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Plan.

First part.
• Log-concave measures : a basic concept in probability
and geometry.
• Some questions still of interest :
1) Approximation of the covariance matrix
2) The spectral gap inequality : conjecture of Kannan,
Lovász and Simonovits
3) The variance conjecture (a particular case of the
previous one) and concentration of mass

Second part.
• Another general case : s-concave measures for s < 0.
• New results about the concentration of mass.



Log-concave measures.
Let f : Rn → R+ such that ∀x, y ∈ Rn,∀θ ∈ [0, 1],

f ((1− θ)x + θy) ≥ f (x)1−θf (y)θ

A measure with density f ∈ Lloc
1 is said to be log-concave

and satisfies ∀A,B ⊂ Rn,∀θ ∈ [0, 1],

µ((1− θ)A + θB) ≥ µ(A)1−θµ(B)θ
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Prékopa-Leindler...



Log-concave measures.
Let f : Rn → R+ such that ∀x, y ∈ Rn,∀θ ∈ [0, 1],

f ((1− θ)x + θy) ≥ f (x)1−θf (y)θ

A measure with density f ∈ Lloc
1 is said to be log-concave

and satisfies ∀A,B ⊂ Rn,∀θ ∈ [0, 1],

µ((1− θ)A + θB) ≥ µ(A)1−θµ(B)θ

60’s and 70’s : Henstock-Mc Beath, Borell,
Prékopa-Leindler...

Classical examples :
1) Probabilistic : f (x) = exp(−|x|22), f (x) = exp(−|x|1)
2) Geometric : f (x) = 1K(x) where K is a convex body.
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Isoperimetric problems for convex bodies and a
localization lemma. Discrete Comput. Geom. 13 (1995),
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Random walks and an O∗(n5) volume algorithm for convex
bodies. Random Structures Algorithms 11 (1997), no. 1,
1–50.
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K ⊂ Rn is given by a separation oracle

Elekes (’86), Bárány-Füredi (’86) : it is not possible to
compute with a deterministic algorithm in polynomial time
the volume of a convex body (even approximately)

Randomization - Given ε and η, Dyer-Frieze-Kannan(’89)
established randomized algorithms returning a
non-negative number ζ such that

(1− ε)ζ < Vol K < (1 + ε)ζ

with probability at least 1− η. The running time of the
algorithm is polynomial in n, 1/ε and log(1/η).

The number of oracle calls is a random variable and the
bound is for example on its expected value.
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Computing the volume of a convex body
The randomized algorithm proposed by Kannan, Lovász
and Simonovits improves significantly the polynomial
dependence.
Rounding - Put the convex body in a position where

Bn
2 ⊂ K ⊂ d Bn

2where d ≤ nconst.
- Idea : find an algorithm which produces in polynomial
time a matrix A such that AK is in an approximate
isotropic position.
Conjecture 2 of KLS (’97) : solved in 2010 by Adamczak,
Litvak, Pajor, Tomczak-Jaegermann

Computing the volume - Monte Carlo algorithm, estimates
of local conductance.
Conjecture 1 of KLS (’95) : isoperimetric inequality -
open !



Approximation of the covariance matrix.

Question of KLS (’97) : let X be a vector uniformly
distributed on a convex body K, X1, . . . ,XN ind. copies of
X, what is the smallest N such that∥∥∥∥∥ 1

N

N∑
j=1

Xj X>j − EX X>
∥∥∥∥∥ ≤ ε

∥∥EX X>
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‖ · ‖ is the operator norm
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Approximation of the covariance matrix.

Question of KLS (’97) : let X be a vector uniformly
distributed on a convex body K, X1, . . . ,XN ind. copies of
X, what is the smallest N such that∥∥∥∥∥ 1

N

N∑
j=1

Xj X>j − Id

∥∥∥∥∥ ≤ ε

Assume EX X> = Id, you want to control the smallest
and the largest singular values.

1− ε ≤ λmin

(
1
N

N∑
j=1

Xj X>j

)
≤ λmax

(
1
N

N∑
j=1

Xj X>j

)
≤ 1 + ε

KLS n2/ε2, Bourgain n log3 n/ε2, ... Rudelson, Guédon,
Paouris, Aubrun, Giannopoulos
ALPT (’10) n/ε2 : for general log-concave vectors
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Isoperimetric problem.

S

K\S
ε

Define
µ+(S) = lim inf

ε→0

µ(S + εBn
2)− µ(S)
ε

Question. Find the largest h such that

∀ S ⊂ K, µ+(S) ≥ h µ(S)(1− µ(S)) ?

µ is log-concave with log concave density f .
The probability dµ(x) = f (x)dx is log-concave isotropic.
Poincaré type inequality. For every regular function F,

h2 Var µF ≤
∫
|∇F(x)|22 f (x)dx.

