On the existence of subgaussian directions for
log-concave measures
joint work with A. Giannopoulos and P. Valettas.

Grigoris Paouris

Department of Mathematics
Texas A&M University

May, 2010
\mathcal{P}_n : the class of all probability measures in \mathbb{R}^n which are absolutely continuous with respect to the Lebesgue measure.

μ on \mathbb{R}^n is called log-concave if for any Borel sets A, B and any $\lambda \in (0, 1)$, $\mu(\lambda A + (1 - \lambda)B) \geq \mu(A)^\lambda \mu(B)^{1-\lambda}$.

$\mu \in \mathcal{P}_n$ is called centered if for all $\theta \in S^{n-1}$, $\int_{\mathbb{R}^n} \langle x, \theta \rangle d\mu(x) = 0$.

Let K a convex body in \mathbb{R}^n. Then $d\mu := 1_K dx$ is log-concave.
A direction $\theta \in S^{n-1}$ is subgaussian for μ with constant $r > 0$ if

$$\|\langle \cdot, \theta \rangle \|_{\psi_2} \leq rm_{\theta},$$

where m_{θ} is the median of $|\langle \cdot, \theta \rangle|$ with respect to μ, and

$$\|f\|_{\psi_2} = \inf \left\{ t > 0 : \int_{\mathbb{R}^n} \exp \left(\left(|f(x)|/t \right)^2 \right) \, d\mu(x) \leq 2 \right\}.$$

Let K centered convex body in \mathbb{R}^n, $|K| = 1$,

$$h_{Z_2(K)}(\theta) = \left(\int_K |\langle x, \theta \rangle|^2 \, dx \right)^{\frac{1}{2}}, \quad \theta \in S^{n-1}$$

We say that K is isotropic if $Z_2(K) = L_K B_2^n$.
The Question

[Bourgain] If $r_K(\theta) = O(1)$ for all θ, then $L_K = O(1)$.

Question: [V. Milman] is it true that every convex body K has at least one “subgaussian” direction (with constant $r = O(1)$)?

[Bobkov- Nazarov] Yes, if K is 1-uncoditional.

[Klartag] Yes, with $r = \log^2 n$.

[G-P-P] Yes, with $r = \log n$.

[G-P-V] Yes, with $r = \sqrt{\log n}$.
The result

Theorem (i) If K is a centered convex body of volume 1 in \mathbb{R}^n, then there exists $\theta \in S^{n-1}$ such that

$$|\{x \in K : |\langle x, \theta \rangle| \geq cth_{Z_2(K)}(\theta)\}| \leq e^{-\frac{t^2}{\log(t+1)}}$$

for all $t \geq 1$, where $c > 0$ is an absolute constant.

(ii) If μ is a centered log-concave probability measure on \mathbb{R}^n, then there exists $\theta \in S^{n-1}$ such that

$$\mu(\{x \in \mathbb{R}^n : |\langle x, \theta \rangle| \geq ctE|\langle \cdot, \theta \rangle|\}) \leq e^{-\frac{t^2}{\log(t+1)}}$$

for all $1 \leq t \leq \sqrt{n \log n}$, where $c > 0$ is an absolute constant.
The $\Psi_2(K)$ body

Let K be a centered convex body of volume 1 in \mathbb{R}^n. Definition of $\Psi_2(K)$: it is the symmetric convex body with support function

$$h_{\Psi_2(K)}(\theta) = \sup_{1 \leq p \leq n} \frac{\left(\int_K |\langle x, \theta \rangle|^p dx \right)^{\frac{1}{p}}}{\sqrt{p}} = \sup_{1 \leq p \leq n} \frac{h_{Z_p(K)}(\theta)}{\sqrt{p}}.$$

From the definition, one has $Z_p(K) \subseteq \sqrt{p} \Psi_2(K)$ for all $1 \leq p \leq n$. In particular, $Z_2(K) \subseteq \sqrt{2} \Psi_2(K)$, which implies that

$$|\Psi_2(K)|^{1/n} \geq c \frac{L_K}{\sqrt{n}}.$$

Conjecture: $|\Psi_2(K)|^{1/n} \leq c' \frac{L_K}{\sqrt{n}}$.
The $\Psi_2(K)$ body

