kannan, Lovász and Simonovits improves significantly the polynomial dependence.
Rounding - Put the convex body in a position where
where $d \leq n^{\text {const }}$.

$$
B_{2}^{n} \subset K \subset d B_{2}^{n}
$$

- Idea : find an algorithm which produces in polynomial time a matrix A such that $A K$ is in an approximate isotropic position.
Conjecture 2 of KLS ('97) : solved in 2010 by Adamczak, Litvak, Pajor, Tomczak-Jaegermann

Computing the volume of a convex body

The randomized algorithm proposed by Kannan, Lovász and Simonovits improves significantly the polynomial dependence.
Rounding - Put the convex body in a position where
where $d \leq n^{\text {const }}$.

$$
B_{2}^{n} \subset K \subset d B_{2}^{n}
$$

- Idea : find an algorithm which produces in polynomial time a matrix A such that $A K$ is in an approximate isotropic position.
Conjecture 2 of KLS ('97) : solved in 2010 by Adamczak, Litvak, Pajor, Tomczak-Jaegermann
Computing the volume - Monte Carlo algorithm, estimates of local conductance.
Conjecture 1 of KLS ('95) : isoperimetric inequality open!

Approximation of the covariance matrix.

Question of KLS ('97) : let X be a vector uniformly distributed on a convex body K, X_{1}, \ldots, X_{N} ind. copies of X, what is the smallest N such that

$$
\left\|\frac{1}{N} \sum_{j=1}^{N} X_{j} X_{j}^{\top}-\mathbb{E} X X^{\top}\right\| \leq \varepsilon\left\|\mathbb{E} X X^{\top}\right\|
$$

$\|\cdot\|$ is the operator norm

Approximation of the covariance matrix.

Question of KLS ('97) : let X be a vector uniformly distributed on a convex body K, X_{1}, \ldots, X_{N} ind. copies of X, what is the smallest N such that

$$
\left\|\frac{1}{N} \sum_{j=1}^{N} X_{j} X_{j}^{\top}-\mathrm{Id}\right\| \leq \varepsilon
$$

Assume $\mathbb{E} X X^{\top}=\mathrm{Id}$,

Approximation of the covariance matrix.

Question of KLS ('97) : let X be a vector uniformly distributed on a convex body K, X_{1}, \ldots, X_{N} ind. copies of X, what is the smallest N such that

$$
\left\|\frac{1}{N} \sum_{j=1}^{N} X_{j} X_{j}^{\top}-\mathrm{Id}\right\| \leq \varepsilon
$$

Assume $\mathbb{E} X X^{\top}=\mathrm{Id}$, you want to control the smallest and the largest singular values.

$$
1-\varepsilon \leq \lambda_{\min }\left(\frac{1}{N} \sum_{j=1}^{N} X_{j} X_{j}^{\top}\right) \leq \lambda_{\max }\left(\frac{1}{N} \sum_{j=1}^{N} X_{j} X_{j}^{\top}\right) \leq 1+\varepsilon
$$

KLS n^{2} / ε^{2}, Bourgain $n \log ^{3} n / \varepsilon^{2}, \ldots$ Rudelson, Guédon, Paouris, Aubrun, Giannopoulos
ALPT ('10) n / ε^{2} : for general log-concave vectors

Isoperimetric problem.

Isoperimetric problem.

Define $\mu^{+}(S)=\liminf _{\varepsilon \rightarrow 0} \frac{\mu\left(S+\varepsilon B_{2}^{n}\right)-\mu(S)}{\varepsilon}$

Isoperimetric problem.

Define

$\mu^{+}(S)=\liminf _{\varepsilon \rightarrow 0} \frac{\mu\left(S+\varepsilon B_{2}^{n}\right)-\mu(S)}{\varepsilon}$

Question. Find the largest h such that

$$
\forall S \subset K, \mu^{+}(S) \geq h \mu(S)(1-\mu(S)) \quad ?
$$

μ is log-concave with log concave density f.

Isoperimetric problem.

Define

$\mu^{+}(S)=\liminf _{\varepsilon \rightarrow 0} \frac{\mu\left(S+\varepsilon B_{2}^{n}\right)-\mu(S)}{\varepsilon}$

Question. Find the largest h such that

$$
\forall S \subset K, \mu^{+}(S) \geq h \mu(S)(1-\mu(S)) \quad ?
$$

μ is log-concave with log concave density f.
The probability $d \mu(x)=f(x) d x$ is log-concave isotropic.
Poincaré type inequality. For every regular function F,

$$
h^{2} \operatorname{Var}_{\mu} F \leq \int|\nabla F(x)|_{2}^{2} f(x) d x .
$$

The conjecture is that h is a universal constant.

