Capturing Functions in High Dimension

Ronald DeVore
This talk will be concerned with approximating or capturing functions \(f \) of \(D \) variables with \(D \) large.
Capturing Functions in High Dimensions

- This talk will be concerned with approximating or capturing functions \(f \) of \(D \) variables with \(D \) large
- Many Application Domains: Parametric and Stochastic PDEs, Learning, Inverse problems, ...
Capturing Functions in High Dimensions

- This talk will be concerned with approximating or capturing functions f of D variables with D large.

- Many Application Domains: Parametric and Stochastic PDEs, Learning, Inverse problems, ...

- f may be Banach space valued but to make our life simple we will consider only real valued f.
Capturing Functions in High Dimensions

- This talk will be concerned with approximating or capturing functions f of D variables with D large

- Many Application Domains: Parametric and Stochastic PDEs, Learning, Inverse problems, ...

- f may be Banach space valued but to make our life simple we will consider only real valued f

- Many reasonable settings that occur in applications
This talk will be concerned with approximating or capturing functions f of D variables with D large.

Many Application Domains: Parametric and Stochastic PDEs, Learning, Inverse problems, ...

f may be Banach space valued but to make our life simple we will consider only real valued f.

Many reasonable settings that occur in applications.

We are given a budget n and can ask for the value of f at n points of our choosing - Each question is costly.
Capturing Functions in High Dimensions

- This talk will be concerned with approximating or capturing functions \(f \) of \(D \) variables with \(D \) large.

- Many Application Domains: Parametric and Stochastic PDEs, Learning, Inverse problems, ...

- \(f \) may be Banach space valued but to make our life simple we will consider only real valued \(f \).

- Many reasonable settings that occur in applications.

- We are given a budget \(n \) and can ask for the value of \(f \) at \(n \) points of our choosing - Each question is costly.

- From the answers we want to produce an accurate approximation to \(f \): For any other value of \(x \), we can cheaply produce an approximation to \(f(x) \).
Capturing Functions in High Dimensions

- This talk will be concerned with approximating or capturing functions f of D variables with D large
- Many Application Domains: Parametric and Stochastic PDEs, Learning, Inverse problems, ...
- f may be Banach space valued but to make our life simple we will consider only real valued f
- Many reasonable settings that occur in applications
- We are given a budget n and can ask for the value of f at n points of our choosing - Each question is costly
- From the answers we want to produce an accurate approximation to f: For any other value of x, we can cheaply produce an approximation to $f(x)$
- Where should we query f?
The Challenge of the Problem

We need to assume something about f
The Challenge of the Problem

- We need to assume something about f
- Usual Model for functions is based on smoothness
The Challenge of the Problem

- We need to assume something about f
- Usual Model for functions is based on smoothness
- This model is not sufficient in high dimension
The Challenge of the Problem

- We need to assume something about f
- Usual Model for functions is based on smoothness
- This model is not sufficient in high dimension
- Curse of Dimensionality
The Challenge of the Problem

- We need to assume something about f
- Usual Model for functions is based on smoothness
- This model is not sufficient in high dimension
- Curse of Dimensionality
- If we only assume f has s orders of smoothness the best we can approximated is order $O(n^{-s/D})$ where n is the number of parameters (dimension of approximation space) or number of queries of f or number of computations
The Challenge of the Problem

- We need to assume something about f
- Usual Model for functions is based on smoothness
- This model is not sufficient in high dimension
- Curse of Dimensionality
- If we only assume f has s orders of smoothness the best we can approximated is order $O(n^{-s/D})$ where n is the number of parameters (dimension of approximation space) or number of queries of f or number of computations
- When D is large s would have to be very large to overcome this.
New Models For Functions

We need better models - not based solely on smoothness - that match real world functions
New Models For Functions

- We need better models - not based solely on smoothness - that match real world functions
- Popular Models: Sparsity or Compressibility
New Models For Functions

- We need better models - not based solely on smoothness - that match real world functions
- Popular Models: Sparsity or Compressibility
- ψ_j (orthonormal) basis: $f = \sum_j c_j \psi_j$
New Models For Functions

- We need better models - not based solely on smoothness - that match real world functions.
- Popular Models: **Sparsity** or **Compressibility**
- ψ_j (orthonormal) basis: $f = \sum_j c_j \psi_j$
- **Sparsity**: small number k of coefficients are nonzero.
New Models For Functions

We need better models - not based solely on smoothness - that match real world functions

Popular Models: Sparsity or Compressibility

\[f = \sum_j c_j \psi_j \]

\(\psi_j \) (orthonormal) basis

Sparsity: small number \(k \) of coefficients are nonzero

Compressibility: coefficients have some decay (when rearranged in decreasing size)
New Models For Functions

- We need better models - not based solely on smoothness - that match real world functions

- Popular Models: Sparsity or Compressibility

- ψ_j (orthonormal) basis: $f = \sum_j c_j \psi_j$

- Sparsity: small number k of coefficients are nonzero

- Compressibility: coefficients have some decay (when rearranged in decreasing size)

- Typical assumption is the coefficients are in some (weak) ℓ_p with p small
New Models For Functions

- We need better models - not based solely on smoothness - that match real world functions

- Popular Models: Sparsity or Compressibility

 ψ_j (orthonormal) basis: $f = \sum_j c_j \psi_j$

- Sparsity: small number k of coefficients are nonzero

- Compressibility: coefficients have some decay (when rearranged in decreasing size)

 typical assumption is the coefficients are in some (weak) ℓ_p with p small

- May be useful but it also suffers curse of dimensionality
We need better models - not based solely on smoothness - that match real world functions.

Popular Models: **Sparsity** or **Compressibility**

\[f = \sum_j c_j \psi_j \]

- **Sparsity**: small number \(k \) of coefficients are nonzero
- **Compressibility**: coefficients have some decay (when rearranged in decreasing size)

Typical assumption is the coefficients are in some (weak) \(\ell_p \) with \(p \) small.

May be useful but it also suffers curse of dimensionality.