Theorem Let K be a centered convex body of volume 1 in \mathbb{R}^n. Then,

$$|\Psi_2(K)|^{1/n} \leq c \frac{\sqrt{\log n}}{\sqrt{n}} L_K.$$

Note that $\Psi_2(K) = \text{conv}\left\{ \frac{Z_p(K)}{\sqrt{p}}, p \in [1, n] \right\}$,

and using the fact that $Z_{2p}(K) \sim Z_p(K)$, we may write

$$\Psi_2(K) \sim \text{conv}\left\{ \frac{Z_p(K)}{\sqrt{p}}, p = 2^k, k = 1, \ldots, \log_2 n \right\}.$$

Known (P., L-Z) : $|Z_p(K)|^{1/n} \leq c \sqrt{\frac{p}{n}} L_K$, $|Z_p(K)|^{1/n} \geq c \sqrt{\frac{p}{n}}$.

G. Paouris (Texas A&M University)
The $\Psi_2(K)$ body

For any A, B, $|A| \leq N(A, B)|B|$.

Lemma

Let A_1, \ldots, A_s be subsets of RB_2^k. For every $t > 0$,

$$N(\text{conv}(A_1 \cup \cdots \cup A_s), 2tB_2^k) \leq \left(\frac{cR}{t} \right)^s \prod_{i=1}^{s} N(A_i, tB_2^k).$$

Regularity of the covering numbers of $Z_q(K)$: (G-P-P)

$$\log N(Z_q(K), ct\sqrt{qLKB_2^n}) \leq \frac{n}{t}, \; t \geq 1.$$
Regularity of the covering numbers of $Z_q(K)$

Proposition Let K be an isotropic convex body in \mathbb{R}^n, let $1 \leq q \leq n$ and $t \geq 1$. Then,

$$\log N (Z_q(K), c_1 t \sqrt{qL_K B_2^n}) \leq c_2 \frac{n}{t^2} + c_3 \frac{\sqrt{n\sqrt{q}}}{t},$$

where $c_1, c_2, c_3 > 0$ are absolute constants.

Corollary Let K be an isotropic convex body in \mathbb{R}^n and let $1 \leq q \leq n$. Define $\beta \geq 1$ by the equation $q = n^{1/\beta}$. Let $\alpha := \min\{\beta, 2\}$. Then,

$$N (Z_q(K), c_1 t \sqrt{qL_K B_2^n}) \leq \exp \left(c_2 \frac{n}{t^\alpha} \right),$$

where $c_1, c_2 > 0$ are absolute constants.
Sudakov-type estimates

[Talagrand] Let \(\gamma_n \) be the n-dimensional Gaussian measure and let \(C \subseteq \mathbb{R}^n \) be a symmetric convex body. Then, for any \(s, t > 0 \) we have:

\[
N(\mathcal{B}_2^n, tC^\circ) \leq e^{(2s/t)^2} [\gamma_n(sC^\circ)]^{-1}.
\]

Let \(m_1 \) such that \(\gamma_n(m_1 C^\circ) = \frac{1}{2} \). Also

\[
m_1 \simeq l_1(\gamma_n, C^\circ) = \int_{\mathbb{R}^n} \|x\|_{C^\circ} d\gamma_n(x) \simeq \sqrt{n}W(C).
\]
Sudakov-type estimates

Let $0 < p$ and let m_p such that $\gamma_n(m_p C^\circ) = \frac{1}{2p}$. Also

If we write I_{-p} for

$$I_{-p} \equiv I_{-p}(\gamma_n, C) := \left(\int_{\mathbb{R}^n} \|x\|^{-p}_K d\gamma_n(x)\right)^{-1/p}.$$

Then (Markov’s inequality) $m_p \geq \frac{1}{2} I_{-p}$.

Assume that for some p and some $\alpha > 1$ we have the following “regularity” condition:

$I_{-p} \leq \alpha I_{-2p}$.