Payne-Weinberger ['50] : $\quad h \geq \frac{c}{\operatorname{diam} K}$.
Kannan, Lovász, Simonovits ['95],
Bobkov ['07] :

$$
h \geq \frac{c}{\int_{K}\left|x-g_{K}\right|_{2} d x}
$$

$$
h \geq \frac{c}{\left(\operatorname{Var}|X|_{2}^{2}\right)^{1 / 4}}
$$

Payne-Weinberger ['50]: $\quad h \geq \frac{c}{\operatorname{diam} K}$.
Kannan, Lovász, Simonovits ['95], Bobkov ['07] :

$$
h \geq \frac{c}{\int_{K}\left|x-g_{K}\right|_{2} d x}
$$

$$
h \geq \frac{c}{\left(\operatorname{Var}|X|_{2}^{2}\right)^{1 / 4}}
$$

This conjecture implies :
Strong concentration of the Euclidean norm

$$
\mathbb{P}\left(\left||X|_{2}-\sqrt{n}\right| \geq t \sqrt{n}\right) \leq C \exp (-c t \sqrt{n})
$$

Payne-Weinberger ['50]: $\quad h \geq \frac{c}{\operatorname{diam} K}$.
Kannan, Lovász, Simonovits ['95], Bobkov ['07] :

$$
h \geq \frac{c}{\int_{K}\left|x-g_{K}\right|_{2} d x}
$$

$$
h \geq \frac{c}{\left(\operatorname{Var}|X|_{2}^{2}\right)^{1 / 4}}
$$

This conjecture implies :
Strong concentration of the Euclidean norm

$$
\mathbb{P}\left(\left||X|_{2}-\sqrt{n}\right| \geq t \sqrt{n}\right) \leq C \exp (-c t \sqrt{n})
$$

Large and medium scales !

Thin shell and central limit theorem

CLT : classical case. x_{1}, \ldots, x_{n}, n i.i.d random variables,

$$
\mathbb{E} x_{i}^{2}=1, \mathbb{E} x_{i}=0, \mathbb{E} x_{i}^{3}=\tau
$$

then $\forall \theta \in S^{n-1}$

$$
\sup _{t \in \mathbb{R}}\left|\mathbb{P}\left(\sum_{i=1}^{n} \theta_{i} x_{i} \leq t\right)-\int_{-\infty}^{t} e^{-u^{2} / 2} \frac{d u}{\sqrt{2 \pi}}\right| \leq \tau|\theta|_{4}^{2}=\frac{\tau}{\sqrt{n}} .
$$

Thin shell and central limit theorem

Question. [Ball '97], [Brehm-Voigt '98] Let K be an isotropic convex body, find a direction $\theta \in S^{n-1}$ such that

$$
\sup _{t \in \mathbb{R}}\left|\mathbb{P}\left(\sum_{i=1}^{n} \theta_{i} x_{i} \leq t\right)-\int_{-\infty}^{t} e^{-u^{2} / 2} \frac{d u}{\sqrt{2 \pi}}\right| \leq \alpha_{n}
$$

with $\lim _{+\infty} \alpha_{n}=0$?

Thin shell and central limit theorem

Question. [Ball '97], [Brehm-Voigt '98] Let K be an isotropic convex body, find a direction $\theta \in S^{n-1}$ such that

$$
\sup _{t \in \mathbb{R}}\left|\mathbb{P}\left(\sum_{i=1}^{n} \theta_{i} x_{i} \leq t\right)-\int_{-\infty}^{t} e^{-u^{2} / 2} \frac{d u}{\sqrt{2 \pi}}\right| \leq \alpha_{n}
$$

with $\lim _{+\infty} \alpha_{n}=0$?
Conjecture. [Anttila-Ball-Perissinaki '03]
Thin shell conjecture : $\forall n, \exists \varepsilon_{n}$ such that for every random vector uniformly distributed in an isotropic convex body

$$
\mathbb{P}\left(\left|\frac{|X|_{2}}{\sqrt{n}}-1\right| \geq \varepsilon_{n}\right) \leq \varepsilon_{n}
$$

with $\lim _{+\infty} \varepsilon_{n}=0$. Or more vaguely, does $\operatorname{Var}|X|_{2} / n$ goes to zero as $n \rightarrow \infty$?

Thin shell and central limit theorem

Question. [Ball '97], [Brehm-Voigt '98] Let K be an isotropic convex body, find a direction $\theta \in S^{n-1}$ such that

$$
\sup _{t \in \mathbb{R}}\left|\mathbb{P}\left(\sum_{i=1}^{n} \theta_{i} x_{i} \leq t\right)-\int_{-\infty}^{t} e^{-u^{2} / 2} \frac{d u}{\sqrt{2 \pi}}\right| \leq \alpha_{n}
$$

with $\lim _{+\infty} \alpha_{n}=0$?
Conjecture. [Anttila-Ball-Perissinaki '03]
Thin shell conjecture : $\forall n, \exists \varepsilon_{n}$ such that for every random vector uniformly distributed in an isotropic convex body

$$
\mathbb{P}\left(\left|\frac{|X|_{2}}{\sqrt{n}}-1\right| \geq \varepsilon_{n}\right) \leq \varepsilon_{n}
$$

with $\lim _{+\infty} \varepsilon_{n}=0$. Or more vaguely, does $\operatorname{Var}|X|_{2} / n$ goes to zero as $n \rightarrow \infty$?
Theorem[ABP]. Thin shell \Rightarrow CLT

Concentration of the volume in a Euclidean ball - Large and small scale.

The log-concave case

Concentration of the volume in a Euclidean ball - Large and small scale.

The log-concave case
In isotropic position, $\mathbb{E}|X|_{2}^{2}=n$ and by classical log-concavity property (cf Borell)

$$
\forall t \geq 1, \quad \mathbb{P}\left\{|X|_{2} \geq c t \sqrt{n}\right\} \leq 2 e^{-c t}
$$

Concentration of the volume in a Euclidean ball - Large and small scale.