For example, for wavelet basis, such compressibility corresponds to some Besov smoothness \(f \in B^s_T(L_T) \) and again approximation is limited by \(O(n^{-s/D}) \).
HD Models

- Smoothness/Sparsity alone are usually not sufficient
HD Models

- Smoothness/Sparsity alone are usually not sufficient
- (New) approaches: Only a few variables or parameters are important
HD Models

- Smoothness/Sparsity alone are usually not sufficient
- (New) approaches: Only a few variables or parameters are important
- Manifold Learning; Laplacians on Graphs; Sensitivity Analysis; Variable Selection
HD Models

- Smoothness/Sparsity alone are usually not sufficient
- (New) approaches: Only a few variables or parameters are important
- Manifold Learning; Laplacians on Graphs; Sensitivity Analysis; Variable Selection
- Combine smoothness (sparsity) and variable reduction:
 \[f(x) = g(\varphi(x)) \]
HD Models

- Smoothness/Sparsity alone are usually not sufficient
- (New) approaches: Only a few variables or parameters are important
- Manifold Learning; Laplacians on Graphs; Sensitivity Analysis; Variable Selection
- Combine smoothness (sparsity) and variable reduction:

\[f(x) = g(\varphi(x)) \]

\[\varphi : \mathbb{R}^D \rightarrow \mathbb{R}^d, \ d << D \]
HD Models

- Smoothness/Sparsity alone are usually not sufficient
- (New) approaches: Only a few variables or parameters are important
- Manifold Learning; Laplacians on Graphs; Sensitivity Analysis; Variable Selection
- Combine smoothness (sparsity) and variable reduction:
 \[f(x) = g(\varphi(x)) \]
 \(\varphi : \mathbb{R}^D \rightarrow \mathbb{R}^d, \ d << D \)
 Perhaps \(\varphi(x) = Ax \) where \(A \) is a \(d \times D \) matrix
HD Models

- Smoothness/Sparsity alone are usually not sufficient
- (New) approaches: Only a few variables or parameters are important
- Manifold Learning; Laplacians on Graphs; Sensitivity Analysis; Variable Selection
- Combine smoothness (sparsity) and variable reduction:

\[f(x) = g(\varphi(x)) \]

- \(\varphi : \mathbb{R}^D \rightarrow \mathbb{R}^d \), \(d << D \)
- Perhaps \(\varphi(x) = Ax \) where \(A \) is a \(d \times D \) matrix
- \(g \) is defined on \(\mathbb{R}^d \) has smoothness of order \(s \)
HD Models

- Smoothness/Sparsity alone are usually not sufficient
- (New) approaches: Only a few variables or parameters are important
- Manifold Learning; Laplacians on Graphs; Sensitivity Analysis; Variable Selection
- Combine smoothness (sparsity) and variable reduction:

\[f(x) = g(\varphi(x)) \]

- \(\varphi : \mathbb{R}^D \rightarrow \mathbb{R}^d, \ d << D \)
- Perhaps \(\varphi(x) = Ax \) where \(A \) is a \(d \times D \) matrix
- \(g \) is defined on \(\mathbb{R}^d \) has smoothness of order \(s \)
- Parameters: \(d, D, s \), complexity of \(\varphi \)
HD Models

- Smoothness/Sparsity alone are usually not sufficient
- (New) approaches: Only a few variables or parameters are important
- Manifold Learning; Laplacians on Graphs; Sensitivity Analysis; Variable Selection
- Combine smoothness (sparsity) and variable reduction:
 \[f(x) = g(\varphi(x)) \]
 - \(\varphi : \mathbb{R}^D \rightarrow \mathbb{R}^d, \ d << D \)
 - Perhaps \(\varphi(x) = Ax \) where \(A \) is a \(d \times D \) matrix
 - \(g \) is defined on \(\mathbb{R}^d \) has smoothness of order \(s \)
- Parameters: \(d, D, s \), complexity of \(\phi \)
- How friendly are such functions to approximation?
Recovery from Point Queries

Let assume that $f(x) = f(x_1, \ldots, x_D)$ is defined and continuous on the cube $\Omega := [0, 1]^D$ with D large.
Recovery from Point Queries

Let assume that $f(x) = f(x_1, \ldots, x_D)$ is defined and continuous on the cube $\Omega := [0, 1]^D$ with D large.

We shall consider two models for f.
Recovery from Point Queries

- Let assume that $f(x) = f(x_1, \ldots, x_D)$ is defined and continuous on the cube $\Omega := [0, 1]^D$ with D large.

- We shall consider two models for f:
 1. f depends only on d variables:

 $$f(x_1, \ldots, x_D) = g(x_{j_1}, \ldots, x_{j_d})$$

 where d is small compared to D and g has some smoothness that may not be known.
Recovery from Point Queries

Let assume that $f(x) = f(x_1, \ldots, x_D)$ is defined and continuous on the cube $\Omega := [0, 1]^D$ with D large.

We shall consider two models for f

(i) f depends only on d variables:

$$f(x_1, \ldots, x_D) = g(x_{j_1}, \ldots, x_{j_d}),$$

where d is small compared to D and g has some smoothness that may not be known.

(ii) f can be approximated by functions of the type (i)
Recovery from Point Queries

Let assume that $f(x) = f(x_1, \ldots, x_D)$ is defined and continuous on the cube $\Omega := [0, 1]^D$ with D large.

We shall consider two models for f:

(i) f depends only on d variables:
$$f(x_1, \ldots, x_D) = g(x_{j_1}, \ldots, x_{j_d}),$$
where d is small compared to D and g has some smoothness that may not be known.

(ii) f can be approximated by functions of the type (i).

For this talk, we shall use smoothness conditions like $g \in C^s$ for some $s > 0$.
Recovery from Point Queries

Let assume that $f(x) = f(x_1, \ldots, x_D)$ is defined and continuous on the cube $\Omega := [0, 1]^D$ with D large.

We shall consider two models for f

(i) f depends only on d variables:
$$ f(x_1, \ldots, x_D) = g(x_{j_1}, \ldots, x_{j_d}), $$
where d is small compared to D and g has some smoothness that may not be known.

(ii) f can be approximated by functions of the type (i)

For this talk, we shall use smoothness conditions like $g \in C^s$ for some $s > 0$.