The conjecture is that h is a universal constant.
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h ≥ c∫
K |x− gK|2dx

h ≥ c
(Var |X|22)1/4 .

This conjecture implies :
Strong concentration of the Euclidean norm

P
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√

n
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≤ C exp(−c t

√
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Large and medium scales !



Thin shell and central limit theorem
CLT : classical case. x1, . . . , xn, n i.i.d random variables,

Ex2
i = 1,Exi = 0,Ex3

i = τ

then ∀θ ∈ Sn−1

sup
t∈R

∣∣∣∣∣P
(

n∑
i=1

θixi ≤ t

)
−
∫ t

−∞
e−u2/2 du√

2π

∣∣∣∣∣ ≤ τ |θ|24 =
τ√
n
.
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Thin shell conjecture : ∀n,∃εn such that for every random
vector uniformly distributed in an isotropic convex body

P
(∣∣∣∣ |X|2√n

− 1
∣∣∣∣ ≥ εn

)
≤ εn

with lim+∞ εn = 0. Or more vaguely, does Var |X|2/n goes
to zero as n→∞?
Theorem[ABP]. Thin shell⇒ CLT
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ball - Large and small scale.

The log-concave case
In isotropic position, E|X|22 = n and by classical
log-concavity property (cf Borell)

∀t ≥ 1, P{|X|2 ≥ c t
√

n} ≤ 2 e−c t.

[Alesker ’98]
∀t ≥ 1, P{|X|2 ≥ c t

√
n} ≤ 2 e−c t2 .

[Paouris ’06] For a log-concave isotropic probability
∀t ≥ 1, P{|X|2 ≥ c t

√
n} ≤ 2 e−c t

√
n.

[Paouris ’09] For a log-concave isotropic probability
∀ε ≤ 1, P{|X|2 ≤ c ε

√
n} ≤ 2 εc

√
n.



Concentration of the volume in a Euclidean
ball - Medium scale.

Theorem. Klartag[’07] [Fleury-Guédon-Paouris ’07]
Let X be a log-concave isotropic vector
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Concentration of the volume in a Euclidean
ball - Medium scale.

Theorem. Klartag[’07] [Fleury-Guédon-Paouris ’07]
Let X be a log-concave isotropic vector

∀t > 0, P
(∣∣|X|2 −√n

∣∣ ≥ t
√

n
)
≤ 2 e− c

√
t(log n)c

.

Klartag[’07] [Fleury ’09]. Polynomial estimates.

Theorem [Guédon-Milman ’11]

∀t ≥ 0, P
(∣∣|X|2 −√n

∣∣ ≥ t
√

n
)
≤ C exp(−c

√
n min(t3, t))

Var |X|22 ≤ C n5/3 and h ≥ c n−5/12

Variance conjecture : Var |X|2 ≤ C or Var |X|22 ≤ Cn
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Pictures - Intuition in high dimension.

volume inside a shell of width
√

n/n1/6
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1/p for some values of p.

• X log-concave random vector. Paouris Theorem (large
deviation) may be written as (ALLOPT ’12)

∀p ≥ 1, (E|X|p2)
1/p ≤ C E|X|2 + cσp(X) (?)

where σp(X) = sup|z|2≤1 (E〈z,X〉p)
1/p .

In isotropic position, E|X|2 ≤ (E|X|22)1/2 =
√

n.
By Borell’s inequality (Khintchine type inequality)

∀p ≥ 1, (E〈z,X〉p)1/p ≤ C p
(
E〈z,X〉2

)1/2
= C p |z|2

Hence ∀p ≥ 1, (E|X|p2)
1/p ≤ C

√
n + cp

Take p = t
√

n, Markov gives

∀t ≥ 1, P
(
|X|2 ≥ t

√
n
)
≤ e−c t

√
n.



Concentration of the mass in a Euclidean ball or shell
⇔

Behavior of (E|X|p2)
1/p for some values of p.

• X log-concave random vector. Paouris Theorem (large
deviation) may be written as (ALLOPT ’12)

∀p ≥ 1, (E|X|p2)
1/p ≤ C E|X|2 + cσp(X) (?)

where σp(X) = sup|z|2≤1 (E〈z,X〉p)
1/p .

• Small Ball Estimates of Paouris - Negative moments.

• Variance conjecture - slightly more, cf KLS. In isotropic
position,

∀p ∈ [2, c
√

n], (E|X|p2)
1/p ≤

√
n+c

p√
n
= (E|X|22)1/2(1+c p

n

)
.

• In view of (?), more tractable conjecture :
∀p ≥ 1, (E|X|p2)

1/p ≤ E|X|2 + cσp(X)



Other probabilistic questions.

For which random vector do we have that for any norm,

(E‖X‖p)1/p ≤ C E‖X‖+ c sup
‖z‖?≤1

(E〈z,X〉p)1/p.