The log-concave case
In isotropic position, $\mathbb{E}|X|_{2}^{2}=n$ and by classical log-concavity property (cf Borell)

$$
\forall t \geq 1, \quad \mathbb{P}\left\{|X|_{2} \geq c t \sqrt{n}\right\} \leq 2 e^{-c t} .
$$

[Alesker '98]

$$
\forall t \geq 1, \quad \mathbb{P}\left\{|X|_{2} \geq c t \sqrt{n}\right\} \leq 2 e^{-c t^{2}}
$$

Concentration of the volume in a Euclidean ball - Large and small scale.

The log-concave case
In isotropic position, $\mathbb{E}|X|_{2}^{2}=n$ and by classical log-concavity property (cf Borell)

$$
\forall t \geq 1, \quad \mathbb{P}\left\{|X|_{2} \geq c t \sqrt{n}\right\} \leq 2 e^{-c t} .
$$

[Alesker '98]

$$
\forall t \geq 1, \quad \mathbb{P}\left\{|X|_{2} \geq c t \sqrt{n}\right\} \leq 2 e^{-c t^{2}} .
$$

[Paouris '06] For a log-concave isotropic probability

$$
\forall t \geq 1, \quad \mathbb{P}\left\{|X|_{2} \geq c t \sqrt{n}\right\} \leq 2 e^{-c t \sqrt{n}} .
$$

Concentration of the volume in a Euclidean ball - Large and small scale.

The log-concave case
In isotropic position, $\mathbb{E}|X|_{2}^{2}=n$ and by classical log-concavity property (cf Borell)

$$
\forall t \geq 1, \quad \mathbb{P}\left\{|X|_{2} \geq c t \sqrt{n}\right\} \leq 2 e^{-c t} .
$$

[Alesker '98]

$$
\forall t \geq 1, \quad \mathbb{P}\left\{|X|_{2} \geq c t \sqrt{n}\right\} \leq 2 e^{-c t^{2}} .
$$

[Paouris '06] For a log-concave isotropic probability

$$
\forall t \geq 1, \quad \mathbb{P}\left\{|X|_{2} \geq c t \sqrt{n}\right\} \leq 2 e^{-c t \sqrt{n}}
$$

[Paouris '09] For a log-concave isotropic probability

$$
\forall \varepsilon \leq 1, \quad \mathbb{P}\left\{|X|_{2} \leq c \varepsilon \sqrt{n}\right\} \leq 2 \varepsilon^{c \sqrt{n}} .
$$

Concentration of the volume in a Euclidean ball - Medium scale.

Theorem. Klartag['07] [Fleury-Guédon-Paouris '07]
Let X be a log-concave isotropic vector

$$
\forall t>0, \quad \mathbb{P}\left(\left.| | X\right|_{2}-\sqrt{n} \mid \geq t \sqrt{n}\right) \leq 2 e^{-c \sqrt{t}(\log n)^{c}}
$$

Klartag['07] [Fleury '09]. Polynomial estimates.

Concentration of the volume in a Euclidean ball - Medium scale.

Theorem. Klartag['07] [Fleury-Guédon-Paouris '07]
Let X be a log-concave isotropic vector

$$
\forall t>0, \quad \mathbb{P}\left(\left.| | X\right|_{2}-\sqrt{n} \mid \geq t \sqrt{n}\right) \leq 2 e^{-c \sqrt{t}(\log n)^{c}}
$$

Klartag['07] [Fleury '09]. Polynomial estimates.
Theorem [Guédon-Milman '11]

$$
\begin{gathered}
\forall t \geq 0, \quad \mathbb{P}\left(\left.| | X\right|_{2}-\sqrt{n} \mid \geq t \sqrt{n}\right) \leq C \exp \left(-c \sqrt{n} \min \left(t^{3}, t\right)\right) \\
\operatorname{Var}|X|_{2}^{2} \leq C n^{5 / 3} \quad \text { and } \quad h \geq c n^{-5 / 12}
\end{gathered}
$$

Concentration of the volume in a Euclidean ball - Medium scale.

Theorem. Klartag['07] [Fleury-Guédon-Paouris '07]
Let X be a log-concave isotropic vector

$$
\forall t>0, \quad \mathbb{P}\left(\left.| | X\right|_{2}-\sqrt{n} \mid \geq t \sqrt{n}\right) \leq 2 e^{-c \sqrt{t}(\log n)^{c}}
$$

Klartag['07] [Fleury '09]. Polynomial estimates.
Theorem [Guédon-Milman '11]

$$
\begin{gathered}
\forall t \geq 0, \quad \mathbb{P}\left(\left.| | X\right|_{2}-\sqrt{n} \mid \geq t \sqrt{n}\right) \leq C \exp \left(-c \sqrt{n} \min \left(t^{3}, t\right)\right) \\
\quad \operatorname{Var}|X|_{2}^{2} \leq C n^{5 / 3} \quad \text { and } \quad h \geq c n^{-5 / 12}
\end{gathered}
$$

Variance conjecture : $\operatorname{Var}|X|_{2} \leq C$ or $\operatorname{Var}|X|_{2}^{2} \leq C n$

Pictures - Intuition in high dimension.

convex body in "isotropic position".

Pictures - Intuition in high dimension.

intersection with a ball of radius \sqrt{n}.