Our First Problem: Given a budget n of point values we can ask of f where should we take these samples and how well can we approximate f from these?
If we know \(j := (j_1, \ldots, j_d) \) then sampling \(f \) at \((L + 1)^d\) equally spaced points in the \(d \) dimensional space spanned by the coordinate vectors \(e_{j_1}, \ldots, e_{j_d} \) we can recover \(f \) to accuracy \(C(s)\|g\|C_s L^{-s} \)
Benchmark

If we know $\mathbf{j} := (j_1, \ldots, j_d)$ then sampling f at $(L + 1)^d$ equally spaced points in the d dimensional space spanned by the coordinate vectors e_{j_1}, \ldots, e_{j_d} we can recover f to accuracy $C(s)\|g\|_{C^s} L^{-s}$.

Our problem is to sample at the fewest number of points in the case we do not know $\mathbf{j} := (j_1, \ldots, j_d)$.
If we know $\mathbf{j} := (j_1, \ldots, j_d)$ then sampling f at $(L + 1)^d$ equally spaced points in the d dimensional space spanned by the coordinate vectors e_{j_1}, \ldots, e_{j_d} we can recover f to accuracy $C(s)\|g\|_{C^s}L^{-s}$.

Our problem is to sample at the fewest number of points in the case we do not know $\mathbf{j} := (j_1, \ldots, j_d)$.

Naively, we could consider all d dimensional subspaces, take L^d sample points in each.
If we know $j := (j_1, \ldots, j_d)$ then sampling f at $(L + 1)^d$ equally spaced points in the d dimensional space spanned by the coordinate vectors e_{j_1}, \ldots, e_{j_d} we can recover f to accuracy $C(s)\|g\|_{C^s} L^{-s}$.

Our problem is to sample at the fewest number of points in the case we do not know $j := (j_1, \ldots, j_d)$.

Naively, we could consider all d dimensional subspaces, take L^d sample points in each.

This would require $\binom{D}{d}(L + 1)^d$ points.
Benchmark

- If we know \(\mathbf{j} := (j_1, \ldots, j_d) \) then sampling \(f \) at \((L + 1)^d \) equally spaced points in the \(d \) dimensional space spanned by the coordinate vectors \(e_{j_1}, \ldots, e_{j_d} \) we can recover \(f \) to accuracy \(C(s) \|g\| C_s L^{-s} \).

- Our problem is to sample at the fewest number of points in the case we do not know \(\mathbf{j} := (j_1, \ldots, j_d) \).

- Naively, we could consider all \(d \) dimensional subspaces, take \(L^d \) sample points in each.

- This would require \(\binom{D}{d} (L + 1)^d \) points.

- We want and can to do much better.
First Results

DeVore-Petrova-Wojtaszczyk
First Results

DeVore-Petrova-Wojtaszczyk

Theorem
(i) Assume \(f(x_1, \ldots, x_D) = g(x_{j_1}, \ldots, x_{j_d}) \). By making \(C(d, S)L^d(\log_2 D) \) adaptive point queries we can recover \(f \) by \(\hat{f} \) with the following accuracy

\[
\| f - \hat{f} \|_{C(\Omega)} \leq C(S, d)\| g^{(s)} \|_{C([0,1]^d)}L^{-s}
\]

(ii) Suppose we only know that there is a \(g \) and \(j_1, \ldots, j_d \) such that \(\| f(x_1, \ldots, x_D) - g(x_{j_1}, \ldots, x_{j_d}) \|_{C(\Omega)} \leq \epsilon \). By making \(C(d, S)L^d(\log_2 D) \) adaptive point queries we can recover \(f \) by \(\hat{f} \) to the accuracy

\[
\| f - \hat{f} \|_{C(\Omega)} \leq C(S, d)\{ \| g^{(s)} \|_{C([0,1]^d)}L^{-s} + \epsilon \}
\]
Partitions

We shall describe the points at which we query f.
Partitions

- We shall describe the points at which we query \(f \).
- We say a collection \(\mathcal{A} \) of partitions \(\mathbf{A} = (A_1, \ldots, A_d) \) of \(\Lambda := \{1, 2, \ldots, D\} \) satisfy the **Partition Assumption** if...
Partitions

We shall describe the points at which we query f.

We say a collection \mathcal{A} of partitions $A = (A_1, \ldots, A_d)$ of $\Lambda := \{1, 2, \ldots, D\}$ satisfy the Partition Assumption if

(i) For each $j = (j_1, \ldots, j_d)$, there is an $A \in \mathcal{A}$ such that no two j_ν lie in the same cell A_i.
Partitions

We shall describe the points at which we query f

We say a collection \mathcal{A} of partitions $\mathcal{A} = (A_1, \ldots, A_d)$ of $\Lambda := \{1, 2, \ldots, D\}$ satisfy the **Partition Assumption** if

1. For each $j = (j_1, \ldots, j_d)$, there is an $A \in \mathcal{A}$ such that no two j_ν lie in the same cell A_i

2. For each $j = (j_1, \ldots, j_k)$ and $j \neq j_\nu$, $\nu = 1, \ldots, d$, there is an A such that the cell A_i which contains j contains none of the j_ν, $\nu = 1, \ldots, d$
Partitions

- We shall describe the points at which we query f.

- We say a collection \mathcal{A} of partitions $\mathbf{A} = (A_1, \ldots, A_d)$ of $\Lambda := \{1, 2, \ldots, D\}$ satisfy the **Partition Assumption** if
 1. For each $\mathbf{j} = (j_1, \ldots, j_d)$, there is an $A \in \mathbf{A}$ such that no two j_ν lie in the same cell A_i.
 2. For each $\mathbf{j} = (j_1, \ldots, j_k)$ and $j \neq j_\nu$, $\nu = 1, \ldots, d$, there is an A such that the cell A_i which contains j contains none of the j_ν, $\nu = 1, \ldots, d$.