Examples : Gaussian and Rademacher vectors, for all
p ≥ 1. Other example of the form X =

∑
ξivi with ξi

independant, symmetric random variables with
logarithmicaly concave tails (see the work of Gluskin,
Kwapien, Latała).

It is conjecture that it is true for log-concave random
vectors (Latała).



Other probabilistic questions.

For which random vector do we have that for any norm,

(E‖X‖p)1/p ≤ C E‖X‖+ c sup
‖z‖?≤1

(E〈z,X〉p)1/p.

Examples : Gaussian and Rademacher vectors, for all
p ≥ 1. Other example of the form X =

∑
ξivi with ξi

independant, symmetric random variables with
logarithmicaly concave tails (see the work of Gluskin,
Kwapien, Latała).

It is conjecture that it is true for log-concave random
vectors (Latała).

Paouris Theorem tells that it is true for log-concave and
the Euclidean norm !
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Let p > 0, m = dpe, and λ ≥ 1. A random vector X in E
satisfies the assumption H(p, λ) if for every linear
mapping A : E → Rm s. t. Y = AX is non-degenerate there
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New class of random vectors

The hypothesis H(p, λ) :
Let p > 0, m = dpe, and λ ≥ 1. A random vector X in E
satisfies the assumption H(p, λ) if for every linear
mapping A : E → Rm s. t. Y = AX is non-degenerate there
exists a gauge ‖ · ‖ on Rm s. t. E‖Y‖ <∞ and

(E‖Y‖p)1/p ≤ λE‖Y‖.

• Any m-dimensional norm can be approx. by em numbers
of linear forms

(E‖Y‖p)1/p ≤ C sup
‖ϕ‖?≤1

(E|ϕ(Y)|p)1/p

→ Rademacher, Gaussian, ψ2 vectors satisfy H(p,Cψ2)
for every p ≤ n. Wlog, assume isotropicity of the vector AX

(E|Y|p2)
1/p ≤ Cψ

√
p sup
|ϕ|2≤1

E|〈ϕ,Y〉| ≤ Cψ
√

m ≤ Cψ2
√

2E|Y|2



Results. (AGLLOPT? ’12)

The hypothesis H(p, λ) :
Let p > 0, m = dpe, and λ ≥ 1. A random vector X in E
satisfies the assumption H(p, λ) if for every linear
mapping A : E → Rm s. t. Y = AX is non-degenerate there
exists a gauge ‖ · ‖ on Rm s. t. E‖Y‖ <∞ and

(E‖Y‖p)1/p ≤ λE‖Y‖.

? Adamczak, G, Latała, Litvak, Oleszkiewicz, Pajor, Tomczak-Jaegermann



Results. (AGLLOPT? ’12)

The hypothesis H(p, λ) :
Let p > 0, m = dpe, and λ ≥ 1. A random vector X in E
satisfies the assumption H(p, λ) if for every linear
mapping A : E → Rm s. t. Y = AX is non-degenerate there
exists a gauge ‖ · ‖ on Rm s. t. E‖Y‖ <∞ and

(E‖Y‖p)1/p ≤ λE‖Y‖.

Theorem 1 Let p > 0 and λ ≥ 1. If a random vector X
satisfies H(p, λ) then

(E|X|p2)
1/p ≤ c (λE|X|2 + σp(X))

where c is a universal constant.
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‖z‖ = (EX〈z,X〉p)1/p

is the dual norm of Zp bodies, at the heart of all proofs.



Proof : X random vector in E, m = dpe, λ ≥ 1, A : E → Rm

Gaussian Concentration. G standard Gaussian vector

(EGEX〈G,X〉p)1/p ≤ EG(EX〈G,X〉p)1/p + c
√

p σp(X)

Gordon min-max theorem. A standard Gaussian matrix

EG(EX〈G,X〉p)1/p ≤ EA min
|z|2=1

(EX〈z,AX〉p)1/p + c
√

p σp(X)



Proof : X random vector in E, m = dpe, λ ≥ 1, A : E → Rm

Gaussian Concentration. G standard Gaussian vector

(EGEX〈G,X〉p)1/p ≤ EG(EX〈G,X〉p)1/p + c
√

p σp(X)

Gordon min-max theorem. A standard Gaussian matrix

EG(EX〈G,X〉p)1/p ≤ EA min
|z|2=1

(EX〈z,AX〉p)1/p + c
√

p σp(X)

Geometric lemma. X symmetric vector satisfying H(p, λ)

min
|z|2=1

(EX〈z,AX〉p)1/p ≤ λ EX|AX|2



Proof : X random vector in E, m = dpe, λ ≥ 1, A : E → Rm

Gaussian Concentration. G standard Gaussian vector

(EGEX〈G,X〉p)1/p ≤ EG(EX〈G,X〉p)1/p + c
√

p σp(X)