Pictures - Intuition in high dimension.

volume inside a ball of radius $100 \sqrt{n}$

Pictures - Intuition in high dimension.

volume inside a shell of width $\sqrt{n} / n^{1 / 6}$

Concentration of the mass in a Euclidean ball or shell
Behavior of $\left(\mathbb{E}|X|_{2}^{p}\right)^{1 / p}$ for some values of p.

Concentration of the mass in a Euclidean ball or shell

Behavior of $\left(\mathbb{E}|X|_{2}^{p}\right)^{1 / p}$ for some values of p.

- X log-concave random vector. Paouris Theorem (large deviation) may be written as (ALLOPT '12)

$$
\begin{aligned}
& \left.\forall p \geq 1, \quad\left(\mathbb{E}|X|_{2}^{p}\right)^{1 / p} \leq C \mathbb{E}|X|_{2}+c \sigma_{p}(X) \quad \text { (}\right) \\
& \text { where } \sigma_{p}(X)=\sup _{|z|_{2} \leq 1}\left(\mathbb{E}\langle z, X\rangle^{p}\right)^{1 / p .} .
\end{aligned}
$$

Concentration of the mass in a Euclidean ball or shell

 Behavior of $\left(\mathbb{E}|X|_{2}^{p}\right)^{1 / p}$ for some values of p.- X log-concave random vector. Paouris Theorem (large deviation) may be written as (ALLOPT '12)

$$
\forall p \geq 1, \quad\left(\mathbb{E}|X|_{2}^{p}\right)^{1 / p} \leq C \mathbb{E}|X|_{2}+c \sigma_{p}(X)
$$

where $\sigma_{p}(X)=\sup _{|z|_{2} \leq 1}\left(\mathbb{E}\langle z, X\rangle^{p}\right)^{1 / p}$.
In isotropic position, $\mathbb{E}|X|_{2} \leq\left(\mathbb{E}|X|_{2}^{2}\right)^{1 / 2}=\sqrt{n}$.
By Borell's inequality (Khintchine type inequality)

$$
\forall p \geq 1, \quad\left(\mathbb{E}\langle z, X\rangle^{p}\right)^{1 / p} \leq C p\left(\mathbb{E}\langle z, X\rangle^{2}\right)^{1 / 2}=C p|z|_{2}
$$

Hence

$$
\forall p \geq 1, \quad\left(\mathbb{E}|X|_{2}^{p}\right)^{1 / p} \leq C \sqrt{n}+c p
$$

Concentration of the mass in a Euclidean ball or shell Behavior of $\left(\mathbb{E}|X|_{2}^{p}\right)^{1 / p}$ for some values of p.

- X log-concave random vector. Paouris Theorem (large deviation) may be written as (ALLOPT '12)

$$
\forall p \geq 1, \quad\left(\mathbb{E}|X|_{2}^{p}\right)^{1 / p} \leq C \mathbb{E}|X|_{2}+c \sigma_{p}(X)
$$

where $\sigma_{p}(X)=\sup _{|z|_{2} \leq 1}\left(\mathbb{E}\langle z, X\rangle^{p}\right)^{1 / p}$.
In isotropic position, $\mathbb{E}|X|_{2} \leq\left(\mathbb{E}|X|_{2}^{2}\right)^{1 / 2}=\sqrt{n}$.
By Borell's inequality (Khintchine type inequality)

$$
\forall p \geq 1, \quad\left(\mathbb{E}\langle z, X\rangle^{p}\right)^{1 / p} \leq C p\left(\mathbb{E}\langle z, X\rangle^{2}\right)^{1 / 2}=C p|z|_{2}
$$

Hence

$$
\forall p \geq 1, \quad\left(\mathbb{E}|X|_{2}^{p}\right)^{1 / p} \leq C \sqrt{n}+c p
$$

Take $p=t \sqrt{n}$, Markov gives

$$
\forall t \geq 1, \quad \mathbb{P}\left(|X|_{2} \geq t \sqrt{n}\right) \leq e^{-c t \sqrt{n}} .
$$

Concentration of the mass in a Euclidean ball or shell Behavior of $\left(\mathbb{E}|X|_{2}^{p}\right)^{1 / p}$ for some values of p.

- X log-concave random vector. Paouris Theorem (large deviation) may be written as (ALLOPT '12)

$$
\forall p \geq 1, \quad\left(\mathbb{E}|X|_{2}^{p}\right)^{1 / p} \leq C \mathbb{E}|X|_{2}+c \sigma_{p}(X)
$$

where $\sigma_{p}(X)=\sup _{|z|_{2} \leq 1}\left(\mathbb{E}\langle z, X\rangle^{p}\right)^{1 / p}$.

- Small Ball Estimates of Paouris - Negative moments.
- Variance conjecture - slightly more, cf KLS. In isotropic position,
$\forall p \in[2, c \sqrt{n}], \quad\left(\mathbb{E}|X|_{2}^{p}\right)^{1 / p} \leq \sqrt{n}+c \frac{p}{\sqrt{n}}=\left(\mathbb{E}|X|_{2}^{2}\right)^{1 / 2}\left(1+\frac{c p}{n}\right)$.
- In view of (\star), more tractable conjecture :

$$
\forall p \geq 1, \quad\left(\mathbb{E}|X|_{2}^{p}\right)^{1 / p} \leq \mathbb{E}|X|_{2}+c \sigma_{p}(X)
$$

Other probabilistic questions.