- A family of partitions which satisfy (i) are called **Perfect Hashing** in combinatorics.
Partitions

- We shall describe the points at which we query f
- We say a collection \mathcal{A} of partitions $\mathcal{A} = (A_1, \ldots, A_d)$ of $\Lambda := \{1, 2, \ldots, D\}$ satisfy the Partition Assumption if
 - (i) For each $j = (j_1, \ldots, j_d)$, there is an $A \in \mathcal{A}$ such that no two j_ν lie in the same cell A_i
 - (ii) For each $j = (j_1, \ldots, j_k)$ and $j \neq j_\nu$, $\nu = 1, \ldots, d$, there is an A such that the cell A_i which contains j contains none of the j_ν, $\nu = 1, \ldots, d$
- A family of partitions which satisfy (i) are called Perfect Hashing in combinatorics
- We will use these partitions to construct query points so we want \mathcal{A} that satisfy the Partition Assumption with the smallest cardinality
Controlling Cardinality of A

It is easy to prove using probability that there exist A that satisfy (i) with $\#A \leq Cde^d \log_2 D$.
Controlling Cardinality of A

It is easy to prove using probability that there exist A that satisfy (i) with $\#A \leq Cde^d \log_2 D$.

For small d one can do this constructively, e.g. $d = 2$ use binary partitions.
Controlling Cardinality of A

- It is easy to prove using probability that there exist A that satisfy (i) with $\#A \leq Cde^d \log_2 D$

- For small d one can do this constructively, e.g. $d = 2$ use binary partitions

- It is still an open problem to determine the asymptotic behavior of the smallest perfect hashing collections when $d \geq 3$
Controlling Cardinality of A

- It is easy to prove using probability that there exist A that satisfy (i) with $\#A \leq Cde^d \log_2 D$.

- For small d one can do this constructively, e.g. $d = 2$ use binary partitions.

- It is still an open problem to determine the asymptotic behavior of the smallest perfect hashing collections when $d \geq 3$.

- To satisfy (ii) of the Partition Assumption we have to enlarge Perfect Hashing constructions. Our current constructions give $\#A \leq d^2 e^{2d} \ln D$.
Controlling Cardinality of \mathcal{A}

- It is easy to prove using probability that there exist \mathcal{A} that satisfy (i) with $\#\mathcal{A} \leq Cde^d \log_2 D$

- For small d one can do this constructively, e.g. $d = 2$ use binary partitions

- It is still an open problem to determine the asymptotic behavior of the smallest perfect hashing collections when $d \geq 3$

- To satisfy (ii) of the Partition Assumption we have to enlarge Perfect Hashing constructions. Our current constructions give $\#\mathcal{A} \leq d^2 e^{2d} \ln D$

- Probably this could be improved
Base points \mathcal{P}

The first points at which we query f are what we call base points.
Base points \mathcal{P}

- The first points at which we query f are what we call base points.
- The set \mathcal{P} of base points is defined as

$$P = P_A := \sum_{i=1}^{d} \alpha_i \chi_{A_i}, \quad \alpha_i \in \{0, 1/L, \ldots, 1\}, \quad A \in \mathcal{A}$$
The first points at which we query f are what we call base points.

The set P of base points is defined as

$$P = P_A := \sum_{i=1}^{d} \alpha_i A_i, \quad \alpha_i \in \{0, 1/L, \ldots, 1\}, \quad A \in \mathcal{A}$$

There are $(L + 1)^d \# \mathcal{A}$ points in P.
The first points at which we query \(f \) are what we call base points.

The set \(\mathcal{P} \) of base points is defined as
\[
P = P_A := \sum_{i=1}^{d} \alpha_i \chi_{A_i}, \quad \alpha_i \in \{0, 1/L, \ldots, 1\}, \quad A \in \mathcal{A}
\]

There are \((L + 1)^d \#\mathcal{A}\) points in \(\mathcal{P} \).

Projection Property: The important property of this set is that for any \(\mathbf{j} = (j_1, \ldots, j_d), 1 \leq j_1 < j_2 < \cdots < j_d \leq D \)
the projection of \(\mathcal{P} \) onto the \(d \)-dimensional space spanned by \(e_{j_1}, \ldots, e_{j_d} \) contains a uniform grid of the cube \([0, 1]^d\) with spacing \(h := 1/L \).
Base points \mathcal{P}

- The first points at which we query f are what we call base points.

- The set \mathcal{P} of base points is defined as
 \[P = P_A := \sum_{i=1}^{d} \alpha_i \chi_{A_i}, \quad \alpha_i \in \{0, 1/L, \ldots, 1\}, \quad A \in \mathcal{A} \]

- There are $(L + 1)^d \# \mathcal{A}$ points in \mathcal{P}.

- **Projection Property:** The important property of this set is that for any $j = (j_1, \ldots, j_d)$, $1 \leq j_1 < j_2 < \cdots < j_d \leq D$ the projection of \mathcal{P} onto the d-dimensional space spanned by e_{j_1}, \ldots, e_{j_d} contains a uniform grid of the cube $[0, 1]^d$ with spacing $h := 1/L$.

- For any $j = (j_1, \ldots, j_d)$ and any k-variate function g let $G_j(x_1, \ldots, x_D) := g(x_{j_1}, \ldots, x_{j_d})$.
The first points at which we query f are what we call base points.

The set \mathcal{P} of base points is defined as

$$P = P_A := \sum_{i=1}^{d} \alpha_i \chi_{A_i}, \quad \alpha_i \in \{0, 1/L, \ldots, 1\}, \quad A \in \mathcal{A}$$

There are $(L + 1)^d \# \mathcal{A}$ points in \mathcal{P}.

Projection Property: The important property of this set is that for any $j = (j_1, \ldots, j_d)$, $1 \leq j_1 < j_2 < \cdots < j_d \leq D$, the projection of \mathcal{P} onto the d-dimensional space spanned by e_{j_1}, \ldots, e_{j_d} contains a uniform grid of the cube $[0, 1]^d$ with spacing $h := 1/L$.

For any $j = (j_1, \ldots, j_d)$ and any k-variate function g, let $G_j(x_1, \ldots, x_D) := g(x_{j_1}, \ldots, x_{j_d})$.

If $f = G_j$ for some j, then knowing f on \mathcal{P} will determine g on a uniform grid with spacing h.