Gordon min-max theorem. A standard Gaussian matrix

EG(EX〈G,X〉p)1/p ≤ EA min
|z|2=1

(EX〈z,AX〉p)1/p + c
√

p σp(X)

Geometric lemma. X symmetric vector satisfying H(p, λ)

min
|z|2=1

(EX〈z,AX〉p)1/p ≤ λ EX|AX|2

(E|X|p2)
1/p ∼ 1

√
p
(EGEX〈G,X〉p)1/p



Proof : X random vector in E, m = dpe, λ ≥ 1, A : E → Rm

Gaussian Concentration. G standard Gaussian vector

(EGEX〈G,X〉p)1/p ≤ EG(EX〈G,X〉p)1/p + c
√

p σp(X)

Gordon min-max theorem. A standard Gaussian matrix

EG(EX〈G,X〉p)1/p ≤ EA min
|z|2=1

(EX〈z,AX〉p)1/p + c
√

p σp(X)

Geometric lemma. X symmetric vector satisfying H(p, λ)

min
|z|2=1

(EX〈z,AX〉p)1/p ≤ λ EX|AX|2

(E|X|p2)
1/p ∼ 1

√
p
(EGEX〈G,X〉p)1/p .

1
√

p
EA min
|z|2=1

(EX〈z,AX〉p)1/p+ σp(X)



Proof : X random vector in E, m = dpe, λ ≥ 1, A : E → Rm

Gaussian Concentration. G standard Gaussian vector

(EGEX〈G,X〉p)1/p ≤ EG(EX〈G,X〉p)1/p + c
√

p σp(X)

Gordon min-max theorem. A standard Gaussian matrix

EG(EX〈G,X〉p)1/p ≤ EA min
|z|2=1

(EX〈z,AX〉p)1/p + c
√

p σp(X)

Geometric lemma. X symmetric vector satisfying H(p, λ)

min
|z|2=1

(EX〈z,AX〉p)1/p ≤ λ EX|AX|2

(E|X|p2)
1/p ∼ 1

√
p
(EGEX〈G,X〉p)1/p ≤ 1

√
p
EA min
|z|2=1

(EX〈z,AX〉p)1/p + σp(X)

.
1
√

p
EA λ EX|AX|2 + σp(X) . λ E|X|2 + σp(X)



s-concave random vectors, s < 0

Convex measures : definition
Let s < 1/n. A probability Borel measure µ on Rn is called
s-concave if ∀A,B ⊂ Rn,∀θ ∈ [0, 1],

µ((1− θ)A + θB) ≥ ((1− θ)µ(A)s + θµ(B)s)1/s

whenever µ(A)µ(B) > 0.

For s = 0, this corresponds to log-concave measures.

The class of s-concave measures was introduced and
studied by Borell in the 70’s. A s-concave probability
(s ≤ 0) is supported on some convex subset of an affine
subspace where it has a density.



s-concave random vectors, s < 0

Convex measures : properties
Let s = −1/r.
When the support generates the whole space, a convex
measure has a density g which has the form

g = f−β with β = n + r

and f is a positive convex function on Rn. (Borell).
Example :

g(x) = c(1 + ‖x‖)−n−r, r > 0.

• A log-concave prob is (−1/r)-concave for any r > 0
• The linear image of a (−1/r)-concave vector is also
(−1/r)-concave.
• The Euclidean norm of a (−1/r)-concave random vector
has moments of order 0 < p < r.



Convex measures and H(p, λ)

Theorem 2. Let r ≥ 2 and X be a (−1/r)-concave random
vector. Then for every 0 < p < r/2, X satisfies the
assumption H(p,C), C being a universal constant.

Theorem 3. Let r ≥ 2 and X be a (−1/r)-concave random
vector. Then for every 0 < p < r/2,

(E|X|p2)
1/p ≤ C(E|X|2 + σp(X)).



Convex measures. Concentration of |X|2
Corollary. Let r ≥ 2 and X be a (−1/r)-concave random
vector. Then for every t > 0,

P
(
|X|2 > t

√
n
)
≤
(

c max(1, r/
√

n)
t

)r/2
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Convex measures. Concentration of |X|2
Corollary. Let r ≥ 2 and X be a (−1/r)-concave random
vector. Then for every t > 0,

P
(
|X|2 > t

√
n
)
≤
(

c max(1, r/
√

n)
t

)r/2

Srivastava and Vershynin [’12]→ Approximation of the
covariance matrix of convex measures.
Corollary. Let r ≥ log n and X be a (−1/r)-concave
isotropic random vector. Let X1, . . . ,XN be independent
copies of X. Then for every ε ∈ (0, 1) and every
N ≥ C(ε)n, one has

E

∥∥∥∥∥ 1
N

N∑
i=1

XiX>i − I

∥∥∥∥∥ ≤ ε.
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