For which random vector do we have that for any norm,

$$
\left(\mathbb{E}\|X\|^{p}\right)^{1 / p} \leq C \mathbb{E}\|X\|+c \sup _{\|z\|_{*} \leq 1}\left(\mathbb{E}\langle z, X\rangle^{p}\right)^{1 / p} .
$$

Examples: Gaussian and Rademacher vectors, for all $p \geq 1$. Other example of the form $X=\sum \xi_{i} v_{i}$ with ξ_{i} independant, symmetric random variables with logarithmicaly concave tails (see the work of Gluskin, Kwapien, Latała).
It is conjecture that it is true for log-concave random vectors (Latała).

Other probabilistic questions.

For which random vector do we have that for any norm,

$$
\left(\mathbb{E}\|X\|^{p}\right)^{1 / p} \leq C \mathbb{E}\|X\|+c \sup _{\|z\|_{*} \leq 1}\left(\mathbb{E}\langle z, X\rangle^{p}\right)^{1 / p} .
$$

Examples: Gaussian and Rademacher vectors, for all $p \geq 1$. Other example of the form $X=\sum \xi_{i} v_{i}$ with ξ_{i} independant, symmetric random variables with logarithmicaly concave tails (see the work of Gluskin, Kwapien, Latała).
It is conjecture that it is true for log-concave random vectors (Latała).
Paouris Theorem tells that it is true for log-concave and the Euclidean norm!

New class of random vectors

The hypothesis $H(p, \lambda)$:
Let $p>0, m=\lceil p\rceil$, and $\lambda \geq 1$. A random vector X in E satisfies the assumption $H(p, \lambda)$ if for every linear mapping $A: E \rightarrow \mathbb{R}^{m}$ s. t. $Y=A X$ is non-degenerate there exists a gauge $\|\cdot\|$ on \mathbb{R}^{m} s.t. $\mathbb{E}\|Y\|<\infty$ and

$$
\left(\mathbb{E}\|Y\|^{p}\right)^{1 / p} \leq \lambda \mathbb{E}\|Y\|
$$

New class of random vectors

The hypothesis $H(p, \lambda)$:
Let $p>0, m=\lceil p\rceil$, and $\lambda \geq 1$. A random vector X in E satisfies the assumption $H(p, \lambda)$ if for every linear mapping $A: E \rightarrow \mathbb{R}^{m}$ s. t. $Y=A X$ is non-degenerate there exists a gauge $\|\cdot\|$ on \mathbb{R}^{m} s. t. $\mathbb{E}\|Y\|<\infty$ and

$$
\left(\mathbb{E}\|Y\|^{p}\right)^{1 / p} \leq \lambda \mathbb{E}\|Y\| .
$$

- Any m-dimensional norm can be approx. by e^{m} numbers of linear forms

$$
\left(\mathbb{E}\|Y\|^{p}\right)^{1 / p} \leq C\left(\mathbb{E} \sup _{i=1, \ldots, e^{m}}\left|\varphi_{i}(Y)\right|^{p}\right)^{1 / p}
$$

New class of random vectors

The hypothesis $H(p, \lambda)$:
Let $p>0, m=\lceil p\rceil$, and $\lambda \geq 1$. A random vector X in E satisfies the assumption $H(p, \lambda)$ if for every linear mapping $A: E \rightarrow \mathbb{R}^{m}$ s. t. $Y=A X$ is non-degenerate there exists a gauge $\|\cdot\|$ on \mathbb{R}^{m} s. t. $\mathbb{E}\|Y\|<\infty$ and

$$
\left(\mathbb{E}\|Y\|^{p}\right)^{1 / p} \leq \lambda \mathbb{E}\|Y\| .
$$

- Any m-dimensional norm can be approx. by e^{m} numbers of linear forms

$$
\left(\mathbb{E}\|Y\|^{p}\right)^{1 / p} \leq C \sup _{\|\varphi\|_{\star} \leq 1}\left(\mathbb{E}|\varphi(Y)|^{p}\right)^{1 / p}
$$

New class of random vectors

The hypothesis $H(p, \lambda)$:
Let $p>0, m=\lceil p\rceil$, and $\lambda \geq 1$. A random vector X in E satisfies the assumption $H(p, \lambda)$ if for every linear mapping $A: E \rightarrow \mathbb{R}^{m}$ s. t. $Y=A X$ is non-degenerate there exists a gauge $\|\cdot\|$ on \mathbb{R}^{m} s. t. $\mathbb{E}\|Y\|<\infty$ and

$$
\left(\mathbb{E}\|Y\|^{p}\right)^{1 / p} \leq \lambda \mathbb{E}\|Y\| .
$$

- Any m-dimensional norm can be approx. by e^{m} numbers of linear forms

$$
\left(\mathbb{E}\|Y\|^{p}\right)^{1 / p} \leq C \sup \left(\mathbb{E}|\varphi(Y)|^{p}\right)^{1 / p}
$$

\rightarrow Rademacher, Gaussian, ψ_{2} vectors satisfy $H\left(p, C \psi^{2}\right)$ for every $p \leq n$. Wlog, assume isotropicity of the vector $A X$

$$
\left(\mathbb{E}|Y|_{2}^{p}\right)^{1 / p} \leq C \sup _{|\varphi|_{2} \leq 1}\left(\mathbb{E}\langle\varphi, Y\rangle^{p}\right)^{1 / p} \leq C \psi \sqrt{p} \sup _{|\varphi|_{2} \leq 1} \mathbb{E}|\langle\varphi, Y\rangle|
$$