Marne2010 – p. 11/21
The base points are not sufficient to determine the change coordinates.
Padding points \(Q \)

- The base points are not sufficient to determine the change coordinates.
- To determine the change coordinates we query \(f \) at certain padding points which are adaptively chosen.
Padding points Q

- The base points are not sufficient to determine the change coordinates.
- To determine the change coordinates we query f at certain padding points which are adaptively chosen.
- A pair of points $P, P' \in \mathcal{P}$ is said to be admissible if they are subordinate to the same partition \mathcal{A} and there is a cell A_i of \mathcal{A} such that P and P' agree on all cells A_j, $j \neq i$ and on A_i, P and P' differ by $\pm 1/L$.
Padding points \(Q \)

- The base points are not sufficient to determine the change coordinates.

- To determine the change coordinates we query \(f \) at certain padding points which are adaptively chosen.

- A pair of points \(P, P' \in \mathcal{P} \) is said to be admissible if they are subordinate to the same partition \(A \) and there is a cell \(A_i \) of \(A \) such that \(P \) and \(P' \) agree on all cells \(A_j \), \(j \neq i \) and on \(A_i \), \(P \) and \(P' \) differ by \(\pm 1/L \).

- There are \(\leq 2d\#(\mathcal{P}) = 2d(L + 1)^d\#(A) \) such admissible pairs.
The base points are not sufficient to determine the change coordinates.

To determine the change coordinates we query f at certain padding points which are adaptively chosen.

A pair of points $P, P' \in \mathcal{P}$ is said to be admissible if they are subordinate to the same partition A and there is a cell A_i of A such that P and P' agree on all cells A_j, $j \neq i$ and on A_i, P and P' differ by $\pm 1/L$.

There are $\leq 2d\#(\mathcal{P}) = 2d(L + 1)^d\#(A)$ such admissible pairs.

Given an admissible pair P, P' associated to A and A_i and given any $B \in \mathcal{P}$ and $\nu \in \{1, \ldots, d\}$, we define

$$[P, P']_{B, \nu} := \begin{cases}
 P'(j), & \text{if } j \in A_i \cap B_\nu \\
 P(j), & \text{otherwise}
\end{cases}$$
Algorithm 1

- Intended for the case where $f = G_j$ for some $j = (j_1, \ldots, j_d)$
Algorithm 1

- Intended for the case where $f = G_j$ for some $j = (j_1, \ldots, j_d)$
- Given f, we ask for the values of f at all points in $P \cup Q$
Algorithm 1

- Intended for the case where \(f = G_j \) for some \(j = (j_1, \ldots, j_d) \)
- Given \(f \), we ask for the values of \(f \) at all points in \(\mathcal{P} \cup \mathcal{Q} \)
- Given these values, from the Projection Property we can find \(g \) on the lattice

\[
\mathcal{L}_d := \{h(i_1, \ldots, i_d) : 1 \leq i_1, \ldots, i_d \leq L\}
\]
Approximating g

We construct a piecewise polynomial approximation $A_{r,h}(g)$ from these values as follows.
Approximating g

- We construct a piecewise polynomial approximation $A_{r,h}(g)$ from these values as follows.
- For each cell $I = h^d[i_1, i_1 + 1] \times \cdots \times [i_d, i_d + 1]$, we choose a tensor product grid consisting of r^d points from hL_d closest to I.
We construct a piecewise polynomial approximation $A_{r,h}(g)$ from these values as follows:

1. For each cell $I = h^d[i_1, i_1 + 1] \times \cdots \times [i_d, i_d + 1]$, we choose a tensor product grid consisting of r^d points from $h\mathcal{L}_d$ closest to I.

2. We define p_I as the tensor product polynomial of degree $r - 1$ which interpolates g at these points.
Approximating g

- We construct a piecewise polynomial approximation $A_{r,h}(g)$ from these values as follows.
- For each cell $I = h^d[i_1, i_1 + 1] \times \cdots \times [i_d, i_d + 1]$, we choose a tensor product grid consisting of r^d points from $h\mathcal{L}_d$ closest to I.
- We define p_I as the tensor product polynomial of degree $r-1$ which interpolates g at these points.
- Then $A_{r,h}(g)(x) := p_I(x)$, $x \in I$, for all I gives an approximation to g satisfying

$$
\|g - A_{r,h}g\|_{C[0,1]^k} \leq C(s)\|g\|_{C^s} h^s
$$

as long as $s \leq r$.
Finding change coordinates

Given any admissible pair P, P', let A be the subordinating partition of P and P' and let A_i be the set in A where P and P' take differing values.
Finding change coordinates

- Given any admissible pair P, P', let A be the subordinating partition of P and P' and let A_i be the set in A where P and P' take differing values.
- We examine the values of f at all the padding points Q associated to this pair.
Finding change coordinates

- Given any admissible pair \(P, P' \), let \(A \) be the subordinating partition of \(P \) and \(P' \) and let \(A_i \) be the set in \(A \) where \(P \) and \(P' \) take differing values.
- We examine the values of \(f \) at all the padding points \(Q \) associated to this pair.
- We say the pair \(P, P' \) is useful if for each \(B \in A \), there is exactly one value \(\nu = \nu(B) \) where \(f([P, P']_B, \nu) = f(P') \) and for all \(\mu \neq \nu \), we have \(f([P, P']_B, \mu) = f(P) \).
Finding change coordinates

Given any admissible pair \(P, P' \), let \(A \) be the subordinating partition of \(P \) and \(P' \) and let \(A_i \) be the set in \(A \) where \(P \) and \(P' \) take differing values.

We examine the values of \(f \) at all the padding points \(Q \) associated to this pair.

We say the pair \(P, P' \) is useful if for each \(B \in A \), there is exactly one value \(\nu = \nu(B) \) where \(f([P, P']_B, \nu) = f(P') \) and for all \(\mu \neq \nu \), we have \(f([P, P']_B, \mu) = f(P) \).

For each such admissible and useful pair, we define
\[
J_{P, P'} := \bigcap_{B \in A} B_{\nu(B)} \cap A_i
\]
Finding change coordinates

- Given any admissible pair \(P, P' \), let \(A \) be the subordinating partition of \(P \) and \(P' \) and let \(A_i \) be the set in \(A \) where \(P \) and \(P' \) take differing values.