Then, by applying the Paley-Zygmund inequality we get

$$\gamma_n(x : \|x\|_C^\circ \leq 2I_{-p}) \geq 2^{-2p \log(2\alpha)}.$$

It follows that

$$m_{2p \log(2\alpha)} \leq 2I_{-p}.$$

Also

$$I_{-p}(\gamma_n, C^\circ) \asymp \sqrt{n} W_{-p}(C).$$
Corollary Let C be a symmetric convex body in \mathbb{R}^n and let $1 \leq p \leq n/2$ be such that $W_{-2p}(C) \simeq W_{-p}(C)$. Then,

$$\log N \left(C, c_1 \sqrt{n/p} W_{-p}(C) B_2^n \right) \leq c_2 p,$$

where $c_1, c_2 > 0$ are absolute constants.

Proof: Choose $s := m_p \simeq \sqrt{n W_{-p}(C)}$. Then

$$N(B_2^n, tK^\circ) \leq e^{\frac{nW_{-p}(C)^2}{t^2}} [\gamma_n(sK^\circ)]^{-1} \leq e^{\frac{nW_{-p}(C)^2}{t^2}} e^p.$$

Choose $t = \sqrt{n/p} W_{-p}(C)$, then $\log N(B_2^n, tK^\circ) \leq cp$. Then “duality of entropy” (A-M-S).
Let $-n < p \leq n$, $I_q(K) = \left(\int_K \|x\|_2^p dx \right)^{\frac{1}{p}}$. Let $q > 0$, then (P.),

$$I_q(K) \simeq \sqrt{n} W_q(Z_q(K)),$$

$$I_{-q}(K) \simeq \sqrt{n} W_{-q}(Z_q(K)).$$

Then

$$c_1 \sqrt{q} \leq W_{-n}(Z_q(K)) \leq W_{-q}(Z_q(K)) \leq c_2 \sqrt{q} L_K.$$
Proposition Let K be an isotropic convex body in \mathbb{R}^n. There exists an isotropic convex body K_1 in \mathbb{R}^n with the following properties:

1. $L_{K_1} \leq c_1$.
2. $c_2 Z_p(K_1) \subseteq \frac{Z_p(K)}{L_K} + \sqrt{p} B_2^n \subseteq c_3 Z_p(K_1)$ for all $1 \leq p \leq n$.
3. $c_4 \psi_2(K_1) \subseteq \frac{\psi_2(K)}{L_K} \subseteq c_5 \psi_2(K_1)$.

The constants c_i, $i = 1, \ldots, 5$ are absolute positive constants.
Proposition Let K_1 be an isotropic convex body as before, let $1 \leq q \leq n/2$ and $1 \leq t \leq \sqrt{n/q}$. Then,

$$\log N \left(Z_q(K_1), c_1 t \sqrt{q} B_2^n \right) \leq c_2 \frac{n}{t^2}.$$

Proof: For $q \leq r \leq n$, $W_-(Z_q(K)) \simeq \sqrt{q}$. Then

$$\log N \left(Z_q(K_1), \sqrt{\frac{n}{r}} W_-(Z_q(K)) B_2^n \right) \leq r.$$

Set $t = \sqrt{\frac{n}{r}}$. \qed
Let $2^{k_1} = \frac{n}{\log n}$. Let $V_1 := \text{conv} \left\{ \frac{Z_p(K_1)}{\sqrt{p}}, p = 2^k, k = 1, \ldots, k_1 \right\}$ and $V_2 := \text{conv} \left\{ \frac{Z_p(K_1)}{\sqrt{p}}, p = 2^k, k = k_1, \ldots, \log_2 n \right\}$.

Note that $\Psi_2(K_1) \sim \text{conv} \left\{ V_1, V_2 \right\}$.

Then $\log N \left(V_1, \sqrt{\log nB_2^n} \right) \leq n$ and $\log N \left(V_2, \log \log nB_2^n \right) \leq n$.

So, $\log N \left(\Psi_2(K_1, c\sqrt{\log nB_2^n}) \right) \leq n$ and

$$|\Psi_2(K_1)|^{\frac{1}{n}} \leq c \frac{\sqrt{\log n}}{\sqrt{n}}$$

So,

$$|\Psi_2(K)|^{\frac{1}{n}} \leq c \frac{\sqrt{\log n}}{n} L_K$$