New class of random vectors

The hypothesis $H(p, \lambda)$:
Let $p>0, m=\lceil p\rceil$, and $\lambda \geq 1$. A random vector X in E satisfies the assumption $H(p, \lambda)$ if for every linear mapping $A: E \rightarrow \mathbb{R}^{m}$ s. t. $Y=A X$ is non-degenerate there exists a gauge $\|\cdot\|$ on \mathbb{R}^{m} s. t. $\mathbb{E}\|Y\|<\infty$ and

$$
\left(\mathbb{E}\|Y\|^{p}\right)^{1 / p} \leq \lambda \mathbb{E}\|Y\| .
$$

- Any m-dimensional norm can be approx. by e^{m} numbers of linear forms

$$
\left(\mathbb{E}\|Y\|^{p}\right)^{1 / p} \leq C \sup \left(\mathbb{E}|\varphi(Y)|^{p}\right)^{1 / p}
$$

\rightarrow Rademacher, Gaussian, ψ_{2} vectors satisfy $H\left(p, C \psi^{2}\right)$ for every $p \leq n$. Wlog, assume isotropicity of the vector $A X$

$$
\left(\mathbb{E}|Y|_{2}^{p}\right)^{1 / p} \leq C \psi \sqrt{p} \sup _{|\varphi|_{2} \leq 1} \mathbb{E}|\langle\varphi, Y\rangle| \leq C \psi \sqrt{m} \leq C \psi^{2} \sqrt{2} \mathbb{E}|Y|_{2}
$$

Results. (AGLLOPT*'12)

The hypothesis $H(p, \lambda)$:
Let $p>0, m=\lceil p\rceil$, and $\lambda \geq 1$. A random vector X in E satisfies the assumption $H(p, \lambda)$ if for every linear mapping $A: E \rightarrow \mathbb{R}^{m}$ s. t. $Y=A X$ is non-degenerate there exists a gauge $\|\cdot\|$ on \mathbb{R}^{m} s. t. $\mathbb{E}\|Y\|<\infty$ and

$$
\left(\mathbb{E}\|Y\|^{p}\right)^{1 / p} \leq \lambda \mathbb{E}\|Y\| .
$$

^ Adamczak, G, Latała, Litvak, Oleszkiewicz, Pajor, Tomczak-Jaegermann

Results. (AGLLOPT* '12)

The hypothesis $H(p, \lambda)$:
Let $p>0, m=\lceil p\rceil$, and $\lambda \geq 1$. A random vector X in E satisfies the assumption $H(p, \lambda)$ if for every linear mapping $A: E \rightarrow \mathbb{R}^{m}$ s. t. $Y=A X$ is non-degenerate there exists a gauge $\|\cdot\|$ on \mathbb{R}^{m} s. t. $\mathbb{E}\|Y\|<\infty$ and

$$
\left(\mathbb{E}\|Y\|^{p}\right)^{1 / p} \leq \lambda \mathbb{E}\|Y\| .
$$

Theorem 1 Let $p>0$ and $\lambda \geq 1$. If a random vector X satisfies $H(p, \lambda)$ then

$$
\left(\mathbb{E}|X|_{2}^{p}\right)^{1 / p} \leq c\left(\lambda \mathbb{E}|X|_{2}+\sigma_{p}(X)\right)
$$

where c is a universal constant.
^ Adamczak, G, Latała, Litvak, Oleszkiewicz, Pajor, Tomczak-Jaegermann

Proof: X random vector in $E, m=\lceil p\rceil, \lambda \geq 1, A: E \rightarrow \mathbb{R}^{m}$
Gaussian Concentration. G standard Gaussian vector

$$
\left(\mathbb{E}_{G} \mathbb{E}_{X}\langle G, X\rangle^{p}\right)^{1 / p} \leq \mathbb{E}_{G}\left(\mathbb{E}_{X}\langle G, X\rangle^{p}\right)^{1 / p}+c \sqrt{p} \sigma_{p}(X)
$$

Proof : X random vector in $E, m=\lceil p\rceil, \lambda \geq 1, A: E \rightarrow \mathbb{R}^{m}$
Gaussian Concentration. G standard Gaussian vector

$$
\begin{gathered}
\left(\mathbb{E}_{G} \mathbb{E}_{X}\langle G, X\rangle^{p}\right)^{1 / p} \leq \mathbb{E}_{G}\left(\mathbb{E}_{X}\langle G, X\rangle^{p}\right)^{1 / p}+c \sqrt{p} \sigma_{p}(X) \\
\|z\|=\left(\mathbb{E}_{X}\langle z, X\rangle^{p}\right)^{1 / p}
\end{gathered}
$$

is the dual norm of Z_{p} bodies, at the heart of all proofs.