- We examine the values of \(f \) at all the padding points \(Q \) associated to this pair.

- We say the pair \(P, P' \) is **useful** if for each \(B \in A \), there is exactly one value \(\nu = \nu(B) \) where \(f([P, P']_B, \nu) = f(P') \) and for all \(\mu \neq \nu \), we have \(f([P, P']_B, \mu) = f(P) \).

- For each such admissible and useful pair, we define \(J_{P, P'} := \bigcap_{B \in A} B_{\nu(B)} \cap A_i \).

- Either \(J_{P, P'} = \{ j \} \) with \(j \) a change coordinate or \(J_{P, P'} = \emptyset \).
Finding change coordinates

- Given any admissible pair \(P, P' \), let \(A \) be the subordinating partition of \(P \) and \(P' \) and let \(A_i \) be the set in \(A \) where \(P \) and \(P' \) take differing values.

- We examine the values of \(f \) at all the padding points \(Q \) associated to this pair.

- We say the pair \(P, P' \) is useful if for each \(B \in A \), there is exactly one value \(\nu = \nu(B) \) where \(f([P, P']_B, \nu) = f(P') \) and for all \(\mu \neq \nu \), we have \(f([P, P']_B, \mu) = f(P) \).

- For each such admissible and useful pair, we define
 \[
 J_{P, P'} := \bigcap_{B \in A} B_{\nu(B)} \cap A_i
 \]

- Either \(J_{P, P'} = \{j\} \) with \(j \) a change coordinate or \(J_{P, P'} = \emptyset \).

- Every change coordinate which is visible on \(h\mathcal{L}_d \) appears in some \(J_{P, P'} \)
Performance of Algorithm 1

- Algorithm 1 finds all change coordinates that are visible on \mathcal{L}_d
Performance of Algorithm 1

- Algorithm 1 finds all change coordinates that are visible on \mathcal{L}_d
- The number of these may be $< d$. Complete this to a vector $j' = (j'_1, \ldots, j'_d)$ in an arbitrary way
Algorithm 1 finds all change coordinates that are visible on \mathcal{L}_d

The number of these may be $< d$. Complete this to a vector $j' = (j'_1, \ldots, j'_d)$ in an arbitrary way.

Define $\hat{f} := A_{r,h}(g)(x_{j'_1}, \ldots, x_{j'_d})$
Performance of Algorithm 1

- Algorithm 1 finds all change coordinates that are visible on \mathcal{L}_d
- The number of these may be $< d$. Complete this to a vector $j' = (j'_1, \ldots, j'_d)$ in an arbitrary way
- Define $\hat{f} := A_{r,h}(g)(x_{j'_1}, \ldots, x_{j'_d})$
- If $f = G_j$ with $g \in C^s$, $s \leq r$, then
 \[\|f - \hat{f}\|_{C(\Omega)} \leq C(s, r)\|g\|_{C^s h^s} \]
Performance of Algorithm 1

- Algorithm 1 finds all change coordinates that are visible on \mathcal{L}_d
- The number of these may be $< d$. Complete this to a vector $j' = (j'_1, \ldots, j'_d)$ in an arbitrary way
- Define $\hat{f} := A_{r,h}(g)(x_{j'_1}, \ldots, x_{j'_d})$
- If $f = G_j$ with $g \in C^s$, $s \leq r$, then
 $$\|f - \hat{f}\|_{C(\Omega)} \leq C(s, r)\|g\|_{C^s h^s}$$
- The number of point values used in Algorithm 1 is $\leq 2d^2(L + 1)^d(\#(A))^2$
Performance of Algorithm 1

- Algorithm 1 finds all change coordinates that are visible on L_d
- The number of these may be $< d$. Complete this to a vector $j' = (j_1', \ldots, j_d')$ in an arbitrary way.
- Define $\hat{f} := A_{r,h}(g)(x_{j_1'}, \ldots, x_{j_d'})$
- If $f = G_j$ with $g \in C^s$, $s \leq r$, then
 \[\|f - \hat{f}\|_{C(\Omega)} \leq C(s, r)\|g\|_{C^s h^s} \]
- The number of point values used in Algorithm 1 is
 \[\leq 2d^2(L + 1)^d(\#(A))^2 \]
- There is a second algorithm (adaptive) for the case when we only know f can be approximated by $g(x_{j_1}, \ldots, x_{j_d})$
A Second Model for f

Cohen-DeVore-Daubechies-Kerkyacharian-Picard
A Second Model for f

- Cohen-DeVore-Daubechies-Kerkyacharian-Picard

We shall assume that $f(x_1, \ldots, x_D) = g(a \cdot x)$, $x \in \Omega := [0, 1]^D$ where $g \in C^s[0, 1]$, $1 < \bar{s} \leq s \leq S$ and $a \in \mathbb{R}^D$.
A Second Model for f

- Cohen-DeVore-Daubechies-Kerkyacharian-Picard

We shall assume that $f(x_1, \ldots, x_D) = g(a \cdot x)$, $x \in \Omega := [0, 1]^D$ where $g \in C^s[0, 1]$, $1 < \bar{s} \leq s \leq S$ and $a \in \mathbb{R}^D$

- We assume $a_i \geq 0, i = 1, \ldots, D$, and WOLOG $\sum_{i=1}^{D} a_i = 1$
A Second Model for f

- Cohen-DeVore-Daubechies-Kerkyacharian-Picard

We shall assume that $f(x_1, \ldots, x_D) = g(a \cdot x)$,

$x \in \Omega := [0, 1]^D$ where $g \in C^s[0, 1]$, $1 < \bar{s} \leq s \leq S$ and $a \in \mathbb{R}^D$

We assume $a_i \geq 0$, $i = 1, \ldots, D$, and WOLOG $\sum_{i=1}^{D} a_i = 1$

More generally, one could consider $f(x_1, \ldots, x_D) = g(Ax)$ with A a $d \times D$ Markov matrix
A Second Model for f

Cohen-DeVore-Daubechies-Kerkyacharian-Picard

We shall assume that $f(x_1, \ldots, x_D) = g(a \cdot x)$, \(x \in \Omega := [0, 1]^D \) where $g \in C^s[0, 1]$, $1 < \bar{s} \leq s \leq S$ and $a \in \mathbb{R}^D$

We assume $a_i \geq 0$, $i = 1, \ldots, D$, and WOLOG $\sum_{i=1}^{D} a_i = 1$

More generally, one could consider $f(x_1, \ldots, x_D) = g(Ax)$ with A a $d \times D$ Markov matrix

Theorem: Assume $\|g\|_{C^s} \leq M_0$ and $\|a\|_{\ell_q} \leq M_1$. Then using L point queries, we can recover f by an approximant \hat{f} satisfying

$$\|f - \hat{f}\|_{C} \leq C(S, \bar{s}, d, M_0, M_1)\left\{L^{-s} + \left\{\frac{\log \min(D/L,1)}{L}\right\}^{1/q-1}\right\}$$
Query Points

For $h := 1/L$, we ask for the values of f at the points $ih(1, \ldots, 1), i = 0, \ldots, L$
Query Points

- For $h := 1/L$, we ask for the values of f at the points $ih(1, \ldots, 1), i = 0, \ldots, L$
- This gives us the values of g at $ih, i = 0, \ldots, L$ and allows us to construct \hat{g} such that

$$\|g - \hat{g}\|_{C[0,1]} \leq C(s)h^s$$
Query Points

- For $h := 1/L$, we ask for the values of f at the points $ih(1, \ldots, 1), i = 0, \ldots, L$

- This gives us the values of g at $ih, i = 0, \ldots, L$ and allows us to construct \hat{g} such that

 $$\|g - \hat{g}\|_{C[0,1]} \leq C(s)h^s$$

- We next want to approximate a
For $h := 1/L$, we ask for the values of f at the points $ih(1, \ldots, 1), i = 0, \ldots, L$

This gives us the values of g at $ih, i = 0, \ldots, L$ and allows us to construct \hat{g} such that

$$\|g - \hat{g}\|_{C[0,1]} \leq C(s)h^s$$

We next want to approximate a

Choose i, j such that $\frac{|g(ih) - g(jh)|}{|ih - jh|} =: A$ is largest
Query Points

- For $h := 1/L$, we ask for the values of f at the points $ih(1,\ldots,1)$, $i = 0,\ldots,L$.
- This gives us the values of g at ih, $i = 0,\ldots,L$ and allows us to construct \hat{g} such that
 $$\|g - \hat{g}\|_{C[0,1]} \leq C(s)h^s$$
- We next want to approximate a.
- Choose i, j such that $\frac{|g(ih) - g(jh)|}{|ih - jh|} =: A$ is largest.
- We adaptively bisect $[ih, jh]$ L times always choosing the interval with largest divided difference to subdivide.
Query Points

- For $h := 1/L$, we ask for the values of f at the points $ih(1, \ldots, 1), i = 0, \ldots, L$
- This gives us the values of g at $ih, i = 0, \ldots, L$ and allows us to construct \hat{g} such that
 \[\|g - \hat{g}\|_{C[0,1]} \leq C(s)h^s \]
- We next want to approximate a
- Choose i, j such that $\frac{|g(ih) - g(jh)|}{|ih - jh|} =: A$ is largest
- We adaptively bisect $[ih, jh]$ L times always choosing the interval with largest divided difference to subdivide
- This gives an interval $I = [\alpha_0, \alpha_1]$ with $|I| \leq 2^{-L}$ and a point $\xi_0 \in I$ where $|g'(\xi_0)| \geq A$
Query Points

For $h := 1/L$, we ask for the values of f at the points $ih(1, \ldots, 1)$, $i = 0, \ldots, L$

This gives us the values of g at ih, $i = 0, \ldots, L$ and allows us to construct \hat{g} such that

$$\|g - \hat{g}\|_{C[0,1]} \leq C(s)h^s$$

We next want to approximate a

Choose i, j such that $\frac{|g(ih) - g(jh)|}{|ih - jh|} =: A$ is largest

We adaptively bisect $[ih, jh]$ L times always choosing the interval with largest divided difference to subdivide

This gives an interval $I = [\alpha_0, \alpha_1]$ with $|I| \leq 2^{-L}$ and a point $\xi_0 \in I$ where $|g'(\xi_0)| \geq A$

η the center of I
Approximating a

Let Φ be an $L \times D$ Bernoulli matrix with entries $\pm 1/\sqrt{L}$.
Approximating α

- Let Φ be an $L \times D$ Bernoulli matrix with entries $\pm 1/\sqrt{L}$
- b_1, \ldots, b_L the rows of Φ
Approximating α

- Let Φ be an $L \times D$ Bernoulli matrix with entries $\pm 1/\sqrt{L}$
- b_1, \ldots, b_L the rows of Φ
- We now ask for the value of f at the points $\eta(1, 1, \ldots, 1) + \mu b_i$, $i = 1, \ldots, L$, where $\mu := \frac{\sqrt{L}\delta}{2}$
Approximating a

- Let Φ be an $L \times D$ Bernoulli matrix with entries $\pm 1/\sqrt{L}$
- b_1, \ldots, b_L the rows of Φ
- We now ask for the value of f at the points $
\eta(1, 1, \ldots, 1) + \mu b_i, \ i = 1, \ldots, L$, where $\mu := \frac{\sqrt{L}\delta}{2}$
- These queries in turn gives the values $g(\eta + \mu b_i \cdot \alpha), \ i = 1, \ldots, L$. All of the points $\eta + \mu b_i \cdot \alpha$ are in I
Approximating α

Let Φ be an $L \times D$ Bernoulli matrix with entries $\pm 1/\sqrt{L}$

b_1, \ldots, b_L the rows of Φ

We now ask for the value of f at the points

$\eta(1, 1, \ldots, 1) + \mu b_i, \ i = 1, \ldots, L$, where $\mu := \frac{\sqrt{L}\delta}{2}$

These queries in turn gives the values $g(\eta + \mu b_i \cdot a)$, $i = 1, \ldots, L$. All of the points $\eta + \mu b_i \cdot a$ are in I