Proof : X random vector in $E, m=\lceil p\rceil, \lambda \geq 1, A: E \rightarrow \mathbb{R}^{m}$
Gaussian Concentration. G standard Gaussian vector

$$
\left(\mathbb{E}_{G} \mathbb{E}_{X}\langle G, X\rangle^{p}\right)^{1 / p} \leq \mathbb{E}_{G}\left(\mathbb{E}_{X}\langle G, X\rangle^{p}\right)^{1 / p}+c \sqrt{p} \sigma_{p}(X)
$$

Gordon min-max theorem. A standard Gaussian matrix

$$
\mathbb{E}_{G}\left(\mathbb{E}_{X}\langle G, X\rangle^{p}\right)^{1 / p} \leq \mathbb{E}_{A} \min _{|z| 2=1}\left(\mathbb{E}_{X}\langle z, A X\rangle^{p}\right)^{1 / p}+c \sqrt{p} \sigma_{p}(X)
$$

Proof : X random vector in $E, m=\lceil p\rceil, \lambda \geq 1, A: E \rightarrow \mathbb{R}^{m}$ Gaussian Concentration. G standard Gaussian vector

$$
\left(\mathbb{E}_{G} \mathbb{E}_{X}\langle G, X\rangle^{p}\right)^{1 / p} \leq \mathbb{E}_{G}\left(\mathbb{E}_{X}\langle G, X\rangle^{p}\right)^{1 / p}+c \sqrt{p} \sigma_{p}(X)
$$

Gordon min-max theorem. A standard Gaussian matrix

$$
\mathbb{E}_{G}\left(\mathbb{E}_{X}\langle G, X\rangle^{p}\right)^{1 / p} \leq \mathbb{E}_{A} \min _{|z| 2=1}\left(\mathbb{E}_{X}\langle z, A X\rangle^{p}\right)^{1 / p}+c \sqrt{p} \sigma_{p}(X)
$$

Geometric lemma. X symmetric vector satisfying $H(p, \lambda)$

$$
\min _{|z| 2=1}\left(\mathbb{E}_{X}\langle z, A X\rangle^{p}\right)^{1 / p} \leq \lambda \mathbb{E}_{X}|A X|_{2}
$$

Proof : X random vector in $E, m=\lceil p\rceil, \lambda \geq 1, A: E \rightarrow \mathbb{R}^{m}$ Gaussian Concentration. G standard Gaussian vector

$$
\left(\mathbb{E}_{G} \mathbb{E}_{X}\langle G, X\rangle^{p}\right)^{1 / p} \leq \mathbb{E}_{G}\left(\mathbb{E}_{X}\langle G, X\rangle^{p}\right)^{1 / p}+c \sqrt{p} \sigma_{p}(X)
$$

Gordon min-max theorem. A standard Gaussian matrix

$$
\mathbb{E}_{G}\left(\mathbb{E}_{X}\langle G, X\rangle^{p}\right)^{1 / p} \leq \mathbb{E}_{A} \min _{|z| 2=1}\left(\mathbb{E}_{X}\langle z, A X\rangle^{p}\right)^{1 / p}+c \sqrt{p} \sigma_{p}(X)
$$

Geometric lemma. X symmetric vector satisfying $H(p, \lambda)$

$$
\begin{gathered}
\min _{|z| 2=1}\left(\mathbb{E}_{X}\langle z, A X\rangle^{p}\right)^{1 / p} \leq \lambda \mathbb{E}_{X}|A X|_{2} \\
\left(\mathbb{E}|X|_{2}^{p}\right)^{1 / p} \sim \frac{1}{\sqrt{p}}\left(\mathbb{E}_{G} \mathbb{E}_{X}\langle G, X\rangle^{p}\right)^{1 / p}
\end{gathered}
$$

Proof : X random vector in $E, m=\lceil p\rceil, \lambda \geq 1, A: E \rightarrow \mathbb{R}^{m}$ Gaussian Concentration. G standard Gaussian vector

$$
\left(\mathbb{E}_{G} \mathbb{E}_{X}\langle G, X\rangle^{p}\right)^{1 / p} \leq \mathbb{E}_{G}\left(\mathbb{E}_{X}\langle G, X\rangle^{p}\right)^{1 / p}+c \sqrt{p} \sigma_{p}(X)
$$

Gordon min-max theorem. A standard Gaussian matrix

$$
\mathbb{E}_{G}\left(\mathbb{E}_{X}\langle G, X\rangle^{p}\right)^{1 / p} \leq \mathbb{E}_{A} \min _{|z| 2=1}\left(\mathbb{E}_{X}\langle z, A X\rangle^{p}\right)^{1 / p}+c \sqrt{p} \sigma_{p}(X)
$$

Geometric lemma. X symmetric vector satisfying $H(p, \lambda)$

$$
\begin{gathered}
\min _{|z|_{2}=1}\left(\mathbb{E}_{X}\langle z, A X\rangle^{p}\right)^{1 / p} \leq \lambda \mathbb{E}_{X}|A X|_{2} \\
\left(\mathbb{E}|X|_{2}^{p}\right)^{1 / p} \sim \frac{1}{\sqrt{p}}\left(\mathbb{E}_{G} \mathbb{E}_{X}\langle G, X\rangle^{p}\right)^{1 / p} \lesssim \frac{1}{\sqrt{p}} \mathbb{E}_{A} \min _{|z|_{2}=1}\left(\mathbb{E}_{X}\langle z, A X\rangle^{p}\right)^{1 / p}+\sigma_{p}(X)
\end{gathered}
$$

Proof : X random vector in $E, m=\lceil p\rceil, \lambda \geq 1, A: E \rightarrow \mathbb{R}^{m}$ Gaussian Concentration. G standard Gaussian vector

$$
\left(\mathbb{E}_{G} \mathbb{E}_{X}\langle G, X\rangle^{p}\right)^{1 / p} \leq \mathbb{E}_{G}\left(\mathbb{E}_{X}\langle G, X\rangle^{p}\right)^{1 / p}+c \sqrt{p} \sigma_{p}(X)
$$

Gordon min-max theorem. A standard Gaussian matrix

$$
\mathbb{E}_{G}\left(\mathbb{E}_{X}\langle G, X\rangle^{p}\right)^{1 / p} \leq \mathbb{E}_{A} \min _{|<| 2=1}\left(\mathbb{E}_{X}\langle z, A X\rangle^{p}\right)^{1 / p}+c \sqrt{p} \sigma_{p}(X)
$$

Geometric lemma. X symmetric vector satisfying $H(p, \lambda)$

$$
\begin{gathered}
\min _{|z|_{2}=1}\left(\mathbb{E}_{X}\langle z, A X\rangle^{p}\right)^{1 / p} \leq \lambda \mathbb{E}_{X}|A X|_{2} \\
\left(\mathbb{E}|X|_{2}^{p}\right)^{1 / p} \sim \frac{1}{\sqrt{p}}\left(\mathbb{E}_{G} \mathbb{E}_{X}\langle G, X\rangle^{p}\right)^{1 / p} \leq \frac{1}{\sqrt{p}} \mathbb{E}_{A} \min _{|z|_{2}=1}\left(\mathbb{E}_{X}\langle z, A X\rangle^{p}\right)^{1 / p}+\sigma_{p}(X \\
\lesssim \frac{1}{\sqrt{p}} \mathbb{E}_{A} \lambda \mathbb{E}_{X}|A X|_{2}+\sigma_{p}(X) \lesssim \lambda \mathbb{E}|X|_{2}+\sigma_{p}(X)
\end{gathered}
$$

s-concave random vectors, $s<0$

Convex measures: definition
Let $s<1 / n$. A probability Borel measure μ on \mathbb{R}^{n} is called s-concave if $\forall A, B \subset \mathbb{R}^{n}, \forall \theta \in[0,1]$,

$$
\mu((1-\theta) \boldsymbol{A}+\theta \boldsymbol{B}) \geq\left((1-\theta) \mu(\boldsymbol{A})^{s}+\theta \mu(B)^{s}\right)^{1 / s}
$$

whenever $\mu(A) \mu(B)>0$.
For $s=0$, this corresponds to log-concave measures.
The class of s-concave measures was introduced and studied by Borell in the 70's. A s-concave probability ($s \leq 0$) is supported on some convex subset of an affine subspace where it has a density.

s-concave random vectors, $s<0$

Convex measures : properties
Let $s=-1 / r$.
When the support generates the whole space, a convex measure has a density g which has the form

$$
g=f^{-\beta} \quad \text { with } \quad \beta=n+r
$$

and f is a positive convex function on \mathbb{R}^{n}. (Borell). Example:

$$
g(x)=c(1+\|x\|)^{-n-r}, r>0 .
$$

- A log-concave prob is $(-1 / r)$-concave for any $r>0$
- The linear image of a $(-1 / r)$-concave vector is also $(-1 / r)$-concave.
- The Euclidean norm of a ($-1 / r$)-concave random vector has moments of order $0<p<r$.

Convex measures and $H(p, \lambda)$

Theorem 2. Let $r \geq 2$ and X be a ($-1 / r$)-concave random vector. Then for every $0<p<r / 2, X$ satisfies the assumption $H(p, C), C$ being a universal constant.

Theorem 3. Let $r \geq 2$ and X be a ($-1 / r$)-concave random vector. Then for every $0<p<r / 2$,

$$
\left(\mathbb{E}|X|_{2}^{p}\right)^{1 / p} \leq C\left(\mathbb{E}|X|_{2}+\sigma_{p}(X)\right) .
$$

Convex measures. Concentration of $|X|_{2}$

Corollary. Let $r \geq 2$ and X be $a(-1 / r)$-concave random vector. Then for every $t>0$,

$$
\mathbb{P}\left(|X|_{2}>t \sqrt{n}\right) \leq\left(\frac{c \max (1, r / \sqrt{n})}{t}\right)^{r / 2}
$$

Convex measures. Concentration of $|X|_{2}$

Corollary. Let $r \geq 2$ and X be a $(-1 / r)$-concave random vector. Then for every $t>0$,

$$
\mathbb{P}\left(|X|_{2}>t \sqrt{n}\right) \leq\left(\frac{c \max (1, r / \sqrt{n})}{t}\right)^{r / 2}
$$

Srivastava and Vershynin ['12] \rightarrow Approximation of the covariance matrix of convex measures.

Convex measures. Concentration of $|X|_{2}$

Corollary. Let $r \geq 2$ and X be $a(-1 / r)$-concave random vector. Then for every $t>0$,

$$
\mathbb{P}\left(|X|_{2}>t \sqrt{n}\right) \leq\left(\frac{c \max (1, r / \sqrt{n})}{t}\right)^{r / 2}
$$

Srivastava and Vershynin ['12] \rightarrow Approximation of the covariance matrix of convex measures.
Corollary. Let $r \geq \log n$ and X be a $(-1 / r)$-concave isotropic random vector. Let X_{1}, \ldots, X_{N} be independent copies of X. Then for every $\varepsilon \in(0,1)$ and every $N \geq C(\varepsilon) n$, one has

$$
\mathbb{E}\left\|\frac{1}{N} \sum_{i=1}^{N} X_{i} X_{i}^{\top}-I\right\| \leq \varepsilon
$$

THANK YOU