$\hat{y}_i := \frac{2}{\sqrt{L}} \left[\frac{g(\eta+\mu b_i \cdot a) - g(\eta)}{g(\alpha_0+\delta) - g(\alpha_0)} \right] = \frac{2}{\sqrt{L}} \left[\frac{g'(\xi_1)\mu b_i \cdot a}{g'(\xi_0)\delta} \right]$

$= b_i \cdot a \left[1 + \frac{g'(\xi_1) - g'(\xi_0)}{g'(\xi_0)} \right] = b_i \cdot a \left[1 + \epsilon_i \right]$
Let Φ be an $L \times D$ Bernoulli matrix with entries $\pm 1/\sqrt{L}$

b_1, \ldots, b_L the rows of Φ

We now ask for the value of f at the points $\eta(1, 1, \ldots, 1) + \mu b_i$, $i = 1, \ldots, L$, where $\mu := \frac{\sqrt{L}\delta}{2}$

These queries in turn gives the values $g(\eta + \mu b_i \cdot a)$, $i = 1, \ldots, L$. All of the points $\eta + \mu b_i \cdot a$ are in I

$$\hat{y}_i := \frac{2}{\sqrt{L}} \left[\frac{g(\eta + \mu b_i \cdot a) - g(\eta)}{g(\alpha_0 + \delta) - g(\alpha_0)} \right] = \frac{2}{\sqrt{L}} \left[\frac{g'((\xi_1)\mu b_i \cdot a)}{g'((\xi_0)\delta)} \right]$$

$$= b_i \cdot a \left[1 + \frac{g'(\xi_1) - g'(\xi_0)}{g'(\xi_0)} \right] = b_i \cdot a \left[1 + \epsilon_i \right]$$

$$|\epsilon_i| \leq CA^{-1}2^{-L}M_0L^{-\bar{s}}$$
Compressed sensing allows us to decode

\[\hat{a}_i := \arg \min_{\Phi z = \hat{y}_i} \| z \|_1 \]
Compressed sensing allows us to decode
\[\hat{a}_i := \arg\min_{\Phi z = \hat{y}_i} \|z\|_{\ell_1} \]
\[\hat{a} := (\hat{a}_1, \ldots, \hat{a}_D) \]
Compressed sensing allows us to decode
\[\hat{a}_i := \arg\min_{\Phi z = \hat{y}_i} \| z \|_{\ell_1} \]
\[\hat{a} := (\hat{a}_1, \ldots, \hat{a}_D) \]
\[\| a - \hat{a} \|_{\ell_1} \leq C \{ \frac{\log(D/L)}{L} \}^{1/q - 1} + LM_0 A^{-1} 2^{-\ell \bar{s}} \]
Compressed sensing allows us to decode
\[\hat{a}_i := \arg\min_{\Phi z = \hat{y}_i} \| z \|_{\ell_1} \]
\[\hat{a} := (\hat{a}_1, \ldots, \hat{a}_D) \]
\[\| a - \hat{a} \|_{\ell_1} \leq C \left\{ \frac{\log(D/L)}{L} \right\}^{1/q-1} + L M_0 A^{-1} 2^{-\ell \bar{s}} \]
\[\hat{f}(x) := \hat{g}(\hat{a} \cdot x) \text{ satisfies Theorem} \]
Compressed sensing allows us to decode
\[\hat{a}_i := \text{argmin}_{\Phi z = \hat{y}_i} \| z \|_{\ell_1} \]
\[\hat{a} := (\hat{a}_1, \ldots, \hat{a}_D) \]
\[\| a - \hat{a} \|_{\ell_1} \leq C \left(\frac{\log(D/L)}{L} \right)^{1/q-1} + LM_0 A^{-1} 2^{-\ell s} \]
\[\hat{f}(x) := \hat{g}(\hat{a} \cdot x) \] satisfies Theorem
Case \(A \leq M_0 L^{-s} \) then \(g \) does not vary
Compressed sensing allows us to decode

\[\hat{a}_i := \arg\min_{\Phi z = \hat{y}_i} \| z \|_{\ell_1} \]

\[\hat{a} := (\hat{a}_1, \ldots, \hat{a}_D) \]

\[\| a - \hat{a} \|_{\ell_1} \leq C\left\{ \frac{\log(D/L)}{L} \right\}^{1/q - 1} + LM_0 A^{-1/2 - \ell \bar{s}} \]

\[\hat{f}(x) := \hat{g}(\hat{a} \cdot x) \] satisfies Theorem

Case \(A \leq M_0 L^{-s} \) then \(g \) does not vary

Case \(A \geq M_0 L^{-s} \) then

\[|f(x) - \hat{f}(x)| \leq |g(a \cdot x) - g(\hat{a} \cdot x)| + |g(\hat{a} \cdot x) - \hat{g}(\hat{a} \cdot x)| \leq M_0 \| a - \hat{a} \|_{\ell_1} + \| g - \hat{g} \|_{C[0,1]} \]
Final Remarks

- The result cannot be improved (save for the constant)
Final Remarks

- The result cannot be improved (save for the constant)
- To achieve L^{-s} we need $O(L)$ points
Final Remarks

- The result cannot be improved (save for the constant)
- To achieve L^{-s} we need $O(L)$ points
- By considering the functions $a \cdot x$, $\|a\|_{\ell_q} \leq M_1$ and lower bounds for Gelfand widths (Foucart, Rauhut, Pajor, Ullrich) we need $O(L)$ points for the second term accuracy
Final Remarks

- The result cannot be improved (save for the constant)
- To achieve L^{-s} we need $O(L)$ points
- By considering the functions $a \cdot x, \|a\|_{\ell_q} \leq M_1$ and lower bounds for Gelfand widths (Foucart, Rauhut, Pajor, Ullrich) we need $O(L)$ points for the second term accuracy
- Why $\bar{s} > 1$?
Final Remarks

- The result cannot be improved (save for the constant)
- To achieve L^{-s} we need $O(L)$ points
- By considering the functions $a \cdot x$, $\|a\|_{\ell_q} \leq M_1$ and lower bounds for Gelfand widths (Foucart, Rauhut, Pajor, Ullrich) we need $O(L)$ points for the second term accuracy
- Why $\bar{s} > 1$?
- We do not have the stability we had in the first